51
|
Maiti AK. Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics 2022; 74:455-463. [PMID: 35303126 PMCID: PMC8931451 DOI: 10.1007/s00251-022-01257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
G-quadruplex structure or Putative Quadruplex Sequences (PQSs) are abundant in human, microbial, DNA, or RNA viral genomes. These sequences in RNA viral genome play critical roles in integration into human genome as LTR (Long Terminal Repeat), genome replication, chromatin rearrangements, gene regulation, antigen variation (Av), and virulence. Here, we investigated whether the genome of SARS-CoV2, an RNA virus, contained such potential G-quadruplex structures. Using bioinformatic tools, we searched for such sequences and found thirty-seven (forward strand (twenty-five) + reverse strand (Twelve)) QGRSs (Quadruplex forming G-Rich Sequences)/PQSs in SARS-CoV2 genome. These sequences are dispersed mainly in the upstream of SARS-CoV2 genes. We discuss whether existing PQS/QGRS ligands could inhibit the SARS-CoV2 replication and gene transcription as has been observed in other RNA viruses. Further experimental validation would determine the role of these G-quadruplex sequences in SARS-CoV2 genome function to survive in the host cells and identify therapeutic agents to destabilize these PQSs/QGRSs.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 2645 Somerset Boulevard, Troy, MI, 48084, USA.
| |
Collapse
|
52
|
Kim D, Han S, Ji Y, Youn H, Kim H, Ko O, Lee JB. RNA polymerization actuating nucleic acid membrane (RANAM)-based biosensing for universal RNA virus detection. Biosens Bioelectron 2022; 199:113880. [PMID: 34915215 PMCID: PMC8662841 DOI: 10.1016/j.bios.2021.113880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
The coronavirus disease (COVID-19) pandemic has shown the importance of early disease diagnosis in preventing further infection and mortality. Despite major advances in the development of highly precise and rapid detection approaches, the time-consuming process of designing a virus-specific diagnostic kit has been a limiting factor in the early management of the pandemic. Here, we propose an RNA polymerase activity-sensing strategy utilizing an RNA polymerization actuating nucleic acid membrane (RANAM) partially metallized with gold for colorimetric RNA virus detection. Following RANAM-templated amplification of newly synthesized RNA, the presence of the RNA polymerase was determined by visualization of the inhibition of an oxidation/reduction (redox) reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and blocked Au3+. As a proof of concept, a viral RNA-dependent RNA polymerase (RdRP), which is found in various RNA virus-infected cells, was chosen as a target molecule. With this novel RANAM biosensor, as little as 10 min of RdRP incubation could significantly reduce the colorimetric signal. Further development into an easy-to-use prototype kit in viral infection diagnosis detected RdRP present at levels even as low as 100 aM. Color formation based on the presence of RdRP could be simply and clearly confirmed through smartphone-assisted color imaging of the prototype kit. This study provides a non-PCR-based RNA virus detection including its variants using RdRP-mediated polymerization.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Heejeong Youn
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Ohsung Ko
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
53
|
Celik I, Tallei TE. A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2. J Cell Biochem 2022; 123:807-818. [PMID: 35132671 DOI: 10.1002/jcb.30226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023]
Abstract
The antiviral drug molnupiravir targets the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) enzyme. Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with COVID-19, according to phase 3 clinical trials. Many mutations have occurred within this virus as a result of its widespread distribution. The current study sought to determine whether mutations in the RdRP of Delta subvariant AY.4 (D-AY.4 RdRP) influence the interaction of the enzyme with molnupiravir triphosphate (MTP), the active metabolite of molnupiravir. The interactions between the wild-type (WT) RdRP and D-AY.4 RdRP with MTP were evaluated based on molecular docking and dynamic simulation (MD) studies. The results show that the MTP interaction is stronger and more stable with D-AY.4 RdRP than with WT RdRP. This study provides insight into the potential significance of administering MTP to patients infected with D-AY.4 RdRP, which may have a more favorable chance of alleviating the illness. According to the findings of this study, MTP has a high likelihood of becoming widely used as an anti-SARS-CoV-2 agent. The fact that MTP is not only cytotoxic but also mutagenic to mammalian cells, as well as the possibility that it may cause DNA damage in the host, have all been raised as potential concerns.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Trina E Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| |
Collapse
|
54
|
Carrascoza F, Antczak M, Miao Z, Westhof E, Szachniuk M. Evaluation of the stereochemical quality of predicted RNA 3D models in the RNA-Puzzles submissions. RNA (NEW YORK, N.Y.) 2022; 28:250-262. [PMID: 34819324 PMCID: PMC8906551 DOI: 10.1261/rna.078685.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.
Collapse
Affiliation(s)
- Francisco Carrascoza
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire CNRS, Architecture et Réactivité de l'ARN, 67084 Strasbourg, France
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
55
|
Karthic A, Kesarwani V, Singh RK, Yadav PK, Chaturvedi N, Chauhan P, Yadav BS, Kushwaha SK. Computational Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp). Molecules 2022; 27:801. [PMID: 35164069 PMCID: PMC8840377 DOI: 10.3390/molecules27030801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023] Open
Abstract
The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Bioinformatics, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India; (A.K.); (V.K.)
- Amity Institute of Biotechnology, Amity University Mumbai, Navi Mumbai 410206, India
| | - Veerbhan Kesarwani
- Bioinformatics, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India; (A.K.); (V.K.)
- Hap Biosolutions, Pvt. Ltd., Bhopal 462042, India
| | - Rahul Kunwar Singh
- Cyano Biotech Lab, Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal) 246174, India;
| | - Pavan Kumar Yadav
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Navaneet Chaturvedi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 7RH, UK;
| | | | - Brijesh Singh Yadav
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Sandeep Kumar Kushwaha
- Bioinformatics, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India; (A.K.); (V.K.)
| |
Collapse
|
56
|
Virtual Combinatorial Library Screening of Quinadoline B Derivatives against SARS-CoV-2 RNA-Dependent RNA Polymerase. COMPUTATION 2022. [DOI: 10.3390/computation10010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The unprecedented global health threat of SARS-CoV-2 has sparked a continued interest in discovering novel anti-COVID-19 agents. To this end, we present here a computer-based protocol for identifying potential compounds targeting RNA-dependent RNA polymerase (RdRp). Starting from our previous study wherein, using a virtual screening campaign, we identified a fumiquinazolinone alkaloid quinadoline B (Q3), an antiviral fungal metabolite with significant activity against SARS-CoV-2 RdRp, we applied in silico combinatorial methodologies for generating and screening a library of anti-SARS-CoV-2 candidates with strong in silico affinity for RdRp. For this study, the quinadoline pharmacophore was subjected to structural iteration, obtaining a Q3-focused library of over 900,000 unique structures. This chemical library was explored to identify binders of RdRp with greater affinity with respect to the starting compound Q3. Coupling this approach with the evaluation of physchem profile, we found 26 compounds with significant affinities for the RdRp binding site. Moreover, top-ranked compounds were submitted to molecular dynamics to evaluate the stability of the systems during a selected time, and to deeply investigate the binding mode of the most promising derivatives. Among the generated structures, five compounds, obtained by inserting nucleotide-like scaffolds (1, 2, and 5), heterocyclic thiazolyl benzamide moiety (compound 3), and a peptide residue (compound 4), exhibited enhanced binding affinity for SARS-CoV-2 RdRp, deserving further investigation as possible antiviral agents. Remarkably, the presented in silico procedure provides a useful computational procedure for hit-to-lead optimization, having implications in anti-SARS-CoV-2 drug discovery and in general in the drug optimization process.
Collapse
|
57
|
Nguyen QV, Chong LC, Hor YY, Lew LC, Rather IA, Choi SB. Role of Probiotics in the Management of COVID-19: A Computational Perspective. Nutrients 2022; 14:274. [PMID: 35057455 PMCID: PMC8781206 DOI: 10.3390/nu14020274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was declared a pandemic at the beginning of 2020, causing millions of deaths worldwide. Millions of vaccine doses have been administered worldwide; however, outbreaks continue. Probiotics are known to restore a stable gut microbiota by regulating innate and adaptive immunity within the gut, demonstrating the possibility that they may be used to combat COVID-19 because of several pieces of evidence suggesting that COVID-19 has an adverse impact on gut microbiota dysbiosis. Thus, probiotics and their metabolites with known antiviral properties may be used as an adjunctive treatment to combat COVID-19. Several clinical trials have revealed the efficacy of probiotics and their metabolites in treating patients with SARS-CoV-2. However, its molecular mechanism has not been unraveled. The availability of abundant data resources and computational methods has significantly changed research finding molecular insights between probiotics and COVID-19. This review highlights computational approaches involving microbiome-based approaches and ensemble-driven docking approaches, as well as a case study proving the effects of probiotic metabolites on SARS-CoV-2.
Collapse
Affiliation(s)
- Quang Vo Nguyen
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Wilayah Persekutuan, Kuala Lumpur 50490, Malaysia;
| | - Li Chuin Chong
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul 34820, Turkey;
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Lee-Ching Lew
- Probionic Corporation, Jeonbuk Institute for Food-Bioindustry, Jeonju 54810, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Wilayah Persekutuan, Kuala Lumpur 50490, Malaysia;
| |
Collapse
|
58
|
Bibi S, Hasan MM, Wang YB, Papadakos SP, Yu H. Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Curr Med Chem 2022; 29:152-162. [PMID: 34420502 DOI: 10.2174/0929867328666210820114025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARSCoV- 2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients. OBJECTIVE The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2. METHODS Fungal derivative "Cordycepin" was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp. RESULTS The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span. CONCLUSION Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARSCoV- 2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan,China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902,Bangladesh
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan,China
| | - Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens,Greece
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan,China
| |
Collapse
|
59
|
Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300679 DOI: 10.1016/b978-0-323-91172-6.00019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) is one of the worst human health problems faced by humanity in recent centuries. An end to this health crisis relies on our ability to monitor viral transmission dynamics to check spread, develop therapeutics and preventatives for treatment of SARS-CoV-2 infection and understand the pathophysiology of the disease for better management of the patients. Omics technologies have played a crucial part in understanding the different aspects of COVID-19 disease. While whole-genome sequencing of SARS-CoV-2 isolates from across the globe has aided in the development of molecular diagnostic assays and informed about the viral evolution, knowledge of structure and function of viral proteome fueled the development of small molecule and biologicals therapeutics as well as vaccines. Concurrently, metabolomic profiling of samples from COVID-19 patients experiencing a varying level of disease severity has provided a snapshot of the pathophysiology of the disease helping device effective treatment regimen. This chapter deals with genomic, proteomic, and metabolomic profiling of SRAS-CoV-2.
Collapse
|
60
|
Applications of density functional theory in COVID-19 drug modeling. Drug Discov Today 2021; 27:1411-1419. [PMID: 34954327 PMCID: PMC8695517 DOI: 10.1016/j.drudis.2021.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023]
Abstract
The rapidly evolving Coronavirus 2019 (COVID-19) pandemic has led to millions of deaths around the world, highlighting the pressing need to develop effective antiviral pharmaceuticals. Recent efforts with computer-aided rational drug discovery have allowed detailed examination of drug–macromolecule interactions primarily by molecular mechanics (MM) techniques. Less widely applied in COVID-19 drug modeling is density functional theory (DFT), a quantum mechanics (QM) method that enables electronic structure calculations and elucidations of reaction mechanisms. Here, we review recent advances in applying DFT in molecular modeling studies of COVID-19 pharmaceuticals. We start by providing an overview of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs and targets, followed by a brief introduction to DFT. We then provide a discussion of different approaches by which DFT has been applied. Finally, we discuss essential factors to consider when incorporating DFT in future drug modeling research.
Collapse
|
61
|
Kamel NA, Ismail NSM, Yahia IS, Aboshanab KM. Potential Role of Colchicine in Combating COVID-19 Cytokine Storm and Its Ability to Inhibit Protease Enzyme of SARS-CoV-2 as Conferred by Molecular Docking Analysis. Medicina (B Aires) 2021; 58:medicina58010020. [PMID: 35056328 PMCID: PMC8781828 DOI: 10.3390/medicina58010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the advance in the management of Coronavirus disease 2019 (COVID-19), the global pandemic is still ongoing with a massive health crisis. COVID-19 manifestations may range from mild symptoms to severe life threatening ones. The hallmark of the disease severity is related to the overproduction of pro-inflammatory cytokines manifested as a cytokine storm. Based on its anti-inflammatory activity through interfering with several pro and anti-inflammatory pathways, colchicine had been proposed to reduce the cytokine storm and subsequently improve clinical outcomes. Molecular docking analysis of colchicine against RNA-dependent RNA polymerase (RdRp) and protease enzymes of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) revealed that colchicine provided a grid-based molecular docking method, C-DOCKER interaction energy 64.26 and 47.53 (Kcal/mol) with protease and RdRp, respectively. This finding indicated higher binding stability for colchicine–protease complexes than the colchicine–RdRp complex with the involvement of seven hydrogen bonds, six hydrogen acceptors with Asn142, Gly143, Ser144, and Glu166 and one hydrogen-bond donors with Cys145 of the protease enzyme. This is in addition to three hydrophobic interactions with His172, Glu166, and Arg188. A good alignment with the reference compound, Boceprevir, indicated high probability of binding to the protease enzyme of SARS-CoV-2. In conclusion, colchicine can ameliorate the destructive effect of the COVID-19 cytokine storm with a strong evidence of antiviral activity by inhibiting the protease enzyme of SARS-CoV-2.
Collapse
Affiliation(s)
- Noha A. Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt;
| | - Nasser S. M. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt;
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University (ASU), Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Abbassia, Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-1-0075-82620; Fax: +20-2-2405110
| |
Collapse
|
62
|
Activity of Galidesivir in a Hamster Model of SARS-CoV-2. Viruses 2021; 14:v14010008. [PMID: 35062212 PMCID: PMC8780270 DOI: 10.3390/v14010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has claimed the lives of millions of people worldwide since it first emerged. The impact of the COVID-19 pandemic on public health and the global economy has highlighted the medical need for the development of broadly acting interventions against emerging viral threats. Galidesivir is a broad-spectrum antiviral compound with demonstrated in vitro and in vivo efficacy against several RNA viruses of public health concern, including those causing yellow fever, Ebola, Marburg, and Rift Valley fever. In vitro studies have shown that the antiviral activity of galidesivir also extends to coronaviruses. Herein, we describe the efficacy of galidesivir in the Syrian golden hamster model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Treatment with galidesivir reduced lung pathology in infected animals compared with untreated controls when treatment was initiated 24 h prior to infection. These results add to the evidence of the applicability of galidesivir as a potential medical intervention for a range of acute viral illnesses, including coronaviruses.
Collapse
|
63
|
Moabelo KL, Martin DR, Fadaka AO, Sibuyi NRS, Meyer M, Madiehe AM. Nanotechnology-Based Strategies for Effective and Rapid Detection of SARS-CoV-2. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7851. [PMID: 34947447 PMCID: PMC8703409 DOI: 10.3390/ma14247851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has gained worldwide attention and has prompted the development of innovative diagnostics, therapeutics, and vaccines to mitigate the pandemic. Diagnostic methods based on reverse transcriptase-polymerase chain reaction (RT-PCR) technology are the gold standard in the fight against COVID-19. However, this test might not be easily accessible in low-resource settings for the early detection and diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of access to well-equipped clinical laboratories, requirement for the high level of technical competence, and the cost of the RT-PCR test are the major limitations. Moreover, RT-PCR is unsuitable for application at the point-of-care testing (PoCT) as it is time-consuming and lab-based. Due to emerging mutations of the virus and the burden it has placed on the health care systems, there is a growing urgency to develop sensitive, selective, and rapid diagnostic devices for COVID-19. Nanotechnology has emerged as a versatile technology in the production of reliable diagnostic tools for various diseases and offers new opportunities for the development of COVID-19 diagnostic systems. This review summarizes some of the nano-enabled diagnostic systems that were explored for the detection of SARS-CoV-2. It highlights how the unique physicochemical properties of nanoparticles were exploited in the development of novel colorimetric assays and biosensors for COVID-19 at the PoCT. The potential to improve the efficiency of the current assays, as well as the challenges associated with the development of these innovative diagnostic tools, are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (K.L.M.); (D.R.M.); (A.O.F.); (N.R.S.S.)
| | - Abram M. Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape (UWC), Bellville 7535, South Africa; (K.L.M.); (D.R.M.); (A.O.F.); (N.R.S.S.)
| |
Collapse
|
64
|
Lochab A, Thareja R, Gadre SD, Saxena R. Potential Protein and Enzyme Targets for In‐silico Development and Repurposing of Drug Against Coronaviruses. ChemistrySelect 2021. [DOI: 10.1002/slct.202103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Lochab
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| | - Rakhi Thareja
- Department of Chemistry St. Stephens College University of Delhi Delhi India
| | - Sangeeta D. Gadre
- Department of Physics Kirori Mal College University of Delhi Delhi India
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| |
Collapse
|
65
|
Wu Y, Crich D, Pegan SD, Lou L, Hansen MC, Booth C, Desrochers E, Mullininx LN, Starling EB, Chang KY, Xie ZR. Polyphenols as Potential Inhibitors of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Molecules 2021; 26:7438. [PMID: 34946521 PMCID: PMC8706955 DOI: 10.3390/molecules26247438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
An increasing number of studies have demonstrated the antiviral nature of polyphenols, and many polyphenols have been proposed to inhibit SARS-CoV or SARS-CoV-2. Our previous study revealed the inhibitory mechanisms of polyphenols against DNA polymerase α and HIV reverse transcriptase to show that polyphenols can block DNA elongation by competing with the incoming NTPs. Here we applied computational approaches to examine if some polyphenols can also inhibit RNA polymerase (RdRp) in SARS-CoV-2, and we identified some better candidates than remdesivir, the FDA-approved drug against RdRp, in terms of estimated binding affinities. The proposed compounds will be further examined to develop new treatments for COVID-19.
Collapse
Affiliation(s)
- Yifei Wu
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (Y.W.); (L.L.)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| | - Scott D. Pegan
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (Y.W.); (L.L.)
| | - Madelyn C. Hansen
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (M.C.H.); (C.B.); (E.D.); (L.N.M.); (E.B.S.)
| | - Carson Booth
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (M.C.H.); (C.B.); (E.D.); (L.N.M.); (E.B.S.)
| | - Ellison Desrochers
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (M.C.H.); (C.B.); (E.D.); (L.N.M.); (E.B.S.)
| | - Lauren Nicole Mullininx
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (M.C.H.); (C.B.); (E.D.); (L.N.M.); (E.B.S.)
| | - Edward B. Starling
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (M.C.H.); (C.B.); (E.D.); (L.N.M.); (E.B.S.)
| | - Kuan Y. Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (Y.W.); (L.L.)
| |
Collapse
|
66
|
Liu CH, Lu CH, Lin LT. Pandemic strategies with computational and structural biology against COVID-19: A retrospective. Comput Struct Biotechnol J 2021; 20:187-192. [PMID: 34900126 PMCID: PMC8650801 DOI: 10.1016/j.csbj.2021.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic, has dominated all aspects of life since of 2020. Research studies on the virus and exploration of therapeutic and preventive strategies has been moving at rapid rates to control the pandemic. In the field of bioinformatics or computational and structural biology, recent research strategies have used multiple disciplines to compile large datasets to uncover statistical correlations and significance, visualize and model proteins, perform molecular dynamics simulations, and employ the help of artificial intelligence and machine learning to harness computational processing power to further the research on COVID-19, including drug screening, drug design, vaccine development, prognosis prediction, and outbreak prediction. These recent developments should help us better understand the viral disease and develop the much-needed therapies and strategies for the management of COVID-19.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cheng-Hua Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
67
|
Hall-Swan S, Devaurs D, Rigo MM, Antunes DA, Kavraki LE, Zanatta G. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Comput Biol Med 2021; 139:104943. [PMID: 34717233 PMCID: PMC8518241 DOI: 10.1016/j.compbiomed.2021.104943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
An unprecedented research effort has been undertaken in response to the ongoing COVID-19 pandemic. This has included the determination of hundreds of crystallographic structures of SARS-CoV-2 proteins, and numerous virtual screening projects searching large compound libraries for potential drug inhibitors. Unfortunately, these initiatives have had very limited success in producing effective inhibitors against SARS-CoV-2 proteins. A reason might be an often overlooked factor in these computational efforts: receptor flexibility. To address this issue we have implemented a computational tool for ensemble docking with SARS-CoV-2 proteins. We have extracted representative ensembles of protein conformations from the Protein Data Bank and from in silico molecular dynamics simulations. Twelve pre-computed ensembles of SARS-CoV-2 protein conformations have now been made available for ensemble docking via a user-friendly webserver called DINC-COVID (dinc-covid.kavrakilab.org). We have validated DINC-COVID using data on tested inhibitors of two SARS-CoV-2 proteins, obtaining good correlations between docking-derived binding energies and experimentally-determined binding affinities. Some of the best results have been obtained on a dataset of large ligands resolved via room temperature crystallography, and therefore capturing alternative receptor conformations. In addition, we have shown that the ensembles available in DINC-COVID capture different ranges of receptor flexibility, and that this diversity is useful in finding alternative binding modes of ligands. Overall, our work highlights the importance of accounting for receptor flexibility in docking studies, and provides a platform for the identification of new inhibitors against SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Sarah Hall-Swan
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States
| | - Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Mauricio M. Rigo
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States,Department of Biology and Biochemistry, University of Houston, Houston, 77005, Texas, United States,Corresponding author. Department of Computer Science, Rice University, Houston, 77005, Texas, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States,Corresponding author
| | - Geancarlo Zanatta
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil,Corresponding author
| |
Collapse
|
68
|
Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105155. [PMID: 34823028 PMCID: PMC8607796 DOI: 10.1016/j.meegid.2021.105155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The present study aimed to predict the binding potential of carbon nanotube and nano fullerene towards multiple targets of SARS-CoV-2. Based on the virulent functions, the spike glycoprotein, RNA-dependent RNA polymerase, main protease, papain-like protease, and RNA binding domain of the nucleocapsid proteins of SARS-CoV-2 were prioritized as the molecular targets and their three-dimensional (3D) structures were retrieved from the Protein Data Bank. The 3D structures of carbon nanotubes and nano-fullerene were computationally modeled, and the binding potential of these nanoparticles to the selected molecular targets was predicted by molecular docking and molecular dynamic (MD) simulations. The drug-likeness and pharmacokinetic features of the lead molecules were computationally predicted. The current study suggested that carbon fullerene and nanotube demonstrated significant binding towards the prioritized multi-targets of SARS-CoV-2. Interestingly, carbon nanotube showed better interaction with these targets when compared to carbon fullerene. MD simulation studies clearly showed that the interaction of nanoparticles and selected targets possessed stability and conformational changes. This study revealed that carbon nanotubes and fullerene are probably used as effectual binders to multiple targets of SARS-CoV-2, and the study offers insights into the experimental validation and highlights the relevance of utilizing carbon nanomaterials as a therapeutic remedy against COVID-19.
Collapse
|
69
|
Zhao J, Zhang G, Zhang Y, Yi D, Li Q, Ma L, Guo S, Li X, Guo F, Lin R, Luu G, Liu Z, Wang Y, Cen S. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res 2021; 196:105209. [PMID: 34801588 PMCID: PMC8600920 DOI: 10.1016/j.antiviral.2021.105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of Coronavirus Disease 2019 (COVID-19) pandemic. Despite intensive and global efforts to discover and develop novel antiviral therapies, only Remdesivir has been approved as a treatment for COVID-19. Therefore, effective antiviral therapeutics are still urgently needed to combat and halt the pandemic. Viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 demonstrates high potential as a reliable target for the development of antivirals. We previously developed a cell-based assay to assess the efficiency of compounds that target SARS-CoV-2 RdRp, as well as their tolerance to viral exoribonuclease-mediated proof-reading. In our previous study, we discovered that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides specifically targets the RdRp of both respiratory syncytial virus (RSV) and influenza A virus. Thus, we hypothesize that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides may also have the ability to inhibit SARS-CoV-2 replication by targeting its RdRp activity. In this research, we test a compound library containing 103 of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides against SARS-CoV-2 RdRp, using our cell-based assay. Among these compounds, the top five candidates strongly inhibit SARS-CoV-2 RdRp activity while exhibiting low cytotoxicity and resistance to viral exoribonuclease. Compound 6-72-2a is the most promising candidate with the lowest EC50 value of 1.41 μM and highest selectivity index (CC50/EC50) (above 70.92). Furthermore, our data suggests that 4–46b and 6-72-2a also inhibit the replication of HCoV-OC43 and HCoV-NL63 virus in a dose-dependent manner. Compounds 4–46b and 6-72-2a exhibit EC50 values of 1.13 μM and 0.94 μM, respectively, on HCoV-OC43 viral replication. However, higher concentrations of these compounds are needed to effectively block HCoV-NL63 replication. Together, our findings successfully identified 4–46b and 6-72-2a as promising inhibitors against SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - SaiSai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Rongtuan Lin
- Lady Davis Institute for Medical Research, McGill University and Jewish General Hospital, Montreal, Quebec, Canada
| | - Gia Luu
- Lady Davis Institute for Medical Research, McGill University and Jewish General Hospital, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, McGill University and Jewish General Hospital, Montreal, Quebec, Canada.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
70
|
Emerging genetic diversity of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) alters its B-cell epitopes. Biologicals 2021; 75:29-36. [PMID: 34802866 PMCID: PMC8595351 DOI: 10.1016/j.biologicals.2021.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/10/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
The RNA dependent RNA polymerase (RdRp) plays crucial role in virus life cycle by replicating the viral genome. The SARS-CoV-2 is an RNA virus that rapidly spread worldwide and acquired mutations. This study was carried out to identify mutations in RdRp as the SARS-CoV-2 spread in India. We compared 50217 RdRp sequences reported from India with the first reported RdRp sequence from Wuhan, China to identify 223 mutations acquired among Indian isolates. Our protein modelling study revealed that several mutants can potentially alter stability and flexibility of RdRp. We predicted the potential B cell epitopes contributed by RdRp and identified thirty-six linear continuous and twenty-five discontinuous epitopes. Among 223 RdRp mutants, 44% of them localises in the B cell epitopes region. Altogether, this study highlights the need to identify and characterize the variations in RdRp to understand the impact of these mutations on SARS-CoV-2.
Collapse
|
71
|
An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res 2021; 195:105180. [PMID: 34551346 PMCID: PMC8483777 DOI: 10.1016/j.antiviral.2021.105180] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
Galidesivir (BCX4430) is an adenosine nucleoside analog that is broadly active in cell culture against several RNA viruses of various families. This activity has also been shown in animal models of viral disease associated with Ebola, Marburg, yellow fever, Zika, and Rift Valley fever viruses. In many cases, the compound is more efficacious in animal models than cell culture activity would predict. Based on favorable data from in vivo animal studies, galidesivir has recently undergone evaluation in several phase I clinical trials, including against severe acute respiratory syndrome coronavirus 2, and as a medical countermeasure for the treatment of Marburg virus disease.
Collapse
|
72
|
Synthesis under microwaves irradiation, structure elucidation, docking study for inhibiting COVID-19 and DFT calculations of novel azoles incorporated indole moiety. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
73
|
Yuan F, Wang L, Fang Y, Wang L. Global SNP analysis of 11,183 SARS-CoV-2 strains reveals high genetic diversity. Transbound Emerg Dis 2021; 68:3288-3304. [PMID: 33207070 PMCID: PMC7753349 DOI: 10.1111/tbed.13931] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023]
Abstract
Since first identified in December of 2019, COVID-19 has been quickly spreading to the world in few months and COVID-19 cases are still undergoing rapid surge in most countries worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), adapts and evolves rapidly in nature. With the availability of 16,092 SARS-CoV-2 full genomes in GISAID as of 13 May, we removed the poor-quality genomes and performed mutational profiling analysis for the remaining 11,183 viral genomes. Global analysis of all sequences identified all single nucleotide polymorphisms (SNPs) across the whole genome and critical SNPs with high mutation frequency that contributes to five-clade classification of global strains. A total of 119 SNPs were found with 74 non-synonymous mutations, 43 synonymous mutations and two mutations in intergenic regions. Analysis of geographic pattern of mutational profiling for the whole genome reveals differences between each continent. A transition mutation from C to T represents the most mutation types across the genome, suggesting rapid evolution and adaptation of the virus in host. Amino acid (AA) deletions and insertions found across the genome results in changes in viral protein length and potential function alteration. Mutational profiling for each gene was analysed, and results show that nucleocapsid gene demonstrates the highest mutational frequency, followed by Nsp2, Nsp3 and Spike gene. We further focused on non-synonymous mutational distributions on four key viral proteins, spike with 75 mutations, RNA-dependent-RNA-polymerase with 41 mutations, 3C-like protease with 22 mutations and Papain-like protease with 10 mutations. Results show that non-synonymous mutations on critical sites of these four proteins pose great challenge for development of anti-viral drugs and other countering measures. Overall, this study provides more understanding of genetic diversity/variability of SARS-CoV-2 and insights for development of anti-viral therapeutics.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of PathobiologyCollege of Veterinary MedicineUniversity of Illinois at Urbana ChampaignUrbanaIllinoisUSA
| | - Liping Wang
- Department of Diagnostic Medicine and PathobiologyCollege of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Ying Fang
- Department of PathobiologyCollege of Veterinary MedicineUniversity of Illinois at Urbana ChampaignUrbanaIllinoisUSA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical MedicineCollege of Veterinary MedicineUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
74
|
Assis LC, de Castro AA, de Jesus JPA, da Cunha EFF, Nepovimova E, Krejcar O, Kuca K, Ramalho TC, La Porta FDA. Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications for the treatment of COVID-19. RSC Adv 2021; 11:35228-35244. [PMID: 35493173 PMCID: PMC9042810 DOI: 10.1039/d1ra06309j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/16/2021] [Indexed: 02/02/2023] Open
Abstract
In this study, we systematically investigated the electronic structure, spectroscopic (nuclear magnetic resonance, infrared, Raman, electron ionization mass spectrometry, UV-Vis, circular dichroism, and emission) properties, and tautomerism of halogenated favipiravir compounds (fluorine, chlorine, and bromine) from a computational perspective. Additionally, the effects of hydration on the proton transfer mechanism of the tautomeric forms of the halogenated favipiravir compounds are discussed. Our results suggest that spectroscopic properties allow for the elucidation of such tautomeric forms. As is well-known, the favipiravir compound has excellent antiviral properties and hence was recently tested for the treatment of new coronavirus (SARS-CoV-2). Through in silico modeling, in the current study, we evaluate the role of such tautomeric forms in order to consider the effect of drug-metabolism in the inhibition process of the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus. According to the molecular docking, all halogenated compounds presented a better interaction energy than the co-crystallized active ligand (-3.5 kcal mol-1) in the viral RdRp, in both wild-type (-6.3 to -6.5 kcal mol-1) and variant (-5.4 to -5.6 kcal mol-1) models. The variant analyzed for RdRp (Y176C) decreases the affinity of the keto form of the compounds in the active site, and prevented the ligands from interacting with RNA. These findings clearly indicated that all these compounds are promising as drug candidates for this molecular target.
Collapse
Affiliation(s)
- Letícia Cristina Assis
- Department of Chemistry, Federal University of Lavras CEP 37200-000 Lavras Minas Gerais Brazil
| | | | - João Paulo Almirão de Jesus
- Post-graduation Program in Materials Science and Engineering and Laboratory of Nanotechnology and Computational Chemistry, Federal Technological University of Paraná Avenida dos Pioneiros 3131 86036-370 Londrina Paraná Brazil
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Teodorico Castro Ramalho
- Department of Chemistry, Federal University of Lavras CEP 37200-000 Lavras Minas Gerais Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Felipe de Almeida La Porta
- Post-graduation Program in Materials Science and Engineering and Laboratory of Nanotechnology and Computational Chemistry, Federal Technological University of Paraná Avenida dos Pioneiros 3131 86036-370 Londrina Paraná Brazil
| |
Collapse
|
75
|
Jukič M, Janežič D, Bren U. Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations. Int J Mol Sci 2021; 22:11143. [PMID: 34681802 PMCID: PMC8540652 DOI: 10.3390/ijms222011143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies.
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
76
|
Liu Q, Wan J, Wang G. A survey on computational methods in discovering protein inhibitors of SARS-CoV-2. Brief Bioinform 2021; 23:6384382. [PMID: 34623382 PMCID: PMC8524468 DOI: 10.1093/bib/bbab416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
The outbreak of acute respiratory disease in 2019, namely Coronavirus Disease-2019 (COVID-19), has become an unprecedented healthcare crisis. To mitigate the pandemic, there are a lot of collective and multidisciplinary efforts in facilitating the rapid discovery of protein inhibitors or drugs against COVID-19. Although many computational methods to predict protein inhibitors have been developed [
1–
5], few systematic reviews on these methods have been published. Here, we provide a comprehensive overview of the existing methods to discover potential inhibitors of COVID-19 virus, so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First, we briefly categorize and describe computational approaches by the basic algorithms involved in. Then we review the related biological datasets used in such predictions. Furthermore, we emphatically discuss current knowledge on SARS-CoV-2 inhibitors with the latest findings and development of computational methods in uncovering protein inhibitors against COVID-19.
Collapse
Affiliation(s)
- Qiaoming Liu
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| | - Jun Wan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guohua Wang
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China.,Information and Computer Engineering College, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
77
|
Huang CW, Ha HA, Tsai SC, Lu CC, Lee CY, Tsai YF, Tsai FJ, Chiu YJ, Wang GK, Hsu CH, Yang JS. In Silico Target Analysis of Treatment for COVID-19 Using Huang-Lian-Shang-Qing-Wan, a Traditional Chinese Medicine Formula. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Due to the significantly negative impact of the coronavirus (CoV) disease (COVID-19) pandemic on the health of the community and the economy, it remains urgent and necessary to develop a safe and effective treatment method for COVID-19. Huang-Lian-Shang-Qing-Wan (HLSQW) is a herbal formula of traditional Chinese medicine (TCM) that has been applied extensively for treating “wind-heat-associated” symptoms in the upper parts of the body. The objective of the present in silico study was to investigate the potential effects of HLSQW in the context of severe acute respiratory syndrome (SARS)-CoV-2 infection. We analyzed the possible interactions between bioactive compounds within HLSQW on targets that may confer antiviral activity using network pharmacology and pharmacophore-based screening. HLSQW was found to potentially target a number of pathways and the expression of various genes to regulate cell physiology and, consequently, the anti-viral effects against SARS-CoV-2. Bioactive compounds contained within HLSQW may exert combined effects to reduce the production of proinflammatory factors, which may trigger the “cytokine storm” in patients with severe COVID-19. Results from molecular modeling suggested that the bioactive HLSQW components puerarin, baicalin, and daidzin exhibit high binding affinity to the active site of 3-chymotrypsin-like cysteine protease (3CLpro) to form stable ligand-protein complexes, thereby suppressing SARS-CoV-2 replication. In addition, our results also demonstrated protective effects of the HLSQW extract against cell injury induced by the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, against reactive oxygen species production and nuclear factor-κB activity in normal human lung cells in vitro. To conclude, HLSQW is a potential TCM remedy that warrants further study with the aim of developing an effective treatment for COVID-19 in the future.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University,
Taipei, Taiwan
| | - Hai-Anh Ha
- China Medical University, Taichung, Taiwan
- Duy Tan University, Da Nang, Vietnam
| | | | - Chi-Cheng Lu
- National Taiwan University of Sport, Taichung, Taiwan
| | | | - Yuh-Feng Tsai
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University,
Taipei, Taiwan
- Fu-Jen Catholic University, New Taipei, Taiwan
| | - Fuu-Jen Tsai
- China Medical University, Taichung, Taiwan
- China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chiu
- Taipei Veteran General Hospital, Taipei, Taiwan
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Guo-Kai Wang
- Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University,
Taipei, Taiwan
- Branch of Linsen, Chinese Medicine, and Kunming, Taipei City Hospital, Taipei, Taiwan
| | - Jai-Sing Yang
- China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
78
|
Muhammed Y, Yusuf Nadabo A, Pius M, Sani B, Usman J, Anka Garba N, Mohammed Sani J, Opeyemi Olayanju B, Zeal Bala S, Garba Abdullahi M, Sambo M. SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review. BIOSAFETY AND HEALTH 2021; 3:249-263. [PMID: 34396086 PMCID: PMC8346354 DOI: 10.1016/j.bsheal.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/04/2021] [Accepted: 07/18/2021] [Indexed: 01/18/2023] Open
Abstract
The present pandemic has posed a crisis to the economy of the world and the health sector. Therefore, the race to expand research to understand some good molecular targets for vaccine and therapeutic development for SARS-CoV-2 is inevitable. The newly discovered coronavirus 2019 (COVID-19) is a positive sense, single-stranded RNA, and enveloped virus, assigned to the beta CoV genus. The virus (SARS-CoV-2) is more infectious than the previously detected coronaviruses (MERS and SARS). Findings from many studies have revealed that S protein and RdRp are good targets for drug repositioning, novel therapeutic development (antibodies and small molecule drugs), and vaccine discovery. Therapeutics such as chloroquine, convalescent plasma, monoclonal antibodies, spike binding peptides, and small molecules could alter the ability of S protein to bind to the ACE-2 receptor, and drugs such as remdesivir (targeting SARS-CoV-2 RdRp), favipir, and emetine could prevent SASR-CoV-2 RNA synthesis. The novel vaccines such as mRNA1273 (Moderna), 3LNP-mRNAs (Pfizer/BioNTech), and ChAdOx1-S (University of Oxford/Astra Zeneca) targeting S protein have proven to be effective in combating the present pandemic. Further exploration of the potential of S protein and RdRp is crucial in fighting the present pandemic.
Collapse
Affiliation(s)
- Yusuf Muhammed
- Department of Biochemistry, Federal University, Gusau, Nigeria,Corresponding author: Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | - Mkpouto Pius
- Department of Medical Genetics, University of Cambridge, CB2 1TN, United Kingdom
| | - Bashiru Sani
- Department of Microbiology, Federal University of Lafia, Nigeria
| | - Jafar Usman
- Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | | | - Basit Opeyemi Olayanju
- Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA
| | | | | | - Misbahu Sambo
- Department of Biochemistry, Abubakar Tafawa Balewa University Bauchi, Nigeria
| |
Collapse
|
79
|
Genomic variation and point mutations analysis of Indian COVID-19 patient samples submitted in GISAID database. J INDIAN CHEM SOC 2021. [PMCID: PMC8442303 DOI: 10.1016/j.jics.2021.100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Corona virus disease 2019 (COVID-19) endemic has havoc on the world; the causative virus of the pandemic is SARS CoV-2. Pharmaceutical companies and academic institutes are in continuous efforts to identify anti-viral therapy or vaccines, but the most significant challenge faced is the highly evolving genome of SARS CoV-2, which is imparting evolutionary selective benefits to the virus. To understand the viral mutations, we have retrieved nine hundred and thirty-four samples from different states of India via the GISAID database and analyzed the frequency of all types of point mutation in all structural, non-structural proteins, and accessory factors of SARS CoV-2. Spike glycol protein, nsp3, nsp6, nsp12, N and NS3 were the most evolving proteins. High frequency point mutations were Q496P (nsp2), A380V (nsp4), A994D (nsp3), L37F (nsp6), P323L & A97V (nsp12), Q57H (ns3), D614G (S), P13L (N), R203K (N), G204R (N) and S194L (N).
Collapse
|
80
|
Khan S, Hussain A, Vahdani Y, Kooshki H, Mahmud Hussen B, Haghighat S, Fatih Rasul M, Jamal Hidayat H, Hasan A, Edis Z, Haj Bloukh S, Kasravi S, Mahdi Nejadi Babadaei M, Sharifi M, Bai Q, Liu J, Hu B, Akhtari K, Falahati M. Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. ARAB J CHEM 2021; 14:103353. [PMID: 34909059 PMCID: PMC8317451 DOI: 10.1016/j.arabjc.2021.103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to investigate the mechanism of interaction between quercetin-3-O-sophoroside and different SARS-CoV-2's proteins which can bring some useful details about the control of different variants of coronavirus including the recent case, Delta. The chemical structure of the quercetin-3-O-sophoroside was first optimized. Docking studies were performed by CoV disease-2019 (COVID-19) Docking Server. Afterwards, the molecular dynamic study was done using High Throughput Molecular Dynamics (HTMD) tool. The results showed a remarkable stability of the quercetin-3-O-sophoroside based on the calculated parameters. Docking outcomes revealed that the highest affinity of quercetin-3-O-sophoroside was related to the RdRp with RNA. Molecular dynamic studies showed that the target E protein tends to be destabilized in the presence of quercetin-3-O-sophoroside. Based on these results, quercetin-3-O-sophoroside can show promising inhibitory effects on the binding site of the different receptors and may be considered as effective inhibitor of the entry and proliferation of the SARS-CoV-2 and its different variants. Finally, it should be noted, although this paper does not directly deal with the exploring the interaction of main proteins of SARS-CoV-2 Delta variant with quercetin-3-O-sophoroside, at the time of writing, no direct theoretical investigation was reported on the interaction of ligands with the main proteins of Delta variant. Therefore, the present data may provide useful information for designing some theoretical studies in the future for studying the control of SARS-CoV-2 variants due to possible structural similarity between proteins of different variants.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Yasaman Vahdani
- Department of Microbiology, Faculty of Pharmaceutical Science, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamideh Kooshki
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Shahab Kasravi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
81
|
Ahmad Mir S, Firoz A, Alaidarous M, Alshehri B, Aziz Bin Dukhyil A, Banawas S, Alsagaby SA, Alturaiki W, Ahmad Bhat G, Kashoo F, Abdel-Hadi AM. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J Biol Sci 2021; 29:394-401. [PMID: 34518755 PMCID: PMC8426002 DOI: 10.1016/j.sjbs.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), which emerged in December 2019, continues to be a serious health concern worldwide. There is an urgent need to develop effective drugs and vaccines to control the spread of this disease. In the current study, the main phytochemical compounds of Nigella sativa were screened for their binding affinity for the active site of the RNA-dependent RNA polymerase (RdRp) enzyme of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The binding affinity was investigated using molecular docking methods, and the interaction of phytochemicals with the RdRp active site was analyzed and visualized using suitable software. Out of the nine phytochemicals of N. sativa screened in this study, a significant docking score was observed for four compounds, namely α-hederin, dithymoquinone, nigellicine, and nigellidine. Based on the findings of our study, we report that α-hederin, which was found to possess the lowest binding energy (–8.6 kcal/mol) and hence the best binding affinity, is the best inhibitor of RdRp of SARS-CoV-2, among all the compounds screened here. Our results prove that the top four potential phytochemical molecules of N. sativa, especially α-hederin, could be considered for ongoing drug development strategies against SARS-CoV-2. However, further in vitro and in vivo testing are required to confirm the findings of this study.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Ssaudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Gulzar Ahmad Bhat
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Science, Srinagar, India
| | - Faizan Kashoo
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah-11952, Saudi Arabia
| | - Ahmad M Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
82
|
Selvaraj C, Dinesh DC, Krafcikova P, Boura E, Aarthy M, Pravin MA, Singh SK. Structural Understanding of SARS-CoV-2 Drug Targets, Active Site Contour Map Analysis and COVID-19 Therapeutics. Curr Mol Pharmacol 2021; 15:418-433. [PMID: 34488601 DOI: 10.2174/1874467214666210906125959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The most iconic word of the year 2020 is 'COVID-19', the shortened name for coronavirus disease 2019. The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few emergency use drugs like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potentially therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | | | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| |
Collapse
|
83
|
Luo L, Qiu Q, Huang F, Liu K, Lan Y, Li X, Huang Y, Cui L, Luo H. Drug repurposing against coronavirus disease 2019 (COVID-19): A review. J Pharm Anal 2021; 11:683-690. [PMID: 34513115 PMCID: PMC8416689 DOI: 10.1016/j.jpha.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 has been found to be the culprit in the coronavirus disease 2019 (COVID-19), causing a global pandemic. Despite the existence of many vaccine programs, the number of confirmed cases and fatalities due to COVID-19 is still increasing. Furthermore, a number of variants have been reported. Because of the absence of approved anti-coronavirus drugs, the treatment and management of COVID-19 has become a global challenge. Under these circumstances, drug repurposing is an effective method to identify candidate drugs with a shorter cycle of clinical trials. Here, we summarize the current status of the application of drug repurposing in COVID-19, including drug repurposing based on virtual computer screening, network pharmacology, and bioactivity, which may be a beneficial COVID-19 treatment. Mechanism of SARS-CoV-2 infection and drug targets were reviewed. Drug repurposing against COVID-19 based on computer virtual screening, network pharmacology, bioactivity were summarized. The use of drug repurposing in COVID-19 was addressed.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang, 524023, Guangdong, China
| | - Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Fangfang Huang
- Graduate School, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yongqi Lan
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yuge Huang
- Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| |
Collapse
|
84
|
Arwansyah A, Arif AR, Ramli I, Kurniawan I, Sukarti S, Nur Alam M, Illing I, Farid Lewa A, Manguntungi B. Molecular modelling on SARS-CoV-2 papain-like protease: an integrated study with homology modelling, molecular docking, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:699-718. [PMID: 34392751 DOI: 10.1080/1062936x.2021.1960601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
SARS-CoV-2 PLpro was investigated as a therapeutic target for potent antiviral drugs due to its essential role in not only viral replication but also in regulating the inborn immune response. Several computational approaches, including homology modelling, molecular docking, and molecular dynamics (MD) studies, were employed to search for promising drugs in treating SARS-CoV-2. Eighty-one compounds, sub-structurally similar to the antiviral drug, were used as potential inhibitors of PLpro. From our results, three complexes containing the ligands with Pubchem IDs: 153012995, 12149203, and 123608715 showed lower binding energies than the control (Ritonavir), indicating that they may become promising inhibitors for PLpro. MD was performed in a water solvent to validate the stability of the three complexes. All complexes achieved stable structure during the simulation as no significant fluctuations were observed in the validation parameters. Moreover, the binding energy for each complex was estimated using the MM-GBSA method. Complex 1 was the most stable structure based on the lowest binding energy score and its structure remained in a similar cavity with the docket snapshot. Based on our studies, three ligands were assumed to be potential inhibitors. The ligand of complex 1 may become the most promising antiviral drug against SARS-CoV-2 targeting PLpro.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - I Kurniawan
- School of Computing, Telkom University, Bandung, Indonesia
- Research Center of Human Centric Engineering, Telkom University, Bandung, Indonesia
| | - S Sukarti
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - M Nur Alam
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - I Illing
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - A Farid Lewa
- Department of Nutrition, Poltekkes Kemenkes Palu, Palu, Indonesia
| | - B Manguntungi
- Department of Biotechnology, Faculty of Biotechnology, Sumbawa University of Technology, Sumbawa, Indonesia
| |
Collapse
|
85
|
Saba AA, Adiba M, Saha P, Hosen MI, Chakraborty S, Nabi AHMN. An in-depth in silico and immunoinformatics approach for designing a potential multi-epitope construct for the effective development of vaccine to combat against SARS-CoV-2 encompassing variants of concern and interest. Comput Biol Med 2021; 136:104703. [PMID: 34352457 PMCID: PMC8321692 DOI: 10.1016/j.compbiomed.2021.104703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/03/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest of the several viral pathogens that have acted as a threat to human health around the world. Thus, to prevent COVID-19 and control the outbreak, the development of vaccines against SARS-CoV-2 is one of the most important strategies at present. The study aimed to design a multi-epitope vaccine (MEV) against SARS-CoV-2. For the development of a more effective vaccine, 1549 nucleotide sequences were taken into consideration, including the variants of concern (B.1.1.7, B.1.351, P.1 and, B.1.617.2) and variants of interest (B.1.427, B.1.429, B.1.526, B.1.617.1 and P.2). A total of 11 SARS-CoV-2 proteins (S, N, E, M, ORF1ab polyprotein, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10) were targeted for T-cell epitope prediction and S protein was targeted for B-cell epitope prediction. MEV was constructed using linkers and adjuvant beta-defensin. The vaccine construct was verified, based on its antigenicity, physicochemical properties, and its binding potential, with toll-like receptors (TLR2, TLR4), ACE2 receptor and B cell receptor. The selected vaccine construct showed considerable binding with all the receptors and a significant immune response, including elevated antibody titer and B cell population along with augmented activity of TH cells, Tc cells and NK cells. Thus, immunoinformatics and in silico-based approaches were used for constructing MEV which is capable of eliciting both innate and adaptive immunity. In conclusion, the vaccine construct developed in this study has all the potential for the development of a next-generation vaccine which may in turn effectively combat the new variants of SARS-CoV-2 identified so far. However, in vitro and animal studies are warranted to justify our findings for its utility as probable preventive measure.
Collapse
Affiliation(s)
- Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Maisha Adiba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Piyal Saha
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Md Ismail Hosen
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Sajib Chakraborty
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
86
|
Srivastava M, Hall D, Omoru OB, Gill HM, Smith S, Janga SC. Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components. Microorganisms 2021; 9:1794. [PMID: 34576690 PMCID: PMC8464733 DOI: 10.3390/microorganisms9091794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid evolution has led to a global health crisis. Increasing mutations across the SARS-CoV-2 genome have severely impacted the development of effective therapeutics and vaccines to combat the virus. However, the new SARS-CoV-2 variants and their evolutionary characteristics are not fully understood. Host cellular components such as the ACE2 receptor, RNA-binding proteins (RBPs), microRNAs, small nuclear RNA (snRNA), 18s rRNA, and the 7SL RNA component of the signal recognition particle (SRP) interact with various structural and non-structural proteins of the SARS-CoV-2. Several of these viral proteins are currently being examined for designing antiviral therapeutics. In this review, we discuss current advances in our understanding of various host cellular components targeted by the virus during SARS-CoV-2 infection. We also summarize the mutations across the SARS-CoV-2 genome that directs the evolution of new viral strains. Considering coronaviruses are rapidly evolving in humans, this enables them to escape therapeutic therapies and vaccine-induced immunity. In order to understand the virus's evolution, it is essential to study its mutational patterns and their impact on host cellular machinery. Finally, we present a comprehensive survey of currently available databases and tools to study viral-host interactions that stand as crucial resources for developing novel therapeutic strategies for combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Dwight Hall
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Okiemute Beatrice Omoru
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Hunter Mathias Gill
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Sarah Smith
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
87
|
Rani I, Goyal A, Bhatnagar M, Manhas S, Goel P, Pal A, Prasad R. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res 2021; 92:109-128. [PMID: 34284268 PMCID: PMC8200255 DOI: 10.1016/j.nutres.2021.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
Novel coronavirus disease 2019 (COVID-19) has spread across the globe; and surprisingly, no potentially protective or therapeutic antiviral molecules are available to treat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, zinc (Zn) and copper (Cu) have been shown to exert protective effects due to their antioxidant, anti-inflammatory, and antiviral properties. Therefore, it is hypothesized that supplementation with Zn and Cu alone or as an adjuvant may be beneficial with promising efficacy and a favorable safety profile to mitigate symptoms, as well as halt progression of the severe form of SARS-CoV-2 infection. The objective of this review is to discuss the proposed underlying molecular mechanisms and their implications for combating SARS-CoV-2 infection in response to Zn and Cu administration. Several clinical trials have also included the use of Zn as an adjuvant therapy with dietary regimens/antiviral drugs against COVID-19 infection. Overall, this review summarizes that nutritional intervention with Zn and Cu may offer an alternative treatment strategy by eliciting their virucidal effects through several fundamental molecular cascades, such as, modulation of immune responses, redox signaling, autophagy, and obstruction of viral entry and genome replication during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Anmol Goyal
- Department of Community Medicine, Gian Sagar Medical College and Hospital, Banur, Patiala, Punjab, India
| | - Mini Bhatnagar
- Department of General Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Sunita Manhas
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Parul Goel
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Amit Pal
- Department of Biochemistry, AIIMS Kalyani, West Bengal, India
| | - Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India.
| |
Collapse
|
88
|
Khan FI, Kang T, Ali H, Lai D. Remdesivir Strongly Binds to RNA-Dependent RNA Polymerase, Membrane Protein, and Main Protease of SARS-CoV-2: Indication From Molecular Modeling and Simulations. Front Pharmacol 2021; 12:710778. [PMID: 34305617 PMCID: PMC8293383 DOI: 10.3389/fphar.2021.710778] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Development of new drugs is a time-taking and expensive process. Comprehensive efforts are being made globally toward the search of therapeutics against SARS-CoV-2. Several drugs such as remdesivir, favipiravir, ritonavir, and lopinavir have been included in the treatment regimen and shown effective results in several cases. Among the existing broad-spectrum antiviral drugs, remdesivir is found to be more effective against SARS-CoV-2. Remdesivir has broad-spectrum antiviral action against many single-stranded RNA viruses including pathogenic SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). In this study, we proposed that remdesivir strongly binds to membrane protein (Mprotein), RNA-dependent RNA polymerase (RDRP), and main protease (Mprotease) of SARS-CoV-2. It might show antiviral activity by inhibiting more than one target. It has been found that remdesivir binds to Mprotease, Mprotein, and RDRP with -7.8, -7.4, and -7.1 kcal/mol, respectively. The structure dynamics study suggested that binding of remdesivir leads to unfolding of RDRP. It has been found that strong binding of remdesivir to Mprotein leads to decrease in structural deviations and gyrations. Additionally, the average solvent-accessible surface area of Mprotein decreases from 127.17 to 112.12 nm2, respectively. Furthermore, the eigenvalues and the trace of the covariance matrix were found to be low in case of Mprotease-remdesivir, Mprotein-remdesivir, and RDRP-remdesivir. Binding of remdesivir to Mprotease, Mprotein, and RDRP reduces the average motions in protein due to its strong binding. The MMPBSA calculations also suggested that remdesivir has strong binding affinity with Mprotein, Mprotease, and RDRP. The detailed analysis suggested that remdesivir has more than one target of SARS-CoV-2.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tongzhou Kang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Haider Ali
- Faculty of Medicine, International Ala-Too University, Bishkek, Kyrgyzstan
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
89
|
Kelta Wabalo E, Dukessa Dubiwak A, Welde Senbetu M, Sime Gizaw T. Effect of Genomic and Amino Acid Sequence Mutation on Virulence and Therapeutic Target of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS COV-2). Infect Drug Resist 2021; 14:2187-2192. [PMID: 34163183 PMCID: PMC8214021 DOI: 10.2147/idr.s307374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is one of the RNA coronaviruses which share the highest mutation rates of RNA viruses when compared with that of their hosts. The collective mutation rate of RNA viruses is up to a million times higher than their hosts and is correlated with enhanced virulence of viruses. The RNA, genomic material of SARS-CoV-2, has the capacity of showing amplified fast changes as the infection spreads. These changes were frequently observed in genes for spike glycoprotein, nucleocapsid, ORF1ab, and ORF8, together with RNA dependent RNA polymerase. In contrast, genes for envelope, membrane, ORF6, ORF7a and ORF7b showed no observable changes in terms of amino acid substitutions. Mutated SARS COV-2 at these particular sites has been associated with viral infectivity, false laboratory results and viral genome mutation and interferes with therapeutic targets. Interferences with therapeutic targets is frequently observed in genes for RdRp. Additionally, mutated viral genes for RdRp render slow fidelity of RdRp protein, resulting in a high mutation rate. Such a high mutation rate might allow new virulent forms of the virus to emerge and influence the disease profile. This review aimed to elaborate on the effect of genomic and amino acid sequence mutations on the virulence and therapeutic targets of SARS COV-2. To achieve this objective, multiple literatures have been reviewed.
Collapse
Affiliation(s)
- Endriyas Kelta Wabalo
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Abebe Dukessa Dubiwak
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mengistu Welde Senbetu
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tariku Sime Gizaw
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
90
|
Discovery and optimization of 2-((1H-indol-3-yl)thio)-N-benzyl-acetamides as novel SARS-CoV-2 RdRp inhibitors. Eur J Med Chem 2021; 223:113622. [PMID: 34147744 PMCID: PMC8191315 DOI: 10.1016/j.ejmech.2021.113622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global pandemic coronavirus disease (COVID-19), but no specific antiviral drug has been proven effective for controlling this pandemic to date. In this study, several 2-((indol-3-yl)thio)-N-benzyl-acetamides were identified as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors. After a two-round optimization, a new series of 2-((indol-3-yl)thio)-N-benzyl-acetamides was designed, synthesized, and evaluated for SARS-CoV-2 RdRp inhibitory effect. Compounds 6b2, 6b5, 6c9, 6d2, and 6d5 were identified as potent inhibitors with IC50 values of 3.35 ± 0.21 μM, 4.55 ± 0.2 μM, 1.65 ± 0.05 μM, 3.76 ± 0.79 μM, and 1.11 ± 0.05 μM, respectively; the IC50 of remdesivir (control) was measured as 1.19 ± 0.36 μM. All of the compounds inhibited RNA synthesis by SARS-CoV-2 RdRp. The most potent compound 6d5, which showed a stronger inhibitory activity against the human coronavirus HCoV-OC43 than remdesivir, is a promising candidate for further investigation.
Collapse
|
91
|
Targeting SARS-CoV-2 Polymerase with New Nucleoside Analogues. Molecules 2021; 26:molecules26113461. [PMID: 34200204 PMCID: PMC8201013 DOI: 10.3390/molecules26113461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the fact that COVID-19 vaccines are already available on the market, there have not been any effective FDA-approved drugs to treat this disease. There are several already known drugs that through drug repositioning have shown an inhibitory activity against SARS-CoV-2 RNA-dependent RNA polymerase. These drugs are included in the family of nucleoside analogues. In our efforts, we synthesized a group of new nucleoside analogues, which are modified at the sugar moiety that is replaced by a quinazoline entity. Different nucleobase derivatives are used in order to increase the inhibition. Five new nucleoside analogues were evaluated with in vitro assays for targeting polymerase of SARS-CoV-2.
Collapse
|
92
|
Zhao J, Guo S, Yi D, Li Q, Ma L, Zhang Y, Wang J, Li X, Guo F, Lin R, Liang C, Liu Z, Cen S. A cell-based assay to discover inhibitors of SARS-CoV-2 RNA dependent RNA polymerase. Antiviral Res 2021; 190:105078. [PMID: 33894278 PMCID: PMC8059291 DOI: 10.1016/j.antiviral.2021.105078] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Antiviral therapeutics is one effective avenue to control and end this devastating COVID-19 pandemic. The viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 has been recognized as a valuable target of antivirals. However, the cell-free SARS-CoV-2 RdRp biochemical assay requires the conversion of nucleotide prodrugs into the active triphosphate forms, which regularly occurs in cells yet is a complicated multiple-step chemical process in vitro, and thus hinders the utility of this cell-free assay in the rapid discovery of RdRp inhibitors. In addition, SARS-CoV-2 exoribonuclease provides the proof-reading capacity to viral RdRp, thus creates relatively high resistance threshold of viral RdRp to nucleotide analog inhibitors, which must be examined and evaluated in the development of this class of antivirals. Here, we report a cell-based assay to evaluate the efficacy of nucleotide analog compounds against SARS-CoV-2 RdRp and assess their tolerance to viral exoribonuclease-mediated proof-reading. By testing seven commonly used nucleotide analog viral polymerase inhibitors, Remdesivir, Molnupiravir, Ribavirin, Favipiravir, Penciclovir, Entecavir and Tenofovir, we found that both Molnupiravir and Remdesivir showed the strong inhibition of SARS-CoV-2 RdRp, with EC50 value of 0.22 μM and 0.67 μM, respectively. Moreover, our results suggested that exoribonuclease nsp14 increases resistance of SARS-CoV-2 RdRp to nucleotide analog inhibitors. We also determined that Remdesivir presented the highest resistance to viral exoribonuclease activity in cells. Therefore, we have developed a cell-based SARS-CoV-2 RdRp assay which can be deployed to discover SARS-CoV-2 RdRp inhibitors that are urgently needed to treat COVID-19 patients.
Collapse
Affiliation(s)
- Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - SaiSai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Rongtuan Lin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
93
|
Rizkita LD, Astuti I. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review. J Pharm Anal 2021; 11:265-271. [PMID: 33782640 PMCID: PMC7989072 DOI: 10.1016/j.jpha.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the World Health Organization (WHO) declared COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic in March 2020, and more than 117 million people worldwide have been confirmed to have been infected. Scientists, medical professionals, and other stakeholders are racing against time to find and develop effective medicines for COVID-19. However, no drug with high efficacy to treat SARS-CoV-2 infection has been approved. With the increasing popularity of gene therapy, scientists have explored the utilization of small RNAs such as microRNAs (miRNAs) as therapeutics. miRNAs are non-coding RNAs with high affinity for the 3'-UTRs of targeted messenger RNAs (mRNAs). Interactions between host cells and viral genomes may induce the upregulation or downregulation of various miRNAs. Therefore, understanding the expression patterns of these miRNAs and their functions will provide insights into potential miRNA-based therapies. This review systematically summarizes the potential targets of miRNA-based therapies for SARS-CoV-2 infection and examines the viability of possible transfection methods.
Collapse
Affiliation(s)
- Leonny Dwi Rizkita
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
94
|
Johnson TO, Adegboyega AE, Iwaloye O, Eseola OA, Plass W, Afolabi B, Rotimi D, Ahmed EI, Albrakati A, Batiha GE, Adeyemi OS. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J Pharmacol Sci 2021; 147:62-71. [PMID: 34294374 PMCID: PMC8141268 DOI: 10.1016/j.jphs.2021.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 – ASP 289 – GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.
Collapse
Affiliation(s)
- Titilayo O Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria.
| | | | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure
| | - Omokehinde Abiodun Eseola
- Department of Chemical Sciences, Redeemer's University, Ede, Nigeria; Friedrich-Schiller-Universität Jena, Institute of Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743, Jena, Germany
| | - Winfried Plass
- Friedrich-Schiller-Universität Jena, Institute of Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743, Jena, Germany
| | - Boluwatife Afolabi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran -, 251101, Nigeria
| | - Damilare Rotimi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran -, 251101, Nigeria
| | - Eman I Ahmed
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, 72346, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Fayoum University, Fayoum, 63511, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran -, 251101, Nigeria.
| |
Collapse
|
95
|
Computational search for drug repurposing to identify potential inhibitors against SARS-COV-2 using Molecular Docking, QTAIM and IQA methods in viral Spike protein - Human ACE2 interface. J Mol Struct 2021; 1232:130076. [PMID: 33583954 PMCID: PMC7870108 DOI: 10.1016/j.molstruc.2021.130076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
With the advancement of the Covid-19 pandemic, this work aims to find molecules that can inhibit the attraction between the Spike proteins of the SARS-COV-2 virus and human ACE2. The results of molecular docking positioned four molecules at the interaction site Tyr-491(Spike)-Glu-37(ACE2) and one at the site Gly-488(Spike)-Lys-353(ACE2). The QTAIM and IQA data showed that the 1629 molecule had a significant inhibitory effect on the Gly488-Ly353 site, decreasing the Laplacian of the electronic density of the BCP O4-N10. The molecule 2542 showed an inhibitory effect in two regions of interaction of the Tyr491-Glu37 site, acting on the BCPs H30-H33 and O8-H31 while the ligand 2600, in conformation 26, presented a similar effect only on the BCP O8-H31 of that same interactive site. Thus, the data suggest laboratory tests of a combination of molecules that can act at two sites of interaction simultaneously, using the combination of 1629/2542 and 1629/2600 ligands.
Collapse
|
96
|
Koulgi S, Jani V, Uppuladinne V. N. M, Sonavane U, Joshi R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS One 2021; 16:e0251801. [PMID: 33984041 PMCID: PMC8118514 DOI: 10.1371/journal.pone.0251801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Drug repurposing studies targeting inhibition of RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have exhibited the potential effect of small molecules. In the present work a detailed interaction study between the phytochemicals from Indian medicinal plants and the RdRP of SARS-CoV-2 has been performed. The top four phytochemicals obtained through molecular docking were, swertiapuniside, cordifolide A, sitoindoside IX, and amarogentin belonging to Swertia chirayita, Tinospora cordifolia and Withania somnifera. These ligands bound to the RdRP were further studied using molecular dynamics simulations. The principal component analysis of these systems showed significant conformational changes in the finger and thumb subdomain of the RdRP. Hydrogen bonding, salt-bridge and water mediated interactions supported by MM-GBSA free energy of binding revealed strong binding of cordifolide A and sitoindoside IX to RdRP. The ligand-interacting residues belonged to either of the seven conserved motifs of the RdRP. These residues were polar and charged amino acids, namely, ARG 553, ARG 555, ASP 618, ASP 760, ASP 761, GLU 811, and SER 814. The glycosidic moieties of the phytochemicals were observed to form favourable interactions with these residues. Hence, these phytochemicals may hold the potential to act as RdRP inhibitors owing to their stability in binding to the druggable site.
Collapse
Affiliation(s)
- Shruti Koulgi
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | - Vinod Jani
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | | | - Uddhavesh Sonavane
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | - Rajendra Joshi
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| |
Collapse
|
97
|
Hamoda AM, Fayed B, Ashmawy NS, El-Shorbagi ANA, Hamdy R, Soliman SSM. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold. Front Pharmacol 2021; 12:666664. [PMID: 34079462 PMCID: PMC8165660 DOI: 10.3389/fphar.2021.666664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
The current pandemic caused by SARS-CoV2 and named COVID-19 urgent the need for novel lead antiviral drugs. Recently, United States Food and Drug Administration (FDA) approved the use of remdesivir as anti-SARS-CoV-2. Remdesivir is a natural product-inspired nucleoside analogue with significant broad-spectrum antiviral activity. Nucleosides analogues from marine sponge including spongouridine and spongothymidine have been used as lead for the evolutionary synthesis of various antiviral drugs such as vidarabine and cytarabine. Furthermore, the marine sponge is a rich source of compounds with unique activities. Marine sponge produces classes of compounds that can inhibit the viral cysteine protease (Mpro) such as esculetin and ilimaquinone and human serine protease (TMPRSS2) such as pseudotheonamide C and D and aeruginosin 98B. Additionally, sponge-derived compounds such as dihydrogracilin A and avarol showed immunomodulatory activity that can target the cytokines storm. Here, we reviewed the potential use of sponge-derived compounds as promising therapeutics against SARS-CoV-2. Despite the reported antiviral activity of isolated marine metabolites, structural modifications showed the importance in targeting and efficacy. On that basis, we are proposing a novel structure with bifunctional scaffolds and dual pharmacophores that can be superiorly employed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdel-Nasser A. El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
98
|
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Merchant ML, Zhang X, McClain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021; 29:2424-2440. [PMID: 33984520 PMCID: PMC8110335 DOI: 10.1016/j.ymthe.2021.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Fangyi Xu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Lei
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mukesh Sriwastva
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute at Hamilton Medical Center, Dalton, GA 30720, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jennifer K Wolfe
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert S Adcock
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Donghoon Chung
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
99
|
Mallavarpu Ambrose J, Priya Veeraraghavan V, Kullappan M, Chellapandiyan P, Krishna Mohan S, Manivel VA. Comparison of Immunological Profiles of SARS-CoV-2 Variants in the COVID-19 Pandemic Trends: An Immunoinformatics Approach. Antibiotics (Basel) 2021; 10:535. [PMID: 34066389 PMCID: PMC8148159 DOI: 10.3390/antibiotics10050535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
The current dynamics of the COVID-19 pandemic have become a serious concern with the emergence of a series of mutant variants of the SARS-CoV-2 virus. Unlike the previous strain, it is reported that the descendants are associated with increased risk of transmission yet causing less impact in terms of hospital admission, the severity of illness, or mortality. Moreover, the vaccine efficacy is also not believed to vary among the population depending on the variants of the virus and ethnicity. It has been determined that the mutations recorded in the spike gene and protein of the newly evolved viruses are specificallyresponsible for this transformation in the behavior of the virus and its disease condition. Hence, this study aimed to compare the immunogenic profiles of the spike protein from the latest variants of the SARS-CoV-2 virus concerning the probability of COVID-19 severity. Genome sequences of the latest SARS-CoV-2 variants were obtained from GISAID and NCBI repositories. The translated protein sequences were run against T-cell and B-cell epitope prediction tools. Subsequently, antigenicity, immunogenicity, allergenicity, toxicity, and conservancy of the identified epitopes were ascertained using various prediction servers. Only the non-allergic and non-toxic potential epitopes were matched for population relevance by using the Human Leucocyte Antigen population registry in IEDB. Finally, the selected epitopes were validated by docking and simulation studies. The evaluated immunological parameters would concurrently reveal the severity of COVID-19, determining the infection rate of the pathogen. Our immunoinformatics approach disclosed that spike protein of the five variants was capable of forming potential T and B-cell epitopes with varying immune responses. Although the Wuhan strain showed a high number of epitope/HLA combinations, relatively less antigenicity and higher immunogenicity results in poor neutralizing capacity, which could be associated with increased disease severity. Our data demonstrate that increased viral antigenicity with moderate to high immunogenicity, and several potential epitope/HLA combinations in England strain, the USA, India, and South Africa variants, could possess a high neutralizing ability. Therefore, our findings reinforce that the newly circulating variants of SARS-CoV-2 might be associated with more infectiousness and less severe disease condition despite their greater viremia, as reported in the recent COVID-19 cases, whichconsequently determine their increased epidemiological fitness.
Collapse
Affiliation(s)
- Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai 600 077, Tamil Nadu, India;
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
| | - Poongodi Chellapandiyan
- Department of Obstetrics & Gynaecological Nursing, Panimalar College of Nursing, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India;
| | - Surapaneni Krishna Mohan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
- Departments of Biochemistry, Molecular Virology, Clinical Skills and Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India
| | - Vivek Anand Manivel
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
100
|
Mehmood A, Khan S, Khan S, Ahmed S, Ali A, xue M, ali L, Hamza M, munir A, ur Rehman S, Mehmood Khan A, Hussain Shah A, Bai Q. In silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi J Biol Sci 2021; 28:3137-3151. [PMID: 33642896 PMCID: PMC7899931 DOI: 10.1016/j.sjbs.2021.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infection of the respiratory system caused by single standard RNA viruses named as Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). The disease appeared as a serious problem and the leading cause of death in human beings throughout the world. The main source of different phytochemicals are plants, which helps in the development of new drugs against various ailments. Islam is comprehensive religion and a complete code of life for Muslims. The teaching of Islam, according to the Holy Quran and Hadith are universal for the benefit of humanity. Islam believes that every ailment is from God and who made the disease definitely made its medication. There is a complete guideline with regard to taking measures against infectious diseases such as quarantine and seeking medicinal treatment. The research objective is to gather the knowledge of medicinal plants described in the Holy Quran or utilized by the Prophet (SAW) for the treatment of different ailments or advised to use them to boost immunity and strengthen the body. Scientists across the globe have found these plants beneficial for many diseases and have antiviral potential. In present study, the six plant species including Olea europaea, Nigella sativa, Allium Sativum, Allium cepa, Zingiber officinale and Cassia senna were selected which contain phytochemicals like Calcium Elenolate, Thymoquinone, S-Allylcysteine, Dipropyl Disulfide, Sesquiterpene, Monoterpene, Pelargonidin 3-Galactoside ion and Kaempferol. The phytochemicals monoterpene (from Zingiber officinale) shows best interaction with target proteins RdRP, 3CLPro, ACE2. Calcium Elonate (from olive) bonds with 3CLPro, ACE2 and Kemoferol and Pelargomidine (from Senna Makki) bonds with RdRP, ACE2. The ligands show a unique set of intersections i.e. hydrogen bonding, and alkyl interaction. These medicinal plants can be utilized immediately for the treatment of COVID-19 as their safety is already established. This treatment can enhance recovery when combined with other treatments. Furthermore, the screening of bioactive compounds or phytochemicals found in these plants can be utilized to design new therapeutic drug to treat COVID-19 pandemic.
Collapse
Affiliation(s)
- Azhar Mehmood
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Bioinformatics/Botany, Govt. Postgraduate College Mandian Abbottabad, KPK, Pakistan
| | - Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sajid Khan
- Department of Bioinformatics/Botany, Govt. Postgraduate College Mandian Abbottabad, KPK, Pakistan
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Ashaq Ali
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Science, 430070 Wuhan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhou xue
- Department of Cerebrovascular diseases, The second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liaqat ali
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Muhammad Hamza
- Department of Bioinformatics/Botany, Govt. Postgraduate College Mandian Abbottabad, KPK, Pakistan
| | - Anum munir
- Department of Bioinformatics/Botany, Govt. Postgraduate College Mandian Abbottabad, KPK, Pakistan
| | - Saad ur Rehman
- Department of Bioinformatics/Botany, Govt. Postgraduate College Mandian Abbottabad, KPK, Pakistan
| | - Arshad Mehmood Khan
- Department of Bioinformatics/Botany, Govt. Postgraduate College Mandian Abbottabad, KPK, Pakistan
- Department of Chemistry, Government postgraduate college Mandian, Abbottabad, Khyber Pukhtunkhwa, Pakistan
| | - Abbas Hussain Shah
- Department of Botany, Government Post Graduate College Mansehra, Khyber Pukhtunkhwa, Pakistan
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|