51
|
Zhang M, Lo ECM. Compare the physicochemical and biological properties of engineered polymer-functionalized silver nanoparticles against Porphyromonas gingivalis. Front Microbiol 2022; 13:985708. [PMID: 36160232 PMCID: PMC9493255 DOI: 10.3389/fmicb.2022.985708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSome polymer-functionalized AgNPs (P-AgNPs) have been developed to optimize the biological properties of AgNPs. However, there are no studies in the literature comparing the differences in physicochemical and biological properties of AgNPs caused by various polymer-functionalizations and providing evidence for the selection of polymers to optimize AgNPs.MethodsTwo AgNPs with similar nano-size and opposite surface charges were synthesized and functionalized by seven polymers. Their physicochemical properties were evaluated by UV-Visible absorption, dynamic light scattering, transmission electron microscopy and inductively coupled plasma optical emission spectroscopy. Their biological properties against Porphyromonas gingivalis and human gingival fibroblast were investigated by MIC determination, time-dependent antibacterial assay, antibiofilm activity and cell viability assay. Silver diamine fluoride, AgNO3 and metronidazole were used as positive controls.ResultsComparative analysis found that there were no significant differences between P-AgNPs and AgNPs in nano-size and in surface charge. Raman spectroscopy analysis provided evidence about the attachment of polymers on AgNPs. For antibacterial property, among the negatively charged AgNPs, only polyvinylpyrrolidone (PVP)-functionalized AgNPs-1 showed a significant lower MIC value than AgNPs-1 (0.79 vs. 4.72 μg/ml). Among the positively charged AgNPs, the MIC values of all P-AgNPs (0.34–4.37 μg/ml) were lower than that of AgNPs-2 (13.89 μg/ml), especially PVP- and Pluronic127-AgNPs-2 (1.75 and 0.34 μg/ml). For antibiofilm property, PVP-AgNPs-1 (7.86 μg/ml, P = 0.002) and all P-AgNPs-2 (3.42–31.14 μg/ml, P < 0.001) showed great antibiofilm effect against P. gingivalis biofilm at 5* to 10*MIC level. For cytotoxicity, all negatively charged AgNPs and PVP-AgNPs-2 showed no cytotoxicity at MIC level, but significant cytotoxicity was detected at 2.5* to 10*MIC levels.ConclusionAmong the polymers studied, polymer functionalization does not significantly alter the physical properties of AgNPs, but modifies their surface chemical property. These modifications, especially the functionalization of PVP, contribute to optimize the antibacterial and antibiofilm properties of AgNPs, while not causing cytotoxicity at the MIC level.
Collapse
|
52
|
Chichlowski M, Cotter J, Fawkes N, Pandey N. Feed your microbiome and improve sleep, stress resilience, and cognition. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The brain and gut are connected both physically and biochemically. The gut-brain axis includes the central nervous system, neuroendocrine and neuroimmune systems, the enteric nervous system and vagus nerve, and the gut microbiome. It can influence brain function and even behavior, suggesting that dietary interventions may help enhance and protect mental health and cognitive performance. This review focuses on the role of the microbiome and its metabolites in sleep regulation, neurodegenerative disorders, mechanisms of stress, and mood. It also provides examples of nutritional interventions which can restore healthy gut microbiota and aid with risk reduction and management of many disorders related to mental and cognitive health. Evidence suggests a shift in the gut microbiota towards a balanced composition could be a target to maintain brain health, reduce stress and improve quality of life.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47712, USA
| | - Jack Cotter
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neil Fawkes
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neeraj Pandey
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| |
Collapse
|
53
|
He L, Chen R, Zhang B, Zhang S, Khan BA, Zhu D, Wu Z, Xiao C, Chen B, Chen F, Hou K. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus. Front Immunol 2022; 13:930872. [PMID: 36032108 PMCID: PMC9414079 DOI: 10.3389/fimmu.2022.930872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Type 1 diabetes mellitus (T1DM) is an autoimmune-mediated disease characterized by a reduced or absolute lack of insulin secretion and often associated with a range of vascular and neurological complications for which there is a lack of effective treatment other than lifestyle interventions and pharmacological treatments such as insulin injections. Studies have shown that the gut microbiota is involved in mediating the onset and development of many fecal and extrafecal diseases, including autoimmune T1DM. In recent years, many cases of gut microbiota transplantation for diseases of the bowel and beyond have been reported worldwide, and this approach has been shown to be safe and effective. Here, we conducted an experimental treatment study in two adolescent patients diagnosed with autoimmune T1DM for one year. Patients received one to three rounds of normal fecal microbiota transplants (FMT) and were followed for up to 30 weeks. Clinical outcomes were measured, including biochemical indices, medication regimen, and dosage adjustment. Fecal microbiota metagenomic sequencing after transplantation provides a reference for more reasonable and effective microbiota transplantation protocols to treat autoimmune T1DM. Our results suggest that FMT is an effective treatment for autoimmune T1DM. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn, identifier ChiCTR2100045789.
Collapse
Affiliation(s)
- Lina He
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Lab, Good Clinical Practice (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baolong Chen
- Center for Research and Development, Xiamen Treatgut Biotechnology Co. Ltd., Xiamen, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
54
|
Liu CC, Zhao J, Fu Y, Inoue Y, Ren Y, Chen Y, Doss SV, Shue F, Jeevaratnam S, Bastea L, Wang N, Martens YA, Qiao W, Wang M, Zhao N, Jia L, Yamazaki Y, Yamazaki A, Rosenberg CL, Wang Z, Kong D, Li Z, Kuchenbecker LA, Trottier ZA, Felton L, Rogers J, Quicksall ZS, Linares C, Knight J, Chen Y, Kurti A, Kanekiyo T, Fryer JD, Asmann YW, Storz P, Wang X, Peng J, Zhang B, Kim BYS, Bu G. Peripheral apoE4 enhances Alzheimer's pathology and impairs cognition by compromising cerebrovascular function. Nat Neurosci 2022; 25:1020-1033. [PMID: 35915180 PMCID: PMC10009873 DOI: 10.1038/s41593-022-01127-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/22/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Yuanxin Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Minghui Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dehui Kong
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Lindsey Felton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Justin Rogers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
55
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
56
|
Bello-Medina PC, Corona-Cervantes K, Zavala Torres NG, González A, Pérez-Morales M, González-Franco DA, Gómez A, García-Mena J, Díaz-Cintra S, Pacheco-López G. Chronic-Antibiotics Induced Gut Microbiota Dysbiosis Rescues Memory Impairment and Reduces β-Amyloid Aggregation in a Preclinical Alzheimer's Disease Model. Int J Mol Sci 2022; 23:8209. [PMID: 35897785 PMCID: PMC9331718 DOI: 10.3390/ijms23158209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial pathology characterized by β-amyloid (Aβ) deposits, Tau hyperphosphorylation, neuroinflammatory response, and cognitive deficit. Changes in the bacterial gut microbiota (BGM) have been reported as a possible etiological factor of AD. We assessed in offspring (F1) 3xTg, the effect of BGM dysbiosisdysbiosis in mothers (F0) at gestation and F1 from lactation up to the age of 5 months on Aβ and Tau levels in the hippocampus, as well as on spatial memory at the early symptomatic stage of AD. We found that BGM dysbiosisdysbiosis with antibiotics (Abx) treatment in F0 was vertically transferred to their F1 3xTg mice, as observed on postnatal day (PD) 30 and 150. On PD150, we observed a delay in spatial memory impairment and Aβ deposits, but not in Tau and pTau protein in the hippocampus at the early symptomatic stage of AD. These effects are correlated with relative abundance of bacteria and alpha diversity, and are specific to bacterial consortia. Our results suggest that this specific BGM could reduce neuroinflammatory responses related to cerebral amyloidosis and cognitive deficit and activate metabolic pathways associated with the biosynthesis of triggering or protective molecules for AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Norma Gabriela Zavala Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Antonio González
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Marcel Pérez-Morales
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Diego A. González-Franco
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Astrid Gómez
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Gustavo Pacheco-López
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| |
Collapse
|
57
|
Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Adv Drug Deliv Rev 2022; 188:114418. [PMID: 35787390 DOI: 10.1016/j.addr.2022.114418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota came into focus within the last years regarding being associated with or even underlying neuropsychiatric diseases. The existence of the gut-brain-axis makes it highly plausible that bacterial metabolites or toxins that escape the intestinal environment or approach the vagal connections towards the brain, exert devastating effects on the central nervous system. In Alzheimer's disease (AD), growing evidence for dysbiotic changes in the gut microbiota is obtained, even though the question for cause or consequence remains open. Nevertheless, using modulation of microbiota to address inflammatory processes seems an attractive therapeutic approach as certain microbial products such as short chain fatty acids have been proven to exert beneficial cognitive effects. In this review, we summarize, contemporary knowledge on neuroinflammation and inflammatory processes within the brain and even more detailed in the gut in AD, try to conclude whom to target regarding human microbial commensals and report on current interventional trials.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany.
| |
Collapse
|
58
|
Quiroga IY, Cruikshank AE, Bond ML, Reed KSM, Evangelista BA, Tseng JH, Ragusa JV, Meeker RB, Won H, Cohen S, Cohen TJ, Phanstiel DH. Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture systems. J Neuroinflammation 2022; 19:99. [PMID: 35459147 PMCID: PMC9034485 DOI: 10.1186/s12974-022-02459-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that impacts nearly 400 million people worldwide. The accumulation of amyloid beta (Aβ) in the brain has historically been associated with AD, and recent evidence suggests that neuroinflammation plays a central role in its origin and progression. These observations have given rise to the theory that Aβ is the primary trigger of AD, and induces proinflammatory activation of immune brain cells (i.e., microglia), which culminates in neuronal damage and cognitive decline. To test this hypothesis, many in vitro systems have been established to study Aβ-mediated activation of innate immune cells. Nevertheless, the transcriptional resemblance of these models to the microglia in the AD brain has never been comprehensively studied on a genome-wide scale. METHODS We used bulk RNA-seq to assess the transcriptional differences between in vitro cell types used to model neuroinflammation in AD, including several established, primary and iPSC-derived immune cell lines (macrophages, microglia and astrocytes) and their similarities to primary cells in the AD brain. We then analyzed the transcriptional response of these innate immune cells to synthetic Aβ or LPS and INFγ. RESULTS We found that human induced pluripotent stem cell (hIPSC)-derived microglia (IMGL) are the in vitro cell model that best resembles primary microglia. Surprisingly, synthetic Aβ does not trigger a robust transcriptional response in any of the cellular models analyzed, despite testing a wide variety of Aβ formulations, concentrations, and treatment conditions. Finally, we found that bacterial LPS and INFγ activate microglia and induce transcriptional changes that resemble many, but not all, aspects of the transcriptomic profiles of disease associated microglia (DAM) present in the AD brain. CONCLUSIONS These results suggest that synthetic Aβ treatment of innate immune cell cultures does not recapitulate transcriptional profiles observed in microglia from AD brains. In contrast, treating IMGL with LPS and INFγ induces transcriptional changes similar to those observed in microglia detected in AD brains.
Collapse
Affiliation(s)
- I Y Quiroga
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - A E Cruikshank
- Postbaccalaureate Research Education Program, University of North Carolina, Chapel Hill, NC, USA
| | - M L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - K S M Reed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - B A Evangelista
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - J H Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - J V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - H Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - S Cohen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - T J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
59
|
Bowland GB, Weyrich LS. The Oral-Microbiome-Brain Axis and Neuropsychiatric Disorders: An Anthropological Perspective. Front Psychiatry 2022; 13:810008. [PMID: 35432038 PMCID: PMC9005879 DOI: 10.3389/fpsyt.2022.810008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
In the 21st century, neuropsychiatric disorders (NPDs) are on the rise, yet the causal mechanisms behind this global epidemic remain poorly understood. A key to these unknowns may lie within the vast communities of bacteria, fungi, and viruses in the body (microbiota), which are intimately linked with health and disease. NPDs were recently shown to be connected to gut microbiota, which can communicate with and influence the brain through the Gut-Brain-Axis (GBA). Parallel studies examining oral microbiota and their connections to the brain also suggest that microbes in the mouth can similarly influence NPD outcomes. However, the mechanisms and pathways that illuminate how oral microbiota and brain communicate in NPDs remain unknown. Here, we review identified mechanisms and pathways that oral microbiota use to engage the brain, and we lay the theoretical foundation for an oral-microbiota-brain axis (OMBA). Specifically, we examine established neuroinflammatory and immune system activation responses that underpin interactions between the oral microbiota and the central nervous system (CNS), detailing four specific mechanisms: (1) microbial and metabolite escape, (2) neuroinflammation, (3) CNS signaling, and (4) response to neurohormones. We then scrutinize why including the OMBA, in addition to the GBA, is critically needed to elucidate specific causal relationships between microbial dysbiosis and observed NPD development and progression. Furthermore, we argue for comprehensive, interdisciplinary approaches that integrate lab-based microbiome research and population-level studies that examine the OMBA to improve NPDs. We specifically identify key anthropological perspectives that integrate sociocultural, epidemiological, genetic, and environmental factors that shape the oral microbiome and its interactions with NPDs. Together, future studies of the OMBA in conjunction with interdisciplinary approaches can be used to identify NPD risks and improve outcomes, as well as develop novel intervention and treatment strategies.
Collapse
Affiliation(s)
- Grace B. Bowland
- Department of Anthropology, Pennsylvania State University, University Park, PA, United States
| | - Laura S. Weyrich
- Department of Anthropology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
60
|
Escobar YNH, O’Piela D, Wold LE, Mackos AR. Influence of the Microbiota-Gut-Brain Axis on Cognition in Alzheimer’s Disease. J Alzheimers Dis 2022; 87:17-31. [PMID: 35253750 PMCID: PMC10394502 DOI: 10.3233/jad-215290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gut microbiota is made up of trillions of microbial cells including bacteria, viruses, fungi, and other microbial bodies and is greatly involved in the maintenance of proper health of the host body. In particular, the gut microbiota has been shown to not only be involved in brain development but also in the modulation of behavior, neuropsychiatric disorders, and neurodegenerative diseases including Alzheimer’s disease. The precise mechanism by which the gut microbiota can affect the development of Alzheimer’s disease is unknown, but the gut microbiota is thought to communicate with the brain directly via the vagus nerve or indirectly through signaling molecules such as cytokines, neuroendocrine hormones, bacterial components, neuroactive molecules, or microbial metabolites such as short-chain fatty acids. In particular, interventions such as probiotic supplementation, fecal microbiota transfer, and supplementation with microbial metabolites have been used not only to study the effects that the gut microbiota has on behavior and cognitive function, but also as potential therapeutics for Alzheimer’s disease. A few of these interventions, such as probiotics, are promising candidates for the improvement of cognition in Alzheimer ’s disease and are the focus of this review.
Collapse
Affiliation(s)
- Yael-Natalie H. Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Devin O’Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
61
|
Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73:101529. [PMID: 34813976 PMCID: PMC8692431 DOI: 10.1016/j.arr.2021.101529] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is currently one of the biggest public health concerns in the world. Mitochondrial dysfunction in neurons is one of the major hallmarks of AD. Emerging evidence suggests that mitochondrial miRNAs potentially play important roles in the mitochondrial dysfunctions, focusing on synapse in AD progression. In this meta-analysis paper, a comprehensive literature review was conducted to identify and discuss the (1) role of mitochondrial miRNAs that regulate mitochondrial and synaptic functions; (2) the role of various factors such as mitochondrial dynamics, biogenesis, calcium signaling, biological sex, and aging on synapse and mitochondrial function; (3) how synapse damage and mitochondrial dysfunctions contribute to AD; (4) the structure and function of synapse and mitochondria in the disease process; (5) latest research developments in synapse and mitochondria in healthy and disease states; and (6) therapeutic strategies that improve synaptic and mitochondrial functions in AD. Specifically, we discussed how differences in the expression of mitochondrial miRNAs affect ATP production, oxidative stress, mitophagy, bioenergetics, mitochondrial dynamics, synaptic activity, synaptic plasticity, neurotransmission, and synaptotoxicity in neurons observed during AD. However, more research is needed to confirm the locations and roles of individual mitochondrial miRNAs in the development of AD.
Collapse
Affiliation(s)
- Prashanth Gowda
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
62
|
Sohrabi M, Sahu B, Kaur H, Hasler WA, Prakash A, Combs CK. Gastrointestinal Changes and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:335-350. [PMID: 35718965 PMCID: PMC10497313 DOI: 10.2174/1567205019666220617121255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Bijayani Sahu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Atish Prakash
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
63
|
Deng D, Su H, Song Y, Chen T, Sun Q, Jiang H, Zhao M. Altered Fecal Microbiota Correlated With Systemic Inflammation in Male Subjects With Methamphetamine Use Disorder. Front Cell Infect Microbiol 2021; 11:783917. [PMID: 34869080 PMCID: PMC8637621 DOI: 10.3389/fcimb.2021.783917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Methamphetamine use disorder (MUD) is a major public health problem worldwide with limited effective treatment options. Previous studies have reported methamphetamine-associated alterations in gut microbiota. A potential role of gut microbiota in regulating methamphetamine-induced brain dysfunction through interactions with the host immune system has been proposed, but evidence for this hypothesis is limited. The present study aimed to investigate the alterations in the fecal microbiota and explore its relationship with systemic inflammation in MUD. Fecal samples were obtained from 26 male subjects with MUD and 17 sex- and age- matched healthy controls. Fecal microbial profiles were analyzed by 16S rRNA sequencing. Plasma inflammatory markers were measured using enzyme-linked immunosorbent assay. Associations between fecal microbiota, systemic inflammatory markers and clinical characteristics were examined by Spearman partial correlation analysis while controlling for possible confounders. Compared with healthy controls, individuals with MUD showed no difference in fecal microbial diversity, but exhibited differences in the relative abundance of several microbial taxa. At the genus level, a higher abundance of Collinsella, Odoribacter and Megasphaera and lower levels of Faecalibacterium, Blautia, Dorea and Streptococcus were detected in subjects with MUD. More importantly, altered fecal microbiota was found to be correlated with plasma levels of CRP, IL-2, IL-6 and IL-10. The order Lactobacillales, exhibiting lower abundance in participants with MUD, was positively related to the duration of methamphetamine abstinence and the plasma level of anti-inflammatory cytokine IL-10. This study is the first to provide evidence for a link between altered fecal microbiota and systemic inflammation in MUD. Further elucidation of interactions between gut microbiota and the host immune system may be beneficial for the development of novel therapeutic approaches for MUD.
Collapse
Affiliation(s)
- Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehong Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
64
|
Yan Y, Gao Y, Fang Q, Zhang N, Kumar G, Yan H, Song L, Li J, Zhang Y, Sun J, Wang J, Zhao L, Skaggs K, Zhang HT, Ma CG. Inhibition of Rho Kinase by Fasudil Ameliorates Cognition Impairment in APP/PS1 Transgenic Mice via Modulation of Gut Microbiota and Metabolites. Front Aging Neurosci 2021; 13:755164. [PMID: 34721000 PMCID: PMC8551711 DOI: 10.3389/fnagi.2021.755164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Fasudil, a Rho kinase inhibitor, exerts therapeutic effects in a mouse model of Alzheimer's disease (AD), a chronic neurodegenerative disease with progressive loss of memory. However, the mechanisms remain unclear. In addition, the gut microbiota and its metabolites have been implicated in AD. Methods: We examined the effect of fasudil on learning and memory using the Morris water-maze (MWM) test in APPswe/PSEN1dE9 transgenic (APP/PS1) mice (8 months old) treated (i.p.) with fasudil (25 mg/kg/day; ADF) or saline (ADNS) and in age- and gender-matched wild-type (WT) mice. Fecal metagenomics and metabolites were performed to identify novel biomarkers of AD and elucidate the mechanisms of fasudil induced beneficial effects in AD mice. Results: The MWM test showed significant improvement of spatial memory in APP/PS1 mice treated with fasudil as compared to ADNS. The metagenomic analysis revealed the abundance of the dominant phyla in all the three groups, including Bacteroidetes (23.7–44%) and Firmicutes (6.4–26.6%), and the increased relative abundance ratio of Firmicutes/Bacteroidetes in ADNS (59.1%) compared to WT (31.7%). In contrast, the Firmicutes/Bacteroidetes ratio was decreased to the WT level in ADF (32.8%). Lefse analysis of metagenomics identified s_Prevotella_sp_CAG873 as an ADF potential biomarker, while s_Helicobacter_typhlonius and s_Helicobacter_sp_MIT_03-1616 as ADNS potential biomarkers. Metabolite analysis revealed the increment of various metabolites, including glutamate, hypoxanthine, thymine, hexanoyl-CoA, and leukotriene, which were relative to ADNS or ADF microbiota potential biomarkers and mainly involved in the metabolism of nucleotide, lipids and sugars, and the inflammatory pathway. Conclusions: Memory deficit in APP/PS1 mice was correlated with the gut microbiome and metabolite status. Fasudil reversed the abnormal gut microbiota and subsequently regulated the related metabolisms to normal in the AD mice. It is believed that fasudil can be a novel strategy for the treatment of AD via remodeling of the gut microbiota and metabolites. The novel results also provide valuable references for the use of gut microbiota and metabolites as diagnostic biomarkers and/or therapeutic targets in clinical studies of AD.
Collapse
Affiliation(s)
- Yuqing Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ye Gao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Qingli Fang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Hailong Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiehui Li
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Yuna Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jingxian Sun
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jiawei Wang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Linhu Zhao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Keith Skaggs
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Cun-Gen Ma
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
65
|
Maitre Y, Mahalli R, Micheneau P, Delpierre A, Amador G, Denis F. Evidence and Therapeutic Perspectives in the Relationship between the Oral Microbiome and Alzheimer's Disease: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111157. [PMID: 34769677 PMCID: PMC8583399 DOI: 10.3390/ijerph182111157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
This review aims to clarify the nature of the link between Alzheimer’s disease and the oral microbiome on an epidemiological and pathophysiological level, as well as to highlight new therapeutic perspectives that contribute to the management of this disease. We performed a systematic review, following the Preferred Reporting Items for Systematic Reviews checklist, from January 2000 to July 2021. The terms “plaque,” “saliva,” and “mouth” were associated with the search term “oral diseases” and used in combination with the Boolean operator “AND”/“OR”. We included experimental or clinical studies and excluded conferences, abstracts, reviews, and editorials. A total of 27 articles were selected. Evidence for the impact of the oral microbiome on the pathophysiological and immunoinflammatory mechanisms of Alzheimer’s disease is accumulating. The impact of the oral microbiome on the development of AD opens the door to complementary therapies such as phototherapy and/or the use of prebiotic compounds and probiotic strains for global or targeted modulation of the oral microbiome in order to have a favourable influence on the evolution of this pathology in the future.
Collapse
Affiliation(s)
- Yoann Maitre
- Emergency Department, Montpellier University Hospital, 34090 Montpellier, France;
- EA 2415, Aide à la Décision pour une Médecine Personnalisée, Université de Montpellier, 34093 Montpellier, France
| | - Rachid Mahalli
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Pierre Micheneau
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Alexis Delpierre
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Gilles Amador
- Faculty of Dentistry, Nantes University, 44000 Nantes, France;
| | - Frédéric Denis
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
- Faculty of Dentistry, Nantes University, 44000 Nantes, France;
- EA 75-05 Education, Ethique, Santé, Faculté de Médecine, Université François-Rabelais, 37044 Tours, France
- Correspondence: ; Tel.: +33-6-7715-6968
| |
Collapse
|
66
|
Nandwana V, Debbarma S. Fecal Microbiota Transplantation: A Microbiome Modulation Technique for Alzheimer's Disease. Cureus 2021; 13:e16503. [PMID: 34430117 PMCID: PMC8374998 DOI: 10.7759/cureus.16503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and the fifth leading cause of death among the elderly. AD involves parts of the brain that can lead to progressive memory loss and impaired language skills and cognitive thinking, affecting one’s ability to carry out daily activities. Aging, bad dietary habits, family history, as well as altered gut microbiota composition may play a role in the pathogenesis of AD. Although the association between the imbalance of gut microbiota and AD is still difficult to determine, it has been suggested that dysbiosis can lead to the increased secretion of lipopolysaccharides and amyloid, which may impair the permeability of the intestine and the blood-brain barrier. Moreover, it can progress the process of neuroinflammation, amyloid-beta formation, and ultimately neuronal death. Microbiota-targeted interventions such as personalized diet, probiotics, or fecal microbiota transplantation (FMT) might represent a potential therapeutic option for AD. This review article discusses the procedure of FMT and its possible side effects on the recipient’s body. In addition, we review the role of FMT in the context of its application in various nervous system-related disorders (AD, Parkinson’s disease, multiple sclerosis).
Collapse
Affiliation(s)
- Varsha Nandwana
- Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| | - Shibajee Debbarma
- Community Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| |
Collapse
|
67
|
Dow CT. Warm, Sweetened Milk at the Twilight of Immunity - Alzheimer's Disease - Inflammaging, Insulin Resistance, M. paratuberculosis and Immunosenescence. Front Immunol 2021; 12:714179. [PMID: 34421917 PMCID: PMC8375433 DOI: 10.3389/fimmu.2021.714179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 01/22/2023] Open
Abstract
This article prosecutes a case against the zoonotic pathogen Mycobacterium avium ss. paratuberculosis (MAP) as a precipitant of Alzheimer’s disease (AD). Like the other major neurodegenerative diseases AD is, at its core, a proteinopathy. Aggregated extracellular amyloid protein plaques and intracellular tau protein tangles are the recognized protein pathologies of AD. Autophagy is the cellular housekeeping process that manages protein quality control and recycling, cellular metabolism, and pathogen elimination. Impaired autophagy and cerebral insulin resistance are invariant features of AD. With a backdrop of age-related low-grade inflammation (inflammaging) and heightened immune risk (immunosenescence), infection with MAP subverts glucose metabolism and further exhausts an already exhausted autophagic capacity. Increasingly, a variety of agents have been found to favorably impact AD; they are agents that promote autophagy and reduce insulin resistance. The potpourri of these therapeutic agents: mTOR inhibitors, SIRT1 activators and vaccines are seemingly random until one recognizes that all these agents also suppress intracellular mycobacterial infection. The zoonotic mycobacterial MAP causes a common fatal enteritis in ruminant animals. Humans are exposed to MAP from contaminated food products and from the environment. The enteritis in animals is called paratuberculosis or Johne’s disease; in humans, it is the putative cause of Crohn’s disease. Beyond Crohn’s, MAP is associated with an increasing number of inflammatory and autoimmune diseases: sarcoidosis, Blau syndrome, autoimmune diabetes, autoimmune thyroiditis, multiple sclerosis, and rheumatoid arthritis. Moreover, MAP has been associated with Parkinson’s disease. India is one county that has extensively studied the human bio-load of MAP; 30% of more than 28,000 tested individuals were found to harbor, or to have harbored, MAP. This article asserts an unfolding realization that MAP infection of humans 1) is widespread in its presence, 2) is wide-ranging in its zoonosis and 3) provides a plausible link connecting MAP to AD.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
68
|
Munawara U, Catanzaro M, Xu W, Tan C, Hirokawa K, Bosco N, Dumoulin D, Khalil A, Larbi A, Lévesque S, Ramassamy C, Barron AE, Cunnane S, Beauregard PB, Bellenger JP, Rodrigues S, Desroches M, Witkowski JM, Laurent B, Frost EH, Fulop T. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer's disease. IMMUNITY & AGEING 2021; 18:29. [PMID: 34154615 PMCID: PMC8215492 DOI: 10.1186/s12979-021-00236-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease ultimately manifesting as clinical dementia. Despite considerable effort and ample experimental data, the role of neuroinflammation related to systemic inflammation is still unsettled. While the implication of microglia is well recognized, the exact contribution of peripheral monocytes/macrophages is still largely unknown, especially concerning their role in the various stages of AD. Objectives AD develops over decades and its clinical manifestation is preceded by subjective memory complaints (SMC) and mild cognitive impairment (MCI); thus, the question arises how the peripheral innate immune response changes with the progression of the disease. Therefore, to further investigate the roles of monocytes/macrophages in the progression of AD we assessed their phenotypes and functions in patients at SMC, MCI and AD stages and compared them with cognitively healthy controls. We also conceptualised an idealised mathematical model to explain the functionality of monocytes/macrophages along the progression of the disease. Results We show that there are distinct phenotypic and functional changes in monocyte and macrophage populations as the disease progresses. Higher free radical production upon stimulation could already be observed for the monocytes of SMC patients. The most striking results show that activation of peripheral monocytes (hyperactivation) is the strongest in the MCI group, at the prodromal stage of the disease. Monocytes exhibit significantly increased chemotaxis, free radical production, and cytokine production in response to TLR2 and TLR4 stimulation. Conclusion Our data suggest that the peripheral innate immune system is activated during the progression from SMC through MCI to AD, with the highest levels of activation being in MCI subjects and the lowest in AD patients. Some of these parameters may be used as biomarkers, but more holistic immune studies are needed to find the best period of the disease for clinical intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00236-x.
Collapse
Affiliation(s)
- Usma Munawara
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Michael Catanzaro
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.,Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Katsuiku Hirokawa
- Department of Diagnostic Pathology, Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nitobe Memorial Nakanosogo Hospital, Tokyo, Japan
| | - Nabil Bosco
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Cell Biology, Cellular Metabolism, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Anis Larbi
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.,Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Simon Lévesque
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé-biotechnologie, Montréal, Québec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, California, USA
| | - Stephen Cunnane
- Research Center on Aging, Endocrinology Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Pierre Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain. .,Basque Center for Applied Mathematics, Mathematical, Computational and Experimental Neuroscience research group, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Basque-Country, Spain.
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France.,Université Côte d'Azur, Nice, France
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| |
Collapse
|
69
|
Narengaowa, Kong W, Lan F, Awan UF, Qing H, Ni J. The Oral-Gut-Brain AXIS: The Influence of Microbes in Alzheimer's Disease. Front Cell Neurosci 2021; 15:633735. [PMID: 33935651 PMCID: PMC8079629 DOI: 10.3389/fncel.2021.633735] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most frequently diagnosed neurodegenerative disorders worldwide and poses a major challenge for both affected individuals and their caregivers. AD is a progressive neurological disorder associated with high rates of brain atrophy. Despite its durable influence on human health, understanding AD has been complicated by its enigmatic and multifactorial nature. Neurofibrillary tangles and the deposition of amyloid-beta (Aβ) protein are typical pathological features and fundamental causes of cognitive impairment in AD patients. Dysbiosis of oral and gut microbiota has been reported to induce and accelerate the formation of Aβ plaques and neurofibrillary tangles. For instance, some oral microbes can spread to the brain through cranial nerves or cellular infections, which has been suggested to increase the risk of developing AD. Importantly, the interaction between intestinal microbiota and brain cells has been recognized as influencing the development of AD as well as other neurodegenerative diseases. In particular, the metabolites produced by certain intestinal microorganisms can affect the activity of microglia and further mediate neuroinflammation, which is a leading cause of neuronal necrosis and AD pathogenesis. Which pathogens and associated pathways are involved in the development and progression of AD remains to be elucidated; however, it is well-known that gut microbiota and their metabolites can affect the brain by both direct and indirect means. Understanding the specific mechanisms involved in the interaction between these pathogens and the nervous system is vital for the early intervention in AD. In this review, we aim to comprehensively discuss the possible mechanistic pathways underlying the oral-brain, the gut-brain and the oral-gut-brain associations.
Collapse
Affiliation(s)
- Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Umer Farooq Awan
- Laboratory of Molecular Biology, Department of Botany, Government College University, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
70
|
Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021; 10:cells10030566. [PMID: 33807650 PMCID: PMC8002147 DOI: 10.3390/cells10030566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota-gut-brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
| | - Yun-Mi Jeong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-42-860-4643
| |
Collapse
|
71
|
Mansour SR, Moustafa MAA, Saad BM, Hamed R, Moustafa ARA. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect 2021; 41:100845. [PMID: 34035924 PMCID: PMC8138677 DOI: 10.1016/j.nmni.2021.100845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome of humans comprises a diverse group of trillions of microorganisms including symbiotic organisms, opportunistic pathogens and commensal organisms. This microbiota plays a major role in digesting food; it also helps with absorbing and synthesizing some nutrients and releases their metabolites, which may deliver a variety of growth-promoting and growth-inhibiting factors that influence human health either directly or indirectly. The balance between microbial species, especially those responsible for the fermentation of different substrates within the microbial community, which are in the majority, depends on daily diet. Therefore, an unbalanced diet may lead to the progression and development of human diseases. These include metabolic and inflammatory disorders, cancer and depression, as well as infant health and longevity. We provide an overview of the effect of diet on the human microbiome and assess the related risk of disease development.
Collapse
Affiliation(s)
- S R Mansour
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - M A A Moustafa
- Faculty of Medicine, 6 October University, 6 October, Egypt
| | - B M Saad
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - R Hamed
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - A-R A Moustafa
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
72
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
73
|
Colnaghi L, Rondelli D, Muzi-Falconi M, Sertic S. Tau and DNA Damage in Neurodegeneration. Brain Sci 2020; 10:E946. [PMID: 33297375 PMCID: PMC7762255 DOI: 10.3390/brainsci10120946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a family of incurable conditions. Among them, Alzheimer's disease and tauopathies are the most common. Pathological features of these two disorders are synaptic loss, neuronal cell death and increased DNA damage. A key pathological protein for the onset and progression of the conditions is the protein tau, a microtubule-binding protein highly expressed in neurons and encoded by the MAPT (microtubule-associated protein tau) gene. Tau is predominantly a cytosolic protein that interacts with numerous other proteins and molecules. Recent findings, however, have highlighted new and unexpected roles for tau in the nucleus of neuronal cells. This review summarizes the functions of tau in the metabolism of DNA, describing them in the context of the disorders.
Collapse
Affiliation(s)
- Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Negri 2, 20156 Milan, Italy
| | - Diego Rondelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| |
Collapse
|
74
|
Kuang Y, Zhang J, Xiong M, Zeng W, Lin X, Yi X, Luo Y, Yang M, Li F, Huang Q. A Novel Nanosystem Realizing Curcumin Delivery Based on Fe 3O 4@Carbon Dots Nanocomposite for Alzheimer's Disease Therapy. Front Bioeng Biotechnol 2020; 8:614906. [PMID: 33344438 PMCID: PMC7744485 DOI: 10.3389/fbioe.2020.614906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, which seriously affects human health but lacks effective treatment methods. Amyloid β (Aβ) aggregates are considered a possible target for AD treatment. Evidence is increasingly showing that curcumin (CUR) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. However, the efficiency of targeted cellular uptake and bioavailability of CUR is very low due to its poor stability and water-solubility. In order to better improve the cell uptake efficiency and bioavailability of CUR and reduce the cytotoxicity of high-dose CUR, a novel CUR delivery system for AD therapy has been constructed based on the employment of the Fe3O4@carbon dots nanocomposite (Fe3O4@CDs) as the carrier. CUR-Fe3O4@CDs have a strong affinity toward Aβ and effectively inhibit extracellular Aβ fibrillation. In addition, CUR-Fe3O4@CDs can inhibit the production of reactive oxygen species (ROS) mediated by Aβ fibrils and the corresponding neurotoxicity in PC12 cells. More importantly, it can restore nerve damage and maintained neuronal morphology. These results indicate that the application of CUR-Fe3O4@CDs provides a promising platform for the treatment of AD.
Collapse
Affiliation(s)
- Ying Kuang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jingwen Zhang
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Mogao Xiong
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Weijia Zeng
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Lin
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Department of Chemistry, Shantou University, Shantou, China
| | - Xiaoqing Yi
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Min Yang
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qitong Huang
- Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|