51
|
Rodriguez PD, Paculova H, Kogut S, Heath J, Schjerven H, Frietze S. Non-Coding RNA Signatures of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052683. [PMID: 33799946 PMCID: PMC7961854 DOI: 10.3390/ijms22052683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.
Collapse
Affiliation(s)
- Princess D. Rodriguez
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Jessica Heath
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
52
|
Fang K, Huang W, Sun YM, Chen TQ, Zeng ZC, Yang QQ, Pan Q, Han C, Sun LY, Luo XQ, Wang WT, Chen YQ. Cis-acting lnc-eRNA SEELA directly binds histone H4 to promote histone recognition and leukemia progression. Genome Biol 2020; 21:269. [PMID: 33143730 PMCID: PMC7607629 DOI: 10.1186/s13059-020-02186-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding enhancer RNAs (lnc-eRNAs) are a subset of stable eRNAs identified from annotated lncRNAs. They might act as enhancer activity-related therapeutic targets in cancer. However, the underlying mechanism of epigenetic activation and their function in cancer initiation and progression remain largely unknown. Results We identify a set of lncRNAs as lnc-eRNAs according to the epigenetic signatures of enhancers. We show that these lnc-eRNAs are broadly activated in MLL-rearranged leukemia (MLL leukemia), an aggressive leukemia caused by a chromosomal translocation, through a mechanism by which the HOXA cluster initiates enhancer activity, and the epigenetic reader BRD4 cooperates with the coregulator MLL fusion oncoprotein to induce transcriptional activation. To demonstrate the functional roles of lnc-eRNAs, two newly identified lnc-eRNAs transcribed from the SEELA eRNA cluster (SEELA), SEELA1 and SEELA2, are chosen for further studies. The results show that SEELA mediated cis-activated transcription of the nearby oncogene Serine incorporate 2 (SERINC2) by directly binding to the K31 amino acid (aa) of histone H4. Chromatin-bound SEELA strengthens the interaction between chromatin and histone modifiers to promote histone recognition and oncogene transcription. Further studies show that the SEELA-SERINC2 axis regulated aspects of cancer metabolism, such as sphingolipid synthesis, to affect leukemia progression. Conclusions This study shows that lnc-eRNAs are epigenetically activated by cancer-initiating oncoproteins and uncovers a cis-activating mechanism of oncogene transcription control based on lnc-eRNA-mediated epigenetic regulation of enhancer activity, providing insights into the critical roles of lnc-eRNAs in cancer initiation and progression. Supplementary information Supplementary information accompanies this paper at 10.1186/s13059-020-02186-x.
Collapse
Affiliation(s)
- Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian-Qian Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
53
|
Kyriazi AA, Papiris E, Kitsos Kalyvianakis K, Sakellaris G, Baritaki S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int J Mol Sci 2020; 21:ijms21186658. [PMID: 32932969 PMCID: PMC7556003 DOI: 10.3390/ijms21186658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer stem cells (CSCs) as initiators of carcinogenesis has revolutionized the era of cancer research and our perception for the disease treatment options. Additional CSC features, including self-renewal and migratory and invasive capabilities, have further justified these cells as putative diagnostic, prognostic, and therapeutic targets. Given the CSC plasticity, the identification of CSC-related biomarkers has been a serious burden in CSC characterization and therapeutic targeting. Over the past decades, a compelling amount of evidence has demonstrated critical regulatory functions of non-coding RNAs (ncRNAs) on the exclusive features of CSCs. We now know that ncRNAs may interfere with signaling pathways, vital for CSC phenotype maintenance, such as Notch, Wnt, and Hedgehog. Here, we discuss the multifaceted contribution of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as representative ncRNA classes, in sustaining the CSC-like traits, as well as the underlying molecular mechanisms of their action in various CSC types. We further discuss the use of CSC-related ncRNAs as putative biomarkers of high diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Efstathios Papiris
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Konstantinos Kitsos Kalyvianakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - George Sakellaris
- Surgery Unit, University General Hospital, 71500 Heraklion (PAGNH), Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
- Correspondence: ; Tel.: +30-2810394727
| |
Collapse
|
54
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|