51
|
Jonkman AH, Rauseo M, Carteaux G, Telias I, Sklar MC, Heunks L, Brochard LJ. Proportional modes of ventilation: technology to assist physiology. Intensive Care Med 2020; 46:2301-2313. [PMID: 32780167 PMCID: PMC7417783 DOI: 10.1007/s00134-020-06206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023]
Abstract
Proportional modes of ventilation assist the patient by adapting to his/her effort, which contrasts with all other modes. The two proportional modes are referred to as neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation with load-adjustable gain factors (PAV+): they deliver inspiratory assist in proportion to the patient’s effort, and hence directly respond to changes in ventilatory needs. Due to their working principles, NAVA and PAV+ have the ability to provide self-adjusted lung and diaphragm-protective ventilation. As these proportional modes differ from ‘classical’ modes such as pressure support ventilation (PSV), setting the inspiratory assist level is often puzzling for clinicians at the bedside as it is not based on usual parameters such as tidal volumes and PaCO2 targets. This paper provides an in-depth overview of the working principles of NAVA and PAV+ and the physiological differences with PSV. Understanding these differences is fundamental for applying any assisted mode at the bedside. We review different methods for setting inspiratory assist during NAVA and PAV+ , and (future) indices for monitoring of patient effort. Last, differences with automated modes are mentioned.
Collapse
Affiliation(s)
- Annemijn H Jonkman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Michela Rauseo
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Guillaume Carteaux
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, Créteil, F-94010, France.,Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, F-94010, France.,Institut Mondor de Recherche Biomédicale INSERM 955, Créteil, F-94010, France
| | - Irene Telias
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Sklar
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Laurent J Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
52
|
DI Nardo M, Lonero M, Staffieri F, DI Mussi R, Murgolo F, Lorusso P, Pham T, Picardo SG, Perrotta D, Cecchetti C, RavÀ L, Grasso S. Can visual inspection of the electrical activity of the diaphragm improve the detection of patient-ventilator asynchronies by pediatric critical care physicians? Minerva Anestesiol 2020; 87:319-324. [PMID: 32755090 DOI: 10.23736/s0375-9393.20.14543-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patient-ventilator asynchronies are challenging during pediatric mechanical ventilation. We hypothesized that monitoring the electrical activity of the diaphragm (EAdi) together with the "standard" airway opening pressure (Pao) and flow-time waveforms during pressure support ventilation would improve the ability of a cohort of critical care physicians to detect asynchronies in ventilated children. METHODS We recorded the flow, Pao and EAdi waveforms in ten consecutive patients. The recordings were split in periods of 15 s, each reproducing a ventilator screenshot. From this pool, a team of four experts selected the most representative screenshots including at least one of the three most common asynchronies (missed efforts, auto-triggering and double triggering) and split them into two versions, respectively showing or not the EAdi waveforms. The screenshots were shown in random order in a questionnaire to sixty experienced pediatric intensivists that were asked to identify any episode of patient-ventilator asynchrony. RESULTS Among the ten patients included in the study, only eight had EAdi tracings without artifacts and were analyzed. When the Eadi waveform was shown, the auto-triggering detection improved from 13% to 67% (P<0.0001) and the missed efforts detection improved from 43% to 95% (P<0.0001). The detection of double triggering, instead, did not improve (85% with the EAdi vs. 78% without the EAdi waveform; P=0.52). CONCLUSIONS This single center study suggests that the EAdi waveform may improve the ability of pediatric intensivists to detect missed efforts and auto-triggering asynchronies. Further studies are required to determine the clinical implications of these findings.
Collapse
Affiliation(s)
- Matteo DI Nardo
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Margherita Lonero
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy -
| | - Francesco Staffieri
- Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Rosa DI Mussi
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Francesco Murgolo
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Pantaleo Lorusso
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | | | - Sergio G Picardo
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Perrotta
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Corrado Cecchetti
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucilla RavÀ
- Unit of Epidemiology and Biostatistics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Salvatore Grasso
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
53
|
Yu T, Wu R, Yao L, Wang K, Wang G, Fan Z, Wu N, Fang X. Neurally adjusted ventilatory assist after surgical treatment of intracerebral hemorrhage: a randomized crossover study. J Int Med Res 2020; 48:300060520939837. [PMID: 32720550 PMCID: PMC7388128 DOI: 10.1177/0300060520939837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We assessed the neuromechanical efficiency (NME), neuroventilatory efficiency (NVE), and diaphragmatic function effects between pressure support ventilation (PSV) and neutrally adjusted ventilatory assist (NAVA). METHODS Fifteen patients who had undergone surgical treatment of intracerebral hemorrhage were enrolled in this randomized crossover study. The patients were assigned to PSV for the first 24 hours and then to NAVA for the following 24 hours or vice versa. The monitored ventilatory parameters under the two ventilation models were compared. NME, NVE, and diaphragmatic function were compared between the two ventilation models. RESULTS One patient's illness worsened during the study. The study was stopped for this patient, and intact data were obtained from the other 14 patients and analyzed. The monitored tidal volume was significantly higher with PSV than NAVA (487 [443-615] vs. 440 [400-480] mL, respectively). NME, NVE, diaphragmatic function, and the partial pressures of arterial carbon dioxide and oxygen were not significantly different between the two ventilation models. CONCLUSION The tidal volume was lower with NAVA than PSV; however, the patients' selected respiratory pattern during NAVA did not change the NME, NVE, or diaphragmatic function.Clinical trial registration no. ChiCTR1900022861.
Collapse
Affiliation(s)
- Tao Yu
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Rongrong Wu
- Department of Education, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Lin Yao
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Kui Wang
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Guiliang Wang
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhen Fan
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Nianlong Wu
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Xinggen Fang
- Department of Neurosurgery, Research Center for Functional Maintenance and Reconstruction of Viscera, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| |
Collapse
|
54
|
Natalini G, Buizza B, Granato A, Aniballi E, Pisani L, Ciabatti G, Lippolis V, Rosano A, Latronico N, Grasso S, Antonelli M, Bernardini A. Non-invasive assessment of respiratory muscle activity during pressure support ventilation: accuracy of end-inspiration occlusion and least square fitting methods. J Clin Monit Comput 2020; 35:913-921. [PMID: 32617847 PMCID: PMC7330529 DOI: 10.1007/s10877-020-00552-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/26/2020] [Indexed: 12/01/2022]
Abstract
Pressure support ventilation (PSV) should be titrated considering the pressure developed by the respiratory muscles (Pmusc) to prevent under- and over-assistance. The esophageal pressure (Pes) is the clinical gold standard for Pmusc assessment, but its use is limited by alleged invasiveness and complexity. The least square fitting method and the end-inspiratory occlusion method have been proposed as non-invasive alternatives for Pmusc assessment. The aims of this study were: (1) to compare the accuracy of Pmusc estimation using the end-inspiration occlusion (Pmusc,index) and the least square fitting (Pmusc,lsf) against the reference method based on Pes; (2) to test the accuracy of Pmusc,lsf and of Pmusc,index to detect overassistance, defined as Pmusc ≤ 1 cmH2O. We studied 18 patients at three different PSV levels. At each PSV level, Pmusc, Pmusc,lsf, Pmusc,index were calculated on the same breaths. Differences among Pmusc, Pmusc,lsf, Pmusc,index were analyzed with linear mixed effects models. Bias and agreement were assessed by Bland-Altman analysis for repeated measures. The ability of Pmusc,lsf and Pmusc,index to detect overassistance was assessed by the area under the receiver operating characteristics curve. Positive and negative predictive values were calculated using cutoff values that maximized the sum of sensitivity and specificity. At each PSV level, Pmusc,lsf was not different from Pmusc (p = 0.96), whereas Pmusc,index was significantly lower than Pmusc. The bias between Pmusc and Pmusc,lsf was zero, whereas Pmusc,index systematically underestimated Pmusc of 6 cmH2O. The limits of agreement between Pmusc and Pmusc,lsf and between Pmusc and Pmusc,index were ± 12 cmH2O across bias. Both Pmusc,lsf ≤ 4 cmH2O and Pmusc,index ≤ 1 cmH2O had excellent negative predictive value [0.98 (95% CI 0.94-1) and 0.96 (95% CI 0.91-0.99), respectively)] to identify over-assistance. The inspiratory effort during PSV could not be accurately estimated by the least square fitting or end-inspiratory occlusion method because the limits of agreement were far above the signal size. These non-invasive approaches, however, could be used to screen patients at risk for absent or minimal respiratory muscles activation to prevent the ventilator-induced diaphragmatic dysfunction.
Collapse
Affiliation(s)
- Giuseppe Natalini
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy
| | - Barbara Buizza
- Department of Intensive Care and Anesthesiology, University of Brescia, Brescia, Italy
| | - Anna Granato
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy.,Department of Intensive Care and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Roma, Italy
| | - Eros Aniballi
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy.,Department of Intensive Care and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Roma, Italy
| | - Luigi Pisani
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy.,Department of Intensive Care, Amsterdam University Medical Centers - Location AMC, Amsterdam, Netherlands
| | - Gianni Ciabatti
- Department of Anesthesiology and Intensive Care, Neurointensive Care Unit, Azienda Ospedaliera Universitaria Careggi, Firenze, Italy.
| | - Valeria Lippolis
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy.,Department of Emergency and Organ Transplants (DETO), Anesthesiology and Intensive Care, Università Degli Studi Di Bari "Aldo Moro", Bari, Italy
| | - Antonio Rosano
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy
| | - Nicola Latronico
- Department of Intensive Care and Anesthesiology, University of Brescia, Brescia, Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Salvatore Grasso
- Department of Emergency and Organ Transplants (DETO), Anesthesiology and Intensive Care, Università Degli Studi Di Bari "Aldo Moro", Bari, Italy
| | - Massimo Antonelli
- Department of Intensive Care and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Roma, Italy.,Catholic University of Sacred Heart, Roma, Italy
| | - Achille Bernardini
- Department of Intensive Care and Anesthesiology, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
55
|
Hadfield DJ, Rose L, Reid F, Cornelius V, Hart N, Finney C, Penhaligon B, Molai J, Harris C, Saha S, Noble H, Clarey E, Thompson L, Smith J, Johnson L, Hopkins PA, Rafferty GF. Neurally adjusted ventilatory assist versus pressure support ventilation: a randomized controlled feasibility trial performed in patients at risk of prolonged mechanical ventilation. Crit Care 2020; 24:220. [PMID: 32408883 PMCID: PMC7224141 DOI: 10.1186/s13054-020-02923-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The clinical effectiveness of neurally adjusted ventilatory assist (NAVA) has yet to be demonstrated, and preliminary studies are required. The study aim was to assess the feasibility of a randomized controlled trial (RCT) of NAVA versus pressure support ventilation (PSV) in critically ill adults at risk of prolonged mechanical ventilation (MV). METHODS An open-label, parallel, feasibility RCT (n = 78) in four ICUs of one university-affiliated hospital. The primary outcome was mode adherence (percentage of time adherent to assigned mode), and protocol compliance (binary-≥ 65% mode adherence). Secondary exploratory outcomes included ventilator-free days (VFDs), sedation, and mortality. RESULTS In the 72 participants who commenced weaning, median (95% CI) mode adherence was 83.1% (64.0-97.1%) and 100% (100-100%), and protocol compliance was 66.7% (50.3-80.0%) and 100% (89.0-100.0%) in the NAVA and PSV groups respectively. Secondary outcomes indicated more VFDs to D28 (median difference 3.0 days, 95% CI 0.0-11.0; p = 0.04) and fewer in-hospital deaths (relative risk 0.5, 95% CI 0.2-0.9; p = 0.032) for NAVA. Although overall sedation was similar, Richmond Agitation and Sedation Scale (RASS) scores were closer to zero in NAVA compared to PSV (p = 0.020). No significant differences were observed in duration of MV, ICU or hospital stay, or ICU, D28, and D90 mortality. CONCLUSIONS This feasibility trial demonstrated good adherence to assigned ventilation mode and the ability to meet a priori protocol compliance criteria. Exploratory outcomes suggest some clinical benefit for NAVA compared to PSV. Clinical effectiveness trials of NAVA are potentially feasible and warranted. TRIAL REGISTRATION ClinicalTrials.gov, NCT01826890. Registered 9 April 2013.
Collapse
Affiliation(s)
- Daniel J Hadfield
- Critical Care, King's College Hospital, London, UK.
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
| | - Louise Rose
- Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, London, UK
- Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Canada
| | - Fiona Reid
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Victoria Cornelius
- Faculty of Medicine, School of Public Health, Imperial College, London, UK
| | - Nicholas Hart
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
- Lane Fox Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare Finney
- Critical Care, King's College Hospital, London, UK
| | | | | | - Clair Harris
- Critical Care, King's College Hospital, London, UK
| | - Sian Saha
- Critical Care, King's College Hospital, London, UK
| | | | - Emma Clarey
- Critical Care, King's College Hospital, London, UK
| | | | - John Smith
- Critical Care, King's College Hospital, London, UK
| | - Lucy Johnson
- Critical Care, King's College Hospital, London, UK
| | | | - Gerrard F Rafferty
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| |
Collapse
|
56
|
Abstract
OBJECTIVES This review discusses the different techniques used at the bedside to assess respiratory muscle function in critically ill children and their clinical applications. DATA SOURCES A scoping review of the medical literature on respiratory muscle function assessment in critically ill children was conducted using the PubMed search engine. STUDY SELECTION We included all scientific, peer-reviewed studies about respiratory muscle function assessment in critically ill children, as well as some key adult studies. DATA EXTRACTION Data extracted included findings or comments about techniques used to assess respiratory muscle function. DATA SYNTHESIS Various promising physiologic techniques are available to assess respiratory muscle function at the bedside of critically ill children throughout the disease process. During the acute phase, this assessment allows a better understanding of the pathophysiological mechanisms of the disease and an optimization of the ventilatory support to increase its effectiveness and limit its potential complications. During the weaning process, these physiologic techniques may help predict extubation success and therefore optimize ventilator weaning. CONCLUSIONS Physiologic techniques are useful to precisely assess respiratory muscle function and to individualize and optimize the management of mechanical ventilation in children. Among all the available techniques, the measurements of esophageal pressure and electrical activity of the diaphragm appear particularly helpful in the era of individualized ventilatory management.
Collapse
|
57
|
Sophocleous L, Waldmann AD, Becher T, Kallio M, Rahtu M, Miedema M, Papadouri T, Karaoli C, Tingay DG, Van Kaam AH, Yerworth R, Bayford R, Frerichs I. Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters. Physiol Meas 2020; 41:035003. [DOI: 10.1088/1361-6579/ab7b42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
58
|
Effect of Neurally Adjusted Ventilatory Assist on Patient-Ventilator Interaction in Mechanically Ventilated Adults: A Systematic Review and Meta-Analysis. Crit Care Med 2020; 47:e602-e609. [PMID: 30882481 DOI: 10.1097/ccm.0000000000003719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patient-ventilator asynchrony is common among critically ill patients undergoing mechanical ventilation and has been associated with adverse outcomes. Neurally adjusted ventilatory assist is a ventilatory mode that may lead to improved patient-ventilator synchrony. We conducted a systematic review to determine the impact of neurally adjusted ventilatory assist on patient-ventilator asynchrony, other physiologic variables, and clinical outcomes in adult patients undergoing invasive mechanical ventilation in comparison with conventional pneumatically triggered ventilatory modes. DATA SOURCES We searched Medline, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central, CINAHL, Scopus, Web of Science, conference abstracts, and ClinicalTrials.gov until July 2018. STUDY SELECTION Two authors independently screened titles and abstracts for randomized and nonrandomized controlled trials (including crossover design) comparing the occurrence of patient-ventilator asynchrony between neurally adjusted ventilatory assist and pressure support ventilation during mechanical ventilation in critically ill adults. The asynchrony index and severe asynchrony (i.e., asynchrony index > 10%) were the primary outcomes. DATA EXTRACTION Two authors independently extracted study characteristics and outcomes and assessed risk of bias of included studies. DATA SYNTHESIS Of 11,139 unique citations, 26 studies (522 patients) met the inclusion criteria. Sixteen trials were included in the meta-analysis using random effects models through the generic inverse variance method. In several different clinical scenarios, the use of neurally adjusted ventilatory assist was associated with significantly reduced asynchrony index (mean difference, -8.12; 95% CI, -11.61 to -4.63; very low quality of evidence) and severe asynchrony (odds ratio, 0.42; 95% CI, 0.23-0.76; moderate quality of evidence) as compared with pressure support ventilation. Furthermore, other measurements of asynchrony were consistently improved during neurally adjusted ventilatory assist. CONCLUSIONS Neurally adjusted ventilatory assist improves patient-ventilator synchrony; however, its effects on clinical outcomes remain uncertain. Randomized controlled trials are needed to determine whether the physiologic efficiency of neurally adjusted ventilatory assist affects patient-important outcomes in critically ill adults.
Collapse
|
59
|
Bertoni M, Spadaro S, Goligher EC. Monitoring Patient Respiratory Effort During Mechanical Ventilation: Lung and Diaphragm-Protective Ventilation. Crit Care 2020; 24:106. [PMID: 32204729 PMCID: PMC7092676 DOI: 10.1186/s13054-020-2777-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2020. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Michele Bertoni
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Sant'Anna Hospital, Ferrara, Italy
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada.
- Toronto General Hospital Research Institute, Toronto, Canada.
| |
Collapse
|
60
|
Mechanical ventilation weaning issues can be counted on the fingers of just one hand: part 2. Ultrasound J 2020; 12:15. [PMID: 32166639 PMCID: PMC7067962 DOI: 10.1186/s13089-020-00160-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Assessing heart and diaphragm function constitutes only one of the steps to consider along the weaning path. In this second part of the review, we will deal with the more systematic evaluation of the pulmonary parenchyma—often implicated in the genesis of respiratory failure. We will also consider the other possible causes of weaning failure that lie beyond the cardio-pulmonary-diaphragmatic system. Finally, we will take a moment to consider the remaining unsolved problems arising from mechanical ventilation and describe the so-called protective approach to parenchyma and diaphragm ventilation.
Collapse
|
61
|
Shimatani T, Shime N, Nakamura T, Ohshimo S, Hotz J, Khemani RG. Neurally adjusted ventilatory assist mitigates ventilator-induced diaphragm injury in rabbits. Respir Res 2019; 20:293. [PMID: 31870367 PMCID: PMC6929282 DOI: 10.1186/s12931-019-1265-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background Ventilator-induced diaphragmatic dysfunction is a serious complication associated with higher ICU mortality, prolonged mechanical ventilation, and unsuccessful withdrawal from mechanical ventilation. Although neurally adjusted ventilatory assist (NAVA) could be associated with lower patient-ventilator asynchrony compared with conventional ventilation, its effects on diaphragmatic dysfunction have not yet been well elucidated. Methods Twenty Japanese white rabbits were randomly divided into four groups, (1) no ventilation, (2) controlled mechanical ventilation (CMV) with continuous neuromuscular blockade, (3) NAVA, and (4) pressure support ventilation (PSV). Ventilated rabbits had lung injury induced, and mechanical ventilation was continued for 12 h. Respiratory waveforms were continuously recorded, and the asynchronous events measured. Subsequently, the animals were euthanized, and diaphragm and lung tissue were removed, and stained with Hematoxylin-Eosin to evaluate the extent of lung injury. The myofiber cross-sectional area of the diaphragm was evaluated under the adenosine triphosphatase staining, sarcomere disruptions by electron microscopy, apoptotic cell numbers by the TUNEL method, and quantitative analysis of Caspase-3 mRNA expression by real-time polymerase chain reaction. Results Physiological index, respiratory parameters, and histologic lung injury were not significantly different among the CMV, NAVA, and PSV. NAVA had lower asynchronous events than PSV (median [interquartile range], NAVA, 1.1 [0–2.2], PSV, 6.8 [3.8–10.0], p = 0.023). No differences were seen in the cross-sectional areas of myofibers between NAVA and PSV, but those of Type 1, 2A, and 2B fibers were lower in CMV compared with NAVA. The area fraction of sarcomere disruptions was lower in NAVA than PSV (NAVA vs PSV; 1.6 [1.5–2.8] vs 3.6 [2.7–4.3], p < 0.001). The proportion of apoptotic cells was lower in NAVA group than in PSV (NAVA vs PSV; 3.5 [2.5–6.4] vs 12.1 [8.9–18.1], p < 0.001). There was a tendency in the decreased expression levels of Caspase-3 mRNA in NAVA groups. Asynchrony Index was a mediator in the relationship between NAVA and sarcomere disruptions. Conclusions Preservation of spontaneous breathing using either PSV or NAVA can preserve the cross sectional area of the diaphragm to prevent atrophy. However, NAVA may be superior to PSV in preventing sarcomere injury and apoptosis of myofibrotic cells of the diaphragm, and this effect may be mediated by patient-ventilator asynchrony.
Collapse
Affiliation(s)
- Tatsutoshi Shimatani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Tomohiko Nakamura
- Division of Neonatology, Nagano Children's Hospital, 3100 Toyoshina, Azumino City, Nagano, 399-8288, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Justin Hotz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA, 90027, United States
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA, 90027, United States.,Department of Pediatrics, University of Southern California, Keck School of Medicine, 1975 Zonal Ave, Los Angeles, CA, 90033, United States
| |
Collapse
|
62
|
Al-Busaidi M. Weird and wonderful ICU cases: Unusual causes of shock. Qatar Med J 2019. [PMCID: PMC6851912 DOI: 10.5339/qmj.2019.qccc.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
During their practice, intensivists are ought to face challenging cases that are rare. Intensivists need to be aware of the rare causes of shock beyond common presentations. In each category of shock, there are rare causes that require prompt identification and management. Certain clues in the patient's presentation might point to those rare causes. Classically shock is classified into: distributive, hypovolemic, cardiogenic, and obstructive. In this era of bedside point-of-care ultrasound, intensivists are able to promptly identify the cause of shock and institute a resuscitation plan. However, there are cases when the diagnosis is still obscure and the cause of shock is not easily identified. For example, in a study of patients admitted with presumed septic shock, 7.4% had no identified cause of shock and 11% had sepsis mimickers.1 Hypovolemic shock occurs secondary to a reduction in the effective circulating volume secondary to fluid loss or third spacing. A rare cause of hypovolemic shock is idiopathic capillary leak syndrome (Clarkson Syndrome).2 The syndrome is characterized by recurrent episodes of rapidly progressive generalized edema, shock, renal failure and high hematocrit. The episode usually resolves in 3-7 days where the capillary leak resolves and a phase of pulmonary edema occurs. Several treatment options such as intravenous immunoglobulin (IVIG) and aminophylline were used in case reports.3 Vasodilatory shock occurs secondary to peripheral vasodilation and decrease in blood flow. It occurs as part of the systemic inflammatory response syndrome for which sepsis, acute pancreatitis, acute liver failure, and major trauma are common causes. Rare causes that need to be considered include: hemophagocytic lymphohistiocytosis (HLH), systemic mastocytosis, and toxic shock syndrome. Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome characterized by macrophage activation and engulfment of hemopoetic cells which leads to pancytopenia. It is also characterized by cytokines storm that lead to a vasodilatory shock, multi-organ failure, and acute respiratory distress syndrome (ARDS). The most common triggers are infection, malignancy, and autoimmune diseases. Pointers to this diagnosis in the intensive care unit include: pancytopenias, hypofibrinogenemia, high triglycerides, and high ferritin. Treatment necessitates treating the underlying cause as well as using immune modifying therapies.4 Systemic mastocytosis is a rare cause of recurrent anaphylaxis shock. It results from the accumulation of mast cells in tissues and can present with anaphylaxis and vascular collapse. An important clue to the diagnosis is the presence of urticarial pigmentosa and the absence of an allergen history.5 Toxic shock syndrome is a unique cause of sepsis. It is caused by a pre-formed toxin produced by Staphylococcus aureus and Streptococcus pyrogenes. The clue to the diagnosis include the rapid onset after the precipitating factor, erythroderma, and skin desquamation. Treatment includes IVIG and Clindamycin.6
Collapse
|
63
|
Vetrugno L, Guadagnin GM, Barbariol F, Langiano N, Zangrillo A, Bove T. Ultrasound Imaging for Diaphragm Dysfunction: A Narrative Literature Review. J Cardiothorac Vasc Anesth 2019; 33:2525-2536. [DOI: 10.1053/j.jvca.2019.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/15/2022]
|
64
|
Chen C, Wen T, Liao W. Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:382. [PMID: 31555696 DOI: 10.21037/atm.2019.07.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The objective of this study was to conduct a meta-analysis comparing neurally adjusted ventilatory assist (NAVA) with pressure support ventilation (PSV) in adult ventilated patients with patient-ventilator interaction and clinical outcomes. Methods The PubMed, the Web of Science, Scopus, and Medline were searched for appropriate clinical trials (CTs) comparing NAVA with PSV for the adult ventilated patients. RevMan 5.3 was performed for comparing NAVA with PSV in asynchrony index (AI), ineffective efforts, auto-triggering, double asynchrony, premature asynchrony, breathing pattern (Peak airway pressure (Pawpeek), mean airway pressure (Pawmean), tidal volume (VT, mL/kg), minute volume (MV), respiratory muscle unloading (peak electricity of diaphragm (EAdipeak), P 0.1, VT/EAdi), clinical outcomes (ICU mortality, duration of ventilation days, ICU stay time, hospital stay time). Results Our meta-analysis included 12 studies involving a total of 331 adult ventilated patients, AI was significantly lower in NAVA group [mean difference (MD) -12.82, 95% confidence interval (CI): -21.20 to -4.44, I2=88%], and using subgroup analysis, grouped by mechanical ventilation, the results showed that NAVA also had lower AI than PSV (Mechanical ventilation, MD -9.52, 95% CI: -17.85 to -1.20, I2=87%), (Non-invasive ventilation (NIV), MD -24.55, 95% CI: -35.40 to -13.70, I2=0%). NAVA was significantly lower than the PSV in auto-triggering (MD -0.28, 95% CI: -0.51 to -0.05, I2=10%), and premature triggering (MD -2.49, 95% CI: -3.77 to -1.21, I2=29%). There were no significant differences in double triggering, ineffective efforts, breathing pattern (Pawmean, Pawpeak, VT, MV), and respiratory muscle unloading (EAdipeak, P 0.1, VT/EAdi). For clinical outcomes, NAVA was significantly lower than the PSV (MD -2.82, 95% CI: -5.55 to -0.08, I2=0%) in the duration of ventilation, but two groups did not show significant differences in ICU mortality, ICU stay time, and hospital stay time. Conclusions NAVA is more beneficial in patient-ventilator interaction than PSV, and could decrease the duration of ventilation.
Collapse
Affiliation(s)
- Chongxiang Chen
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Tianmeng Wen
- School of Public Health, Sun Yat-sen University, Guangzhou 510000, China
| | - Wei Liao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
65
|
Relationship Between Diaphragmatic Electrical Activity and Esophageal Pressure Monitoring in Children. Pediatr Crit Care Med 2019; 20:e319-e325. [PMID: 31107378 DOI: 10.1097/pcc.0000000000001981] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Mechanical ventilation is an essential life support technology, but it is associated with side effects in case of over or under-assistance. The monitoring of respiratory effort may facilitate titration of the support. The gold standard for respiratory effort measurement is based on esophageal pressure monitoring, a technology not commonly available at bedside. Diaphragmatic electrical activity can be routinely monitored in clinical practice and reflects the output of the respiratory centers. We hypothesized that diaphragmatic electrical activity changes accurately reflect changes in mechanical efforts. The objectives of this study were to characterize the relationship between diaphragmatic electrical activity and esophageal pressure. DESIGN Prospective crossover study. SETTING Esophageal pressure and diaphragmatic electrical activity were simultaneously recorded using a specific nasogastric tube in three conditions: in pressure support ventilation and in neurally adjusted ventilatory support in a random order, and then after extubation. PATIENTS Children in the weaning phase of mechanical ventilation. INTERVENTIONS The maximal swing in esophageal pressure and esophageal pressure-time product, maximum diaphragmatic electrical activity, and inspiratory diaphragmatic electrical activity integral were calculated from 100 consecutive breaths. Neuroventilatory efficiency was estimated using the ratio of tidal volume/maximum diaphragmatic electrical activity. MEASUREMENTS AND MAIN RESULTS Sixteen patients, with a median age of 4 months (interquartile range, 0.5-13 mo), and weight 5.8 kg (interquartile range, 4.1-8 kg) were included. A strong linear correlation between maximum diaphragmatic electrical activity and maximal swing in esophageal pressure (r > 0.95), and inspiratory diaphragmatic electrical activity integral and esophageal pressure-time product (r > 0.71) was observed in all ventilatory conditions. This correlation was not modified by the type of ventilatory support. CONCLUSIONS On a short-term basis, diaphragmatic electrical activity changes are strongly correlated with esophageal pressure changes. In clinical practice, diaphragmatic electrical activity monitoring may help to inform on changes in respiratory efforts.
Collapse
|
66
|
Assy J, Mauriat P, Tafer N, Soulier S, El Rassi I. Neurally adjusted ventilatory assist for children on veno-venous ECMO. J Artif Organs 2019; 22:118-125. [PMID: 30610519 DOI: 10.1007/s10047-018-01087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
NAVA may improve veno-venous ECMO weaning in children. This is a retrospective small series, describing for the first time proof-of-principle for the use of NAVA in children on VV ECMO. Six patients (age 1-48 months) needed veno-venous ECMO. Controlled conventional ventilation was replaced with assisted ventilation as soon as lung compliance improved, and could trigger initiation and termination of ventilation. NAVA was then initiated when diaphragmatic electrical activity (EAdi) allowed for triggering. NAVA was possible in all patients. Proportionate to EAdi (1.8-26 μV), initial peak inspiratory pressures ranged from 21 to 34 cm H2O, and the tidal volume (Vt) from 3 to 7 ml/kg. During weaning, peak pressures increased proportionally to EAdi increase (5.2-41 μV), with tidal volumes ranging from 6.6 to 8.6 ml/kg. ECMO was weaned after a median time of 1.75 days on NAVA. Following ECMO weaning, the median duration of mechanical ventilation, and intensive care unit stay were 4.5 days, and 13.5 days, respectively. Survival to hospital discharge was 100%. In conclusion, combining NAVA to ECMO in paediatric respiratory failure is safe and feasible, and may help in a smoother ECMO weaning, since NAVA allows the patient to drive the ventilator and regulate Vt according to needs.
Collapse
Affiliation(s)
- Jana Assy
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France.
- Department of Pediatrics, American University of Beirut Medical Center, 1107 2020, Beirut, Lebanon.
| | - Philippe Mauriat
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France
| | - Nadir Tafer
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France
| | - Sylvie Soulier
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France
| | - Issam El Rassi
- Department of Surgery, American University of Beirut Medical Center, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
67
|
Stripoli T, Spadaro S, Di Mussi R, Volta CA, Trerotoli P, De Carlo F, Iannuzziello R, Sechi F, Pierucci P, Staffieri F, Bruno F, Camporota L, Grasso S. High-flow oxygen therapy in tracheostomized patients at high risk of weaning failure. Ann Intensive Care 2019; 9:4. [PMID: 30617626 PMCID: PMC6323064 DOI: 10.1186/s13613-019-0482-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose High-flow oxygen therapy delivered through nasal cannulae improves oxygenation and decreases work of breathing in critically ill patients. Little is known of the physiological effects of high-flow oxygen therapy applied to the tracheostomy cannula (T-HF). In this study, we compared the effects of T-HF or conventional low-flow oxygen therapy (conventional O2) on neuro-ventilatory drive, work of breathing, respiratory rate (RR) and gas exchange, in a mixed population of tracheostomized patients at high risk of weaning failure. Methods This was a single-center, unblinded, cross-over study on fourteen patients. After disconnection from the ventilator, each patient received two 1-h periods of T-HF (T-HF1 and T-HF2) alternated with 1 h of conventional O2. The inspiratory oxygen fraction was titrated to achieve an arterial O2 saturation target of 94–98% (88–92% in COPD patients). We recorded neuro-ventilatory drive (electrical diaphragmatic activity, EAdi), work of breathing (inspiratory muscular pressure–time product per breath and per minute, PTPmusc/b and PTPmusc/min, respectively) respiratory rate and arterial blood gases. Results The EAdipeak remained unchanged (mean ± SD) in the T-HF1, conventional O2 and T-HF2 study periods (8.8 ± 4.3 μV vs 8.9 ± 4.8 μV vs 9.0 ± 4.1 μV, respectively, p = 0.99). Similarly, PTPmusc/b and PTPmusc/min, RR and gas exchange remained unchanged. Conclusions In tracheostomized patients at high risk of weaning failure from mechanical ventilation, T-HF did not improve neuro-ventilatory drive, work of breathing, respiratory rate and gas exchange compared with conventional O2 after disconnection from the ventilator. The present findings might suggest that physiological effects of high-flow therapy through tracheostomy substantially differ from nasal high flow.
Collapse
Affiliation(s)
- Tania Stripoli
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Piazza Giulio Cesare 11, Bari, Italy
| | - Savino Spadaro
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Sezione di Anestesiologia e Terapia Intensiva Universitaria, Università degli studi di Ferrara, Ferrara, Italy
| | - Rosa Di Mussi
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Piazza Giulio Cesare 11, Bari, Italy
| | - Carlo Alberto Volta
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Sezione di Anestesiologia e Terapia Intensiva Universitaria, Università degli studi di Ferrara, Ferrara, Italy
| | - Paolo Trerotoli
- Dipartimento di Scienze Biomediche ed Oncologia Umana, Cattedra di Statistica Medica, Università degli Studi Aldo Moro, Bari, Italy
| | - Francesca De Carlo
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Piazza Giulio Cesare 11, Bari, Italy
| | - Rachele Iannuzziello
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Piazza Giulio Cesare 11, Bari, Italy
| | - Fabio Sechi
- Dipartimento di Scienze Chirurgiche e Microchirurgiche, Università degli Studi di Sassari, Sassari, Italy
| | - Paola Pierucci
- Dipartimento di Medicina Respiratoria e del Sonno, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Chirurgia Veterinaria, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Bruno
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Piazza Giulio Cesare 11, Bari, Italy
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, King's College London, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Salvatore Grasso
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Piazza Giulio Cesare 11, Bari, Italy.
| |
Collapse
|
68
|
Kataoka J, Kuriyama A, Norisue Y, Fujitani S. Proportional modes versus pressure support ventilation: a systematic review and meta-analysis. Ann Intensive Care 2018; 8:123. [PMID: 30535648 PMCID: PMC6288104 DOI: 10.1186/s13613-018-0470-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Proportional modes (proportional assist ventilation, PAV, and neurally adjusted ventilatory assist, NAVA) could improve patient–ventilator interaction and consequently may be efficient as a weaning mode. The purpose of this systematic review is to examine whether proportional modes improved patient–ventilator interaction and whether they had an impact on the weaning success and length of mechanical ventilation, in comparison with PSV.
Methods We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials from inception through May 13, 2018. We included both parallel-group and crossover randomized studies that examined the efficacy of proportional modes in comparison with PSV in mechanically ventilated adults. The primary outcomes were (1) asynchrony index (AI), (2) weaning failure, and (3) duration of mechanical ventilation. Results We included 15 studies (four evaluated PAV, ten evaluated NAVA, and one evaluated both modes). Although the use of proportional modes was not associated with a reduction in AI (WMD − 1.43; 95% CI − 3.11 to 0.25; p = 0.096; PAV—one study, and NAVA—seven studies), the use of proportional modes was associated with a reduction in patients with AI > 10% (RR 0.15; 95% CI 0.04–0.58; p = 0.006; PAV—two studies, and NAVA—five studies), compared with PSV. There was a significant heterogeneity among studies for AI, especially with NAVA. Compared with PSV, use of proportional modes was associated with a reduction in weaning failure (RR 0.44; 95% CI 0.26–0.75; p = 0.003; PAV—three studies) and duration of mechanical ventilation (WMD − 1.78 days; 95% CI − 3.24 to − 0.32; p = 0.017; PAV—three studies, and NAVA—two studies). Reduced duration of mechanical ventilation was found with PAV but not with NAVA. Conclusion The use of proportional modes was associated with a reduction in the incidence with AI > 10%, weaning failure and duration of mechanical ventilation, compared with PSV. However, reduced weaning failure and duration of mechanical ventilation were found with only PAV. Due to a significant heterogeneity among studies and an insufficient number of studies, further investigation seems warranted to better understand the impact of proportional modes. Clinical trial registration PROSPERO registration number, CRD42017059791. Registered 20 March 2017 Electronic supplementary material The online version of this article (10.1186/s13613-018-0470-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Kataoka
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu, 2790001, Japan.
| | - Akira Kuriyama
- Emergency and Critical Care Center, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 7108602, Japan
| | - Yasuhiro Norisue
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu, 2790001, Japan
| | - Shigeki Fujitani
- Department of Emergency Medicine and Critical Care Medicine, St. Marianna University, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 2168511, Japan
| |
Collapse
|
69
|
Naito Y, Shimizu Y, Hatachi T, Inata Y, Moon K, Tachibana K, Takeuchi M. Predicting extubation readiness by monitoring the electrical activity of the diaphragm after prolonged mechanical ventilation: a pediatric case report. JA Clin Rep 2018; 4:76. [PMID: 32026039 PMCID: PMC6967200 DOI: 10.1186/s40981-018-0213-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intensity of the electrical activity of the diaphragm (Edi) correlates with inspiratory effort. The ratio of tidal volume to the Edi is known as neuroventilatory efficiency (NVE) and is used as an index for ventilation efficiency. Here, we present a case showing that Edi and NVE may be effective parameters to predict successful extubation. CASE PRESENTATION A 6-month-old female infant required prolonged mechanical ventilation after cardiac surgery. Fifty-two days after surgery, her trachea was extubated but required reintubation. Edi monitoring was initiated to assess diaphragm function. The Edi was > 70 mcV just after the reintubation, and her NVE was 1.0 mL/mcV, but gradually decreased. On day 59, her Edi values during the spontaneous breathing trials were 13 mcV with the improvement of NVE (2.5 mL/mcV) and her trachea was extubated without complications. CONCLUSIONS The Edi and NVE were valuable for deciding the extubation readiness in a long-term mechanically ventilated patient.
Collapse
Affiliation(s)
- Yusuke Naito
- Department of Anesthesiology, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan.
| | - Yoshiyuki Shimizu
- Department of Critical Care, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan
| | - Takeshi Hatachi
- Department of Critical Care, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan
| | - Yu Inata
- Department of Critical Care, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan
| | - Kazue Moon
- Department of Critical Care, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan
| | - Kazuya Tachibana
- Department of Critical Care, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan
| | - Muneyuki Takeuchi
- Department of Critical Care, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi, Osaka, Japan
| |
Collapse
|
70
|
Jansen D, Jonkman AH, Roesthuis L, Gadgil S, van der Hoeven JG, Scheffer GJJ, Girbes A, Doorduin J, Sinderby CS, Heunks LMA. Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:238. [PMID: 30261920 PMCID: PMC6161422 DOI: 10.1186/s13054-018-2172-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022]
Abstract
Background Diaphragm dysfunction develops frequently in ventilated intensive care unit (ICU) patients. Both disuse atrophy (ventilator over-assist) and high respiratory muscle effort (ventilator under-assist) seem to be involved. A strong rationale exists to monitor diaphragm effort and titrate support to maintain respiratory muscle activity within physiological limits. Diaphragm electromyography is used to quantify breathing effort and has been correlated with transdiaphragmatic pressure and esophageal pressure. The neuromuscular efficiency index (NME) can be used to estimate inspiratory effort, however its repeatability has not been investigated yet. Our goal is to evaluate NME repeatability during an end-expiratory occlusion (NMEoccl) and its use to estimate the pressure generated by the inspiratory muscles (Pmus). Methods This is a prospective cohort study, performed in a medical-surgical ICU. A total of 31 adult patients were included, all ventilated in neurally adjusted ventilator assist (NAVA) mode with an electrical activity of the diaphragm (EAdi) catheter in situ. At four time points within 72 h five repeated end-expiratory occlusion maneuvers were performed. NMEoccl was calculated by delta airway pressure (ΔPaw)/ΔEAdi and was used to estimate Pmus. The repeatability coefficient (RC) was calculated to investigate the NMEoccl variability. Results A total number of 459 maneuvers were obtained. At time T = 0 mean NMEoccl was 1.22 ± 0.86 cmH2O/μV with a RC of 82.6%. This implies that when NMEoccl is 1.22 cmH2O/μV, it is expected with a probability of 95% that the subsequent measured NMEoccl will be between 2.22 and 0.22 cmH2O/μV. Additional EAdi waveform analysis to correct for non-physiological appearing waveforms, did not improve NMEoccl variability. Selecting three out of five occlusions with the lowest variability reduced the RC to 29.8%. Conclusions Repeated measurements of NMEoccl exhibit high variability, limiting the ability of a single NMEoccl maneuver to estimate neuromuscular efficiency and therefore the pressure generated by the inspiratory muscles based on EAdi. Electronic supplementary material The online version of this article (10.1186/s13054-018-2172-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Jansen
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Postbox 7057, 1007, MB, Amsterdam, The Netherlands
| | - Lisanne Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suvarna Gadgil
- Department of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Gert-Jan J Scheffer
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Armand Girbes
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Postbox 7057, 1007, MB, Amsterdam, The Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christer S Sinderby
- Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Postbox 7057, 1007, MB, Amsterdam, The Netherlands.
| |
Collapse
|
71
|
Oda A, Kamei Y, Hiroma T, Nakamura T. Neurally adjusted ventilatory assist in extremely low-birthweight infants. Pediatr Int 2018; 60:844-848. [PMID: 29944776 DOI: 10.1111/ped.13646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/28/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurally adjusted ventilatory assist (NAVA) is expected to improve respiratory outcomes in preterm infants, but it has not yet been evaluated. We investigated whether NAVA could improve respiratory outcomes and reduce sedation use in extremely low-birthweight infants (ELBWI). METHODS A retrospective cohort study was conducted based on patient charts at the Nagano Children's Hospital neonatal intensive care unit, Japan. Infants who were born at <27 weeks' gestation were included. We assessed the prevalence of bronchopulmonary dysplasia (BPD), home oxygen therapy (HOT), duration of intubation, and sedation use. RESULTS The NAVA group consisted of 14 ELBWI who were born at <27 weeks' gestation between September 2013 and September 2015. A total of 21 ELBWI born between September 2011 and September 2013, before NAVA implementation, served as the control group. There were no significant differences in the perinatal background characteristics between the two groups. For respiratory outcomes, no significant between-group differences were found in the prevalence of BPD and HOT or the duration of intubation. The total duration of sedation use was not significantly different between the two groups, but in the NAVA group, midazolam was discontinued in all cases after the infants were switched to NAVA. CONCLUSIONS NAVA was safe in preterm infants and had a similar effect to conventional mechanical ventilation with regard to respiratory outcomes and sedation use in the chronic phase; thus, NAVA could be used in the early phase, at least before BPD worsens to improve respiratory outcomes in ELBWI.
Collapse
Affiliation(s)
- Arata Oda
- Division of Neonatology, Nagano Children's Hospital, Shinshu University, Nagano, Japan.,Division of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Yoshiya Kamei
- Division of Neonatology, Nagano Children's Hospital, Shinshu University, Nagano, Japan
| | - Takehiko Hiroma
- Division of Neonatology, Nagano Children's Hospital, Shinshu University, Nagano, Japan.,Division of Neonatology, Shinshu University, Nagano, Japan
| | - Tomohiko Nakamura
- Division of Neonatology, Nagano Children's Hospital, Shinshu University, Nagano, Japan.,Division of Neonatology, Shinshu University, Nagano, Japan
| |
Collapse
|
72
|
Di Mussi R, Spadaro S, Stripoli T, Volta CA, Trerotoli P, Pierucci P, Staffieri F, Bruno F, Camporota L, Grasso S. High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:180. [PMID: 30071876 PMCID: PMC6091018 DOI: 10.1186/s13054-018-2107-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The physiological effects of high-flow nasal cannula O2 therapy (HFNC) have been evaluated mainly in patients with hypoxemic respiratory failure. In this study, we compared the effects of HFNC and conventional low-flow O2 therapy on the neuroventilatory drive and work of breathing postextubation in patients with a background of chronic obstructive pulmonary disease (COPD) who had received mechanical ventilation for hypercapnic respiratory failure. METHODS This was a single center, unblinded, cross-over study on 14 postextubation COPD patients who were recovering from an episode of acute hypercapnic respiratory failure of various etiologies. After extubation, each patient received two 1-h periods of HFNC (HFNC1 and HFNC2) alternated with 1 h of conventional low-flow O2 therapy via a face mask. The inspiratory fraction of oxygen was titrated to achieve an arterial O2 saturation target of 88-92%. Gas exchange, breathing pattern, neuroventilatory drive (electrical diaphragmatic activity (EAdi)) and work of breathing (inspiratory trans-diaphragmatic pressure-time product per minute (PTPDI/min)) were recorded. RESULTS EAdi peak increased from a mean (±SD) of 15.4 ± 6.4 to 23.6 ± 10.5 μV switching from HFNC1 to conventional O2, and then returned to 15.2 ± 6.4 μV during HFNC2 (conventional O2: p < 0.05 versus HFNC1 and HFNC2). Similarly, the PTPDI/min increased from 135 ± 60 to 211 ± 70 cmH2O/s/min, and then decreased again during HFNC2 to 132 ± 56 (conventional O2: p < 0.05 versus HFNC1 and HFNC2). CONCLUSIONS In patients with COPD, the application of HFNC postextubation significantly decreased the neuroventilatory drive and work of breathing compared with conventional O2 therapy.
Collapse
Affiliation(s)
- Rosa Di Mussi
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università degli Studi di Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy
| | - Savino Spadaro
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Sezione di Anestesiologia e Terapia Intensiva Universitaria, Università degli studi di Ferrara, Ferrara, Italy
| | - Tania Stripoli
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università degli Studi di Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy
| | - Carlo Alberto Volta
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Sezione di Anestesiologia e Terapia Intensiva Universitaria, Università degli studi di Ferrara, Ferrara, Italy
| | - Paolo Trerotoli
- Dipartimento di Scienze Biomediche ed Oncologia Umana, Cattedra di Statistica Medica, Università degli Studi Aldo Moro, Bari, Italy
| | - Paola Pierucci
- Dipartimento di Medicina Respiratoria e del Sonno, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Chirurgia Veterinaria, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Bruno
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università degli Studi di Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, and Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Salvatore Grasso
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università degli Studi di Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy.
| |
Collapse
|
73
|
Sood SB, Mushtaq N, Brown K, Littlefield V, Barton RP. Neurally Adjusted Ventilatory Assist Is Associated with Greater Initial Extubation Success in Postoperative Congenital Heart Disease Patients when Compared to Conventional Mechanical Ventilation. J Pediatr Intensive Care 2018; 7:147-158. [PMID: 31073487 DOI: 10.1055/s-0038-1627099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2017] [Indexed: 01/23/2023] Open
Abstract
Extubation failure is associated with considerable morbidity and mortality in postoperative patients with congenital heart disease (CHD). The study purpose was to investigate initial extubation success utilizing neurally adjusted ventilatory assist (NAVA) compared with pressure-regulated volume controlled, synchronized intermittent mandatory ventilation with pressure support (SIMV-PRVC + PS) for ventilatory weaning in patients who required prolonged mechanical ventilation (MV). Also, total days on MV, inotropes, sedation, analgesia, and pediatric intensive care unit (PICU) length of stay (LOS) between both groups were compared. This was a non-randomized pilot study utilizing historical controls (SIMV-PRVC + PS; n = 40) compared with a prospective study population (NAVA; n = 35) in a Level I PICU and was implemented to help future trial designs. All patients ( n = 75) required prolonged MV ≥96 hours due to their complex postoperative course. Ventilator weaning initiation and management was standardized between both groups. Ninety-seven percent of the NAVA group was successfully extubated on the initial attempt, while 80% were in the SIMV-PRVC + PS group ( p = 0.0317). Patients placed on NAVA were eight times more likely to have successful initial extubation (odds ratio [OR]: 8.50, 95% confidence interval [CI]: 1.01, 71.82). The NAVA group demonstrated a shorter median duration on MV (9.0 vs. 11.0 days, p = 0.032), PICU LOS (9.0 vs. 13.5 days, p < 0.0001), and shorter median duration of days on dopamine (8.0 vs. 11.0 days, p = 0.0022), milrinone (9.0 vs. 12.0 days, p = 0.0002), midazolam (8.0 vs. 12.0 days, p < 0.0001), and fentanyl (9.0 vs. 12.5 days, p < 0.0001) compared with the SIMV-PRVC + PS group. NAVA compared with SIMV-PRVC + PS was associated with a greater initial extubation success rate. NAVA should be considered as a mechanical ventilator weaning strategy in postoperative congenital heart disease (CHD) patients and warrants further investigation.
Collapse
Affiliation(s)
- Shawn Berry Sood
- Department of Pediatrics, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, United States
| | - Nasir Mushtaq
- Department of Pediatrics, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, United States
| | - Kellie Brown
- Division of Pediatric Intensive Care, The Children's Hospital at Saint Francis, 6161 South Yale Avenue, Tulsa, Oklahoma 74136, United States
| | - Vanette Littlefield
- Division of Pediatric Intensive Care, The Children's Hospital at Saint Francis, 6161 South Yale Avenue, Tulsa, Oklahoma 74136, United States
| | - Roger Phillip Barton
- Division of Pediatric Intensive Care, The Children's Hospital at Saint Francis, 6161 South Yale Avenue, Tulsa, Oklahoma 74136, United States
| |
Collapse
|
74
|
Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med 2017; 17:139. [PMID: 29115949 PMCID: PMC5678780 DOI: 10.1186/s12890-017-0484-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background Neurally Adjusted Ventilatory Assist (NAVA) is a proportional ventilatory mode that uses the electrical activity of the diaphragm (EAdi) to offer ventilatory assistance in proportion to patient effort. NAVA has been increasingly used for critically ill patients, but it has not been evaluated during spontaneous breathing trials (SBT). We designed a pilot trial to assess the feasibility of using NAVA during SBTs, and to compare the breathing pattern and patient-ventilator asynchrony of NAVA with Pressure Support (PSV) during SBTs. Methods We conducted a crossover trial in the ICU of a university hospital in Brazil and included mechanically ventilated patients considered ready to undergo an SBT on the day of the study. Patients underwent two SBTs in randomized order: 30 min in PSV of 5 cmH2O or NAVA titrated to generate equivalent peak airway pressure (Paw), with a positive end-expiratory pressure of 5 cmH2O. The ICU team, blinded to ventilatory mode, evaluated whether patients passed each SBT. We captured flow, Paw and electrical activity of the diaphragm (EAdi) from the ventilator and used it to calculate respiratory rate (RR), tidal volume (VT), and EAdi. Detection of asynchrony events used waveform analysis and we calculated the asynchrony index as the number of asynchrony events divided by the number of neural cycles. Results We included 20 patients in the study. All patients passed the SBT in PSV, and three failed the SBT in NAVA. Five patients were reintubated and the extubation failure rate was 25% (95% CI 9–49%). Respiratory parameters were similar in the two modes: VT = 6.1 (5.5–6.5) mL/Kg in NAVA vs. 5.5 (4.8–6.1) mL/Kg in PSV (p = 0.076) and RR = 27 (17–30) rpm in NAVA vs. 26 (20–30) rpm in PSV, p = 0.55. NAVA reduced AI, with a median of 11.5% (4.2–19.7) compared to 24.3% (6.3–34.3) in PSV (p = 0.033). Conclusions NAVA reduces patient-ventilator asynchrony index and generates a respiratory pattern similar to PSV during SBTs. Patients considered ready for mechanical ventilation liberation may be submitted to an SBT in NAVA using the same objective criteria used for SBTs in PSV. Trial registration ClinicalTrials.gov (NCT01337271), registered April 12, 2011. Electronic supplementary material The online version of this article (10.1186/s12890-017-0484-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil.
| | - Fabia Diniz-Silva
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politécnica da Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Adriano M Alencar
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcelo B P Amato
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Carlos R R Carvalho
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
75
|
Risk Factors for Pediatric Extubation Failure: The Importance of Respiratory Muscle Strength. Crit Care Med 2017; 45:e798-e805. [PMID: 28437378 DOI: 10.1097/ccm.0000000000002433] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Respiratory muscle weakness frequently develops during mechanical ventilation, although in children there are limited data about its prevalence and whether it is associated with extubation outcomes. We sought to identify risk factors for pediatric extubation failure, with specific attention to respiratory muscle strength. DESIGN Secondary analysis of prospectively collected data. SETTING Tertiary care PICU. PATIENTS Four hundred nine mechanically ventilated children. INTERVENTIONS Respiratory measurements using esophageal manometry and respiratory inductance plethysmography were made preextubation during airway occlusion and on continuous positive airway pressure of 5 and pressure support of 10 above positive end-expiratory pressure 5 cm H2O, as well as 5 and 60 minutes postextubation. MEASUREMENTS AND MAIN RESULTS Thirty-four patients (8.3%) were reintubated within 48 hours of extubation. Reintubation risk factors included lower maximum airway pressure during airway occlusion (aPiMax) preextubation, longer length of ventilation, postextubation upper airway obstruction, high respiratory effort postextubation (pressure rate product, pressure time product, tension time index), and high postextubation phase angle. Nearly 35% of children had diminished respiratory muscle strength (aPiMax ≤ 30 cm H2O) at the time of extubation, and were nearly three times more likely to be reintubated than those with preserved strength (aPiMax > 30 cm H2O; 14% vs 5.5%; p = 0.006). Reintubation rates exceeded 20% when children with low aPiMax had moderately elevated effort after extubation (pressure rate product > 500), whereas children with preserved aPiMax had reintubation rates greater than 20% only when postextubation effort was very high (pressure rate product > 1,000). When children developed postextubation upper airway obstruction, reintubation rates were 47.4% for those with low aPiMax compared to 15.4% for those with preserved aPiMax (p = 0.02). Multivariable risk factors for reintubation included acute neurologic disease, lower aPiMax, postextubation upper airway obstruction, higher preextubation positive end-expiratory pressure, higher postextubation pressure rate product, and lower height. CONCLUSIONS Neuromuscular weakness at the time of extubation was common in children and was independently associated with reintubation, particularly when postextubation effort was high.
Collapse
|
76
|
Nardi N, Mortamet G, Ducharme-Crevier L, Emeriaud G, Jouvet P. Recent Advances in Pediatric Ventilatory Assistance. F1000Res 2017; 6:290. [PMID: 28413621 PMCID: PMC5365224 DOI: 10.12688/f1000research.10408.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 01/17/2023] Open
Abstract
In this review on respiratory assistance, we aim to discuss the following recent advances: the optimization and customization of mechanical ventilation, the use of high-frequency oscillatory ventilation, and the role of noninvasive ventilation. The prevention of ventilator-induced lung injury and diaphragmatic dysfunction is now a key aspect in the management of mechanical ventilation, since these complications may lead to higher mortality and prolonged length of stay in intensive care units. Different physiological measurements, such as esophageal pressure, electrical activity of the diaphragm, and volumetric capnography, may be useful objective tools to help guide ventilator assistance. Companies that design medical devices including ventilators and respiratory monitoring platforms play a key role in knowledge application. The creation of a ventilation consortium that includes companies, clinicians, researchers, and stakeholders could be a solution to promote much-needed device development and knowledge implementation.
Collapse
Affiliation(s)
- Nicolas Nardi
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Mortamet
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | | | - Guillaume Emeriaud
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Philippe Jouvet
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
77
|
Sangha H, Whitacre T. Detection of Ventilator Autotriggering by an Esophageal Catheter Used to Monitor the Neural Input and Diaphragm Excitation. J Intensive Care Med 2016; 32:170-173. [PMID: 27798315 DOI: 10.1177/0885066616674192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patient-ventilator synchrony has been the focus of attention in the field of mechanical ventilation for quite some time now. Toward that end, the modern ventilators are equipped with very sensitive pneumatic triggering mechanisms, which allow for minimal wasting of patient effort. The increasingly sensitive pneumatic triggers have the potential to cause autotriggering, where stimuli other than neural signals (eg, cardiac oscillations) can trigger the mechanical breath. Although autotriggering has been well documented in brain-dead patients, its existence is difficult to prove in patients who have the ability to trigger breath through neural diaphragmatic activity. The only way to be sure that the triggered breath is indeed from the neural diaphragmatic activity rather than a spurious change in pressure or flow is to monitor neural signals during triggered mechanical breaths. Autotriggering can have deleterious effects including diaphragmatic atrophy, increased duration on the mechanical ventilator, and increased stay in the intensive care unit. Esophageal catheters, with the ability to measure phrenic nerve and diaphragmatic activity, allow for the detection of the extent of autotriggering. This article demonstrates the hitherto unknown but potentially common occurrence of autotriggering through nonneural stimuli and their amelioration by making the pneumatic autotriggering less sensitive. The full extent of the phenomenon and its deleterious effects remain to be explored in larger patient populations.
Collapse
Affiliation(s)
- Harbaksh Sangha
- 1 Medical Intensive Care Unit, University of Missouri Healthcare System, Columbia, MO, USA
| | - Troy Whitacre
- 1 Medical Intensive Care Unit, University of Missouri Healthcare System, Columbia, MO, USA
| |
Collapse
|
78
|
Padilha GDA, Horta LFB, Moraes L, Braga CL, Oliveira MV, Santos CL, Ramos IP, Morales MM, Capelozzi VL, Goldenberg RCS, de Abreu MG, Pelosi P, Silva PL, Rocco PRM. Comparison between effects of pressure support and pressure-controlled ventilation on lung and diaphragmatic damage in experimental emphysema. Intensive Care Med Exp 2016; 4:35. [PMID: 27761886 PMCID: PMC5071308 DOI: 10.1186/s40635-016-0107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
Background In patients with emphysema, invasive mechanical ventilation settings should be adjusted to minimize hyperinflation while reducing respiratory effort and providing adequate gas exchange. We evaluated the impact of pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) on pulmonary and diaphragmatic damage, as well as cardiac function, in experimental emphysema. Methods Emphysema was induced by intratracheal instillation of porcine pancreatic elastase in Wistar rats, once weekly for 4 weeks. Control animals received saline under the same protocol. Eight weeks after first instillation, control and emphysema rats were randomly assigned to PCV (n = 6/each) or PSV (n = 6/each) under protective tidal volume (6 ml/kg) for 4 h. Non-ventilated control and emphysema animals (n = 6/group) were used to characterize the model and for molecular biology analysis. Cardiorespiratory function, lung histology, diaphragm ultrastructure alterations, extracellular matrix organization, diaphragmatic proteolysis, and biological markers associated with pulmonary inflammation, alveolar stretch, and epithelial and endothelial cell damage were assessed. Results Emphysema animals exhibited cardiorespiratory changes that resemble human emphysema, such as increased areas of lung hyperinflation, pulmonary amphiregulin expression, and diaphragmatic injury. In emphysema animals, PSV compared to PCV yielded: no changes in gas exchange; decreased mean transpulmonary pressure (Pmean,L), ratio between inspiratory and total time (Ti/Ttot), lung hyperinflation, and amphiregulin expression in lung; increased ratio of pulmonary artery acceleration time to pulmonary artery ejection time, suggesting reduced right ventricular afterload; and increased ultrastructural damage to the diaphragm. Amphiregulin correlated with Pmean,L (r = 0.99, p < 0.0001) and hyperinflation (r = 0.70, p = 0.043), whereas Ti/Ttot correlated with hyperinflation (r = 0.81, p = 0.002) and Pmean,L (r = 0.60, p = 0.04). Conclusions In the model of elastase-induced emphysema used herein, PSV reduced lung damage and improved cardiac function when compared to PCV, but worsened diaphragmatic injury. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0107-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gisele de A Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucas F B Horta
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lillian Moraes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cassia L Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Milena V Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cíntia L Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Isalira P Ramos
- Laboratory of Molecular and Cellular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Center for Structural Biology and Bio-imaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Regina C S Goldenberg
- Laboratory of Molecular and Cellular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
79
|
Villar J, Belda J, Blanco J, Suarez-Sipmann F, Añón JM, Pérez-Méndez L, Ferrando C, Parrilla D, Montiel R, Corpas R, González-Higueras E, Pestaña D, Martínez D, Fernández L, Soro M, García-Bello MA, Fernández RL, Kacmarek RM. Neurally adjusted ventilatory assist in patients with acute respiratory failure: study protocol for a randomized controlled trial. Trials 2016; 17:500. [PMID: 27737690 PMCID: PMC5064782 DOI: 10.1186/s13063-016-1625-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/25/2016] [Indexed: 12/25/2022] Open
Abstract
Background Patient-ventilator asynchrony is a common problem in mechanically ventilated patients with acute respiratory failure. It is assumed that asynchronies worsen lung function and prolong the duration of mechanical ventilation (MV). Neurally Adjusted Ventilatory Assist (NAVA) is a novel approach to MV based on neural respiratory center output that is able to trigger, cycle, and regulate the ventilatory cycle. We hypothesized that the use of NAVA compared to conventional lung-protective MV will result in a reduction of the duration of MV. It is further hypothesized that NAVA compared to conventional lung-protective MV will result in a decrease in the length of ICU and hospital stay, and mortality. Methods/design This is a prospective, multicenter, randomized controlled trial in 306 mechanically ventilated patients with acute respiratory failure from several etiologies. Only patients ventilated for less than 5 days, and who are expected to require prolonged MV for an additional 72 h or more and are able to breathe spontaneously, will be considered for enrollment. Eligible patients will be randomly allocated to two ventilatory arms: (1) conventional lung-protective MV (n = 153) and conventional lung-protective MV with NAVA (n = 153). Primary outcome is the number of ventilator-free days, defined as days alive and free from MV at day 28 after endotracheal intubation. Secondary outcomes are total length of MV, and ICU and hospital mortality. Discussion This is the first randomized clinical trial examining, on a multicenter scale, the beneficial effects of NAVA in reducing the dependency on MV of patients with acute respiratory failure. Trial registration ClinicalTrials.gov website (NCT01730794). Registered on 15 November 2012. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1625-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellon 11, 28029, Madrid, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 4th Floor-South Wing, 35019, Las Palmas de Gran Canaria, Spain. .,Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada.
| | - Javier Belda
- Department of Anesthesiology, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Jesús Blanco
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellon 11, 28029, Madrid, Spain.,Intensive Care Unit, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Fernando Suarez-Sipmann
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellon 11, 28029, Madrid, Spain.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University Hospital, Akademiska Sjukhuset, Ing 40, Tr 3, SE-75185, Uppsala, Sweden
| | - José Manuel Añón
- Intensive Care Unit, Hospital Virgen de La Luz, Hermandad de Donantes de Sangre s/n, 16002, Cuenca, Spain
| | - Lina Pérez-Méndez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellon 11, 28029, Madrid, Spain.,Division of Clinical Epidemiology and Biostatistics, Research Unit, Hospital Universitario NS de Candelaria, Carretera General del Rosario 145, 38010, Santa Cruz de Tenerife, Spain
| | - Carlos Ferrando
- Department of Anesthesiology, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Dácil Parrilla
- Intensive Care Unit, Hospital Universitario NS de Candelaria, Carretera General del Rosario 145, 38010, Santa Cruz de Tenerife, Spain
| | - Raquel Montiel
- Intensive Care Unit, Hospital Universitario NS de Candelaria, Carretera General del Rosario 145, 38010, Santa Cruz de Tenerife, Spain
| | - Ruth Corpas
- Intensive Care Unit, Hospital General NS del Prado, Carretera de Madrid, Km. 114, 45600, Talavera de la Reina, Toledo, Spain
| | - Elena González-Higueras
- Intensive Care Unit, Hospital Virgen de La Luz, Hermandad de Donantes de Sangre s/n, 16002, Cuenca, Spain
| | - David Pestaña
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9,100, 28034, Madrid, Spain
| | - Domingo Martínez
- Intensive Care Unit, Hospital Universitario Virgen de la Arrixaca, Carretera Madrid-Cartagena s/n, 30120, El Palmar, Murcia, Spain
| | - Lorena Fernández
- Intensive Care Unit, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Marina Soro
- Department of Anesthesiology, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Miguel Angel García-Bello
- Division of Biostatistics, Research Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - Rosa Lidia Fernández
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellon 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 4th Floor-South Wing, 35019, Las Palmas de Gran Canaria, Spain
| | - Robert M Kacmarek
- Department of Respiratory Care, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,Department of Anesthesiology, Harvard University, 55 Fruit Street Gray-Bigelow 444, Boston, MA, 02144, USA
| | | |
Collapse
|
80
|
Bruells CS, Breuer T, Maes K, Bergs I, Bleilevens C, Marx G, Weis J, Gayan-Ramirez G, Rossaint R. Influence of weaning methods on the diaphragm after mechanical ventilation in a rat model. BMC Pulm Med 2016; 16:127. [PMID: 27558126 PMCID: PMC4997706 DOI: 10.1186/s12890-016-0285-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/11/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is associated with diaphragm weakness, a phenomenon termed ventilator-induced diaphragmatic dysfunction. Weaning should balance diaphragmatic loading as well as prevention of overload after MV. The weaning methods pressure support ventilation (PSV) and spontaneous breathing trials (SBT) lead to gradual or intermittent reloading of a weak diaphragm, respectively. This study investigated which weaning method allows more efficient restoration of diaphragm homeostasis. METHODS Rats (n = 8 per group) received 12 h of MV followed by either 12 h of pressure support ventilation (PSV) or intermittent spontaneous breathing trials (SBT) and were compared to rats euthanized after 12 h MV (CMV) and to acutely euthanized rats (CON). Force generation, activity of calpain-1 and caspase-3, oxidative stress, and markers of protein synthesis (phosphorylated AKT to total AKT) were measured in the diaphragm. RESULTS Reduction of diaphragmatic force caused by CMV compared to CON was worsened with PSV and SBT (both p < 0.05 vs. CON and CMV). Both PSV and SBT reversed oxidative stress and calpain-1 activation caused by CMV. Reduced pAKT/AKT was observed after CMV and both weaning procedures. CONCLUSIONS MV resulted in a loss of diaphragmatic contractility, which was aggravated in SBT and PSV despite reversal of oxidative stress and proteolysis.
Collapse
Affiliation(s)
- Christian S Bruells
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Thomas Breuer
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany. .,Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Karen Maes
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ingmar Bergs
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Bleilevens
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | | | - Rolf Rossaint
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
81
|
Schullcke B, Krueger-Ziolek S, Gong B, Mueller-Lisse U, Moeller K. Simultaneous application of two independent EIT devices for real-time multi-plane imaging. Physiol Meas 2016; 37:1541-55. [DOI: 10.1088/0967-3334/37/9/1541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Kuo NY, Tu ML, Hung TY, Liu SF, Chung YH, Lin MC, Wu CC. A randomized clinical trial of neurally adjusted ventilatory assist versus conventional weaning mode in patients with COPD and prolonged mechanical ventilation. Int J Chron Obstruct Pulmon Dis 2016; 11:945-51. [PMID: 27274216 PMCID: PMC4869614 DOI: 10.2147/copd.s103213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Patient-ventilator asynchrony is a common problem in mechanically ventilated patients; the problem is especially obvious in COPD. Neutrally adjusted ventilatory assist (NAVA) can improve patient-ventilator asynchrony; however, the effect in COPD patients with prolonged mechanical ventilation is still unknown. The goals of this study are to evaluate the effect of NAVA and conventional weaning mode in patients with COPD during prolonged mechanical ventilation. METHODS The study enrolled a total of 33 COPD patients with ventilator dependency for more than 21 days in the weaning center. A diaphragm electrical activity (Edi) catheter was inserted in patients within 24 hours after admission to the respiratory care center, and patients were randomly allocated to NAVA or conventional group. A spontaneous breathing trial was performed every 24 hours. The results correlated with the clinical parameters. RESULTS There were significantly higher asynchrony incidence rates in the whole group after using Edi catheter (before vs post-Edi catheter insertion =60.6% vs 87.9%, P<0.001). Asynchrony index: before vs post-Edi catheter insertion =7.4%±8.5% vs 13.2%±13.5%, P<0.01. Asynchrony incidence: NAVA vs conventional =0% vs 84.2%, P<0.001. Asynchrony index: NAVA vs conventional =0 vs 11.9±11.2 (breath %), P<0.001. The most common asynchrony events were ineffective trigger and delayed trigger. CONCLUSION Compared to conventional mode, NAVA mode can significantly enhance respiratory monitoring and improve patient-ventilator interaction in COPD patients with prolonged mechanical ventilation in respiratory care center.
Collapse
Affiliation(s)
- Nai-Ying Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chiayi, Taiwan
- Kaohsiung Medical University, Chiayi, Taiwan
| | - Mei-Lien Tu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chiayi, Taiwan
- Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Tsai-Yi Hung
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hsiu Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
83
|
Goto Y, Katayama S, Shono A, Mori Y, Miyazaki Y, Sato Y, Ozaki M, Kotani T. Roles of neurally adjusted ventilatory assist in improving gas exchange in a severe acute respiratory distress syndrome patient after weaning from extracorporeal membrane oxygenation: a case report. J Intensive Care 2016; 4:26. [PMID: 27057312 PMCID: PMC4823850 DOI: 10.1186/s40560-016-0153-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
Background Patient-ventilator asynchrony is a major cause of difficult weaning from mechanical ventilation. Neurally adjusted ventilatory assist (NAVA) is reported useful to improve the synchrony in patients with sustained low lung compliance. However, the role of NAVA has not been fully investigated. Case presentation The patient was a 63-year-old Japanese man with acute respiratory distress syndrome secondary to respiratory infection. He was treated with extracorporeal membrane oxygenation for 7 days and survived. Dynamic compliance at withdrawal of extracorporeal membrane oxygenation decreased to 20 ml/cmH2O or less, but gas exchange was maintained by full support with assist/control mode. However, weaning from mechanical ventilation using a flow trigger failed repeatedly because of patient-ventilator asynchrony with hypercapnic acidosis during partial ventilator support despite using different types of ventilators and different trigger levels. Weaning using NAVA restored the regular respiration and stable and normal acid-base balance. Electromyographic analysis of the diaphragm clearly showed improved triggering of both the start and the end of spontaneous inspiration. Regional ventilation monitoring using electrical impedance tomography showed an increase in tidal volume and a ventilation shift to the dorsal regions during NAVA, indicating that NAVA could deliver gas flow to the dorsal regions to adjust for the magnitude of diaphragmatic excursion. NAVA was applied for 31 days, followed by partial ventilatory support with a conventional flow trigger. The patient was discharged from the intensive care unit on day 110 and has recovered enough to be able to live without a ventilatory support for 5 h per day. Conclusion Our experience showed that NAVA improved not only patient-ventilator synchrony but also regional ventilation distribution in an acute respiratory distress patient with sustained low lung compliance.
Collapse
Affiliation(s)
- Yuya Goto
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Shinshu Katayama
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Atsuko Shono
- Department of Anesthesiology, Shimane University, Shimane, 693-8501 Japan
| | - Yosuke Mori
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Yuya Miyazaki
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Yoko Sato
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Makoto Ozaki
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Toru Kotani
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| |
Collapse
|