51
|
Abstract
In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expansion and differentiation, including the formation of memory cells. Antigen-specific memory cells are maintained at higher frequencies than their naive counterparts and have different functional and homing abilities. Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without recirculating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B (BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
Collapse
Affiliation(s)
- S. Rameeza Allie
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
52
|
Skaug B, Khanna D, Swindell WR, Hinchcliff ME, Frech TM, Steen VD, Hant FN, Gordon JK, Shah AA, Zhu L, Zheng WJ, Browning JL, Barron AMS, Wu M, Visvanathan S, Baum P, Franks JM, Whitfield ML, Shanmugam VK, Domsic RT, Castelino FV, Bernstein EJ, Wareing N, Lyons MA, Ying J, Charles J, Mayes MD, Assassi S. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis 2020; 79:379-386. [PMID: 31767698 PMCID: PMC7386329 DOI: 10.1136/annrheumdis-2019-215894] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Determine global skin transcriptome patterns of early diffuse systemic sclerosis (SSc) and how they differ from later disease. METHODS Skin biopsy RNA from 48 patients in the Prospective Registry for Early Systemic Sclerosis (PRESS) cohort (mean disease duration 1.3 years) and 33 matched healthy controls was examined by next-generation RNA sequencing. Data were analysed for cell type-specific signatures and compared with similarly obtained data from 55 previously biopsied patients in Genetics versus Environment in Scleroderma Outcomes Study cohort with longer disease duration (mean 7.4 years) and their matched controls. Correlations with histological features and clinical course were also evaluated. RESULTS SSc patients in PRESS had a high prevalence of M2 (96%) and M1 (94%) macrophage and CD8 T cell (65%), CD4 T cell (60%) and B cell (69%) signatures. Immunohistochemical staining of immune cell markers correlated with the gene expression-based immune cell signatures. The prevalence of immune cell signatures in early diffuse SSc patients was higher than in patients with longer disease duration. In the multivariable model, adaptive immune cell signatures were significantly associated with shorter disease duration, while fibroblast and macrophage cell type signatures were associated with higher modified Rodnan Skin Score (mRSS). Immune cell signatures also correlated with skin thickness progression rate prior to biopsy, but did not predict subsequent mRSS progression. CONCLUSIONS Skin in early diffuse SSc has prominent innate and adaptive immune cell signatures. As a prominently affected end organ, these signatures reflect the preceding rate of disease progression. These findings could have implications in understanding SSc pathogenesis and clinical trial design.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dinesh Khanna
- Scleroderma Program, Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, Ohio, USA
| | - Monique E Hinchcliff
- Department of Medicine, Section of Allergy, Rheumatology, and Immunology, Yale University, New Haven, Connecticut, USA
| | - Tracy M Frech
- Division of Rheumatology, Department of Internal Medicine, University of Utah and Salt Lake Regional Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Virginia D Steen
- Division of Rheumatology, Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Faye N Hant
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jessica K Gordon
- Department of Rheumatology, Hospital for Special Surgery, New York City, New York, USA
| | - Ami A Shah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisha Zhu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey L Browning
- Department of Microbiology, Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexander M S Barron
- Department of Microbiology, Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Minghua Wu
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sudha Visvanathan
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Patrick Baum
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Jennifer M Franks
- Department of Biomedical Data Science, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Victoria K Shanmugam
- Division of Rheumatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Flavia V Castelino
- Division of Rheumatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elana J Bernstein
- Division of Rheumatology, Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - Nancy Wareing
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marka A Lyons
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jun Ying
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julio Charles
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maureen D Mayes
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
53
|
Debes GF, McGettigan SE. Skin-Associated B Cells in Health and Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 202:1659-1666. [PMID: 30833422 DOI: 10.4049/jimmunol.1801211] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Traditionally, the skin was believed to be devoid of B cells, and studies of the skin immune system have largely focused on other types of leukocytes. Exciting recent data show that B cells localize to the healthy skin of humans and other mammalian species with likely homeostatic functions in host defense, regulation of microbial communities, and wound healing. Distinct skin-associated B cell subsets drive or suppress cutaneous inflammatory responses with important clinical implications. Localized functions of skin-associated B cell subsets during inflammation comprise Ab production, interactions with skin T cells, tertiary lymphoid tissue formation, and production of proinflammatory cytokines but also include immunosuppression by providing IL-10. In this review, we delve into the intriguing new roles of skin-associated B cells in homeostasis and inflammation.
Collapse
Affiliation(s)
- Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Shannon E McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
54
|
Wilson RP, McGettigan SE, Dang VD, Kumar A, Cancro MP, Nikbakht N, Stohl W, Debes GF. IgM Plasma Cells Reside in Healthy Skin and Accumulate with Chronic Inflammation. J Invest Dermatol 2019; 139:2477-2487. [PMID: 31152755 PMCID: PMC6874734 DOI: 10.1016/j.jid.2019.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Antibodies are key to cutaneous host defense and inflammation. Despite their importance, the mechanisms by which skin antibodies are sustained are poorly described. Here, we identified that, in addition to antibody production in lymphoid tissues, plasma cells reside in healthy mouse and human skin. In naïve mice, IgM was the predominant isotype produced in skin. Skin plasma cells developed independently of T cells and microbiota. Importantly, chronic skin inflammation promoted the massive accumulation of IgM-secreting cells, and cutaneous immunization directed both T cell-dependent and -independent antigen-specific IgM-secreting cells into skin. Unlike their counterparts in lymphoid tissues, cutaneous IgM-secreting cells were completely dependent on survival factors such as a proliferation-inducing ligand or B cell-activating factor, which were constitutively expressed and upregulated during inflammation in skin. Our data support a model in which skin plasma cells supply natural and adaptive IgM to the cutaneous environment, thereby supporting homeostatic skin barrier functions and providing defense against pathogen intrusion. Our results are also of potential relevance for manipulation of cutaneous plasma cells in inflammatory skin diseases or cutaneous plasma cell malignancies.
Collapse
Affiliation(s)
- R Paul Wilson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon E McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Van Duc Dang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cell Biology, Faculty of Biology, VNU University of Science, Hanoi, Vietnam; Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Anil Kumar
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|