51
|
Chhabra R, Ball C, Chantrey J, Ganapathy K. Differential innate immune responses induced by classical and variant infectious bronchitis viruses in specific pathogen free chicks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:16-23. [PMID: 29751011 PMCID: PMC7173069 DOI: 10.1016/j.dci.2018.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Avian infectious bronchitis virus (IBV) continues to cause serious economic losses in global chicken production. Concurrent circulation of both classic and variant IBVs have been identified in most parts of the world, raising major challenges to global prevention and control efforts. Therefore, immunopathogenesis, particularly early host responses, needs to be better understood for effective control of diseases caused by different strains of IBVs. We investigated differing immunopathogenesis in chickens following infection with IS/885/00-like (885), QX-like (QX) and M41 IBV strains. We confirmed that the histopathological changes, proinflammatory and innate immune gene responses were induced to different magnitudes, depending on the IBV strain. Results indicated that upregulation of proinflammatory cytokines (such as IL-6 and IL-1β) and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) expression is induced by IBV M41 in the trachea and by IBV 885 and QX in the kidney, which mainly coincides with tracheal and renal histopathological lesions respectively caused by these strains. In addition, elevated levels of TLR3, MDA5 and IFN-β expression occurred concurrently with greater lesion severity in IBV infected trachea and kidney tissues. Overall, this study reports marked differences in the activation of early host responses by pathogenic IBV strains.
Collapse
Affiliation(s)
- Rajesh Chhabra
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK; College Central Laboratory, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, 125004, India.
| | - Christopher Ball
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| | - Julian Chantrey
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| | - Kannan Ganapathy
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| |
Collapse
|
52
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
53
|
Novel Flu Viruses in Bats and Cattle: "Pushing the Envelope" of Influenza Infection. Vet Sci 2018; 5:vetsci5030071. [PMID: 30082582 PMCID: PMC6165133 DOI: 10.3390/vetsci5030071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza viruses are among the major infectious disease threats of animal and human health. This review examines the recent discovery of novel influenza viruses in bats and cattle, the evolving complexity of influenza virus host range including the ability to cross species barriers and geographic boundaries, and implications to animal and human health.
Collapse
|
54
|
Induction profiles of mRNA of toll like receptors and cytokines in chickens pre-exposed to low pathogenic avian influenza H9N2 virus followed by challenge with highly pathogenic avian influenza H5N1 virus. Microb Pathog 2018; 117:200-205. [PMID: 29476788 DOI: 10.1016/j.micpath.2018.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
Abstract
Herein, the induction of TLRs and cytokines in chickens pre-exposed to low pathogenic avian influenza H9N2 virus followed by challenge with highly pathogenic avian influenza (HPAI) H5N1 virus was studied. Four groups (1-4) of chickens inoculated with 106 EID50 of H9N2 virus were challenged with 106 EID50 of H5N1 virus on days 1, 3, 7 and 14 post H9N2 inoculation, respectively. In groups (1-4) TLRs and cytokines induction was studied in chicken PBMCs on day 3 post H5N1 challenge. In H5N1 control group TLRs (1, 2, 5 and 7) cytokines (IFNα, IFNβ, IFNγ, IL1β, IL2, IL4, IL8 and TGF β3) were down regulated. In group 1 down regulation of cytokines and TLRs was similar to H5N1 control birds. Down regulation of TLRs and cytokines in H5N1 control and group 1 resulted death of all the chickens. In group 2, up-regulation of TLRs (3, 7 and 15) and induction of TNFα, IFNα, IFNβ, IFNγ aided virus clearance leading to survival of all the chickens. In group 3 significant up-regulation of TLRs (3, 4 and 15) and significant induction of cytokines (IFNγ, TNFα, IL1β, IL4, IL6, IL8, IL10 and TGF β3) was detected. In group 4 significant up-regulation of TLRs (2, 3, 7 and 15) and significant induction of cytokines (IFNγ, TNFα, IL1β, IL2, IL6, IL8 and IL10) was detected. In groups 3 and 4 simultaneous and significant induction of pro-inflammatory, antiviral and anti-inflammatory cytokine resulted cytokine dysregulation leading to death of (2/6) and (3/6) chickens respectively. Hence, the study revealed TLRs and cytokines role in modulating the H5N1 infection outcome in chickens pre-exposed to H9N2 virus.
Collapse
|
55
|
Samir M, Hamed M, Abdallah F, Kinh Nguyen V, Hernandez-Vargas EA, Seehusen F, Baumgärtner W, Hussein A, Ali AAH, Pessler F. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck). Transbound Emerg Dis 2018; 65:859-873. [PMID: 29363279 DOI: 10.1111/tbed.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 01/26/2023]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.
Collapse
Affiliation(s)
- M Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Hamed
- Marsa matrouh branch, Animal Health Research Institute, Dokki, Giza, Egypt
| | - F Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - V Kinh Nguyen
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - E A Hernandez-Vargas
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - F Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - A Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A H Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - F Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
56
|
Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genomics 2017; 18:989. [PMID: 29281979 PMCID: PMC5745900 DOI: 10.1186/s12864-017-4380-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background Newcastle disease virus (NDV) is a threat to poultry production worldwide. A better understanding of mechanisms of resistance and susceptibility to this virus will improve measures for NDV prevention and control. Males and females from resistant Fayoumi and susceptible Leghorn lines were either challenged with a lentogenic strain of the virus or given a mock infection at 3 weeks of age. The lung transcriptomes generated by RNA-seq were studied using contrasts across the challenged and nonchallenged birds, the two lines, and three time points post-infection, and by using Weighted Gene Co-expression Network Analysis (WGNCA). Results Genetic line and sex had a large impact on the lung transcriptome. When contrasting the challenged and nonchallenged birds, few differentially expressed genes (DEG) were identified within each line at 2, 6, and 10 days post infection (dpi), except for the more resistant Fayoumi line at 10 dpi, for which several pathways were activated and inhibited at this time. The interaction of challenge and line at 10 dpi significantly impacted 131 genes (False Discovery Rate (FDR) <0.05), one of which was PPIB. Many DEG were identified between the Fayoumi and Leghorns. The number of DEG between the two lines in the challenged birds decreased over time, but increased over time in the nonchallenged birds. The nonchallenged Fayoumis at 10 dpi showed enrichment of immune type cells when compared to 2 dpi, suggesting important immune related development at this age. These changes between 10 and 2 dpi were not identified in the challenged Fayoumis. The energy allocated to host defense may have interrupted normal lung development. WGCNA identified important modules and driver genes within those modules that were associated with traits of interest, several of which had no known associated function. Conclusions The lines’ unique response to NDV offers insights into the potential means of their resistance and susceptibility. The lung transcriptome shows a unique response to lentogenic NDV compared to a previous study on the trachea of the same birds. It is important to analyze multiple tissues in order to best understand the chicken’s overall response to NDV challenge and improve strategies to combat this devastating disease. Electronic supplementary material The online version of this article (10.1186/s12864-017-4380-4) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Khan S, Roberts J, Wu SB. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus. Sci Rep 2017; 7:14271. [PMID: 29079779 PMCID: PMC5660252 DOI: 10.1038/s41598-017-14693-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
Ten reference genes were investigated for normalisation of candidate target gene expression data in the shell gland and spleen of laying hens challenged with two strains of infectious bronchitis virus (IBV). Data were analysed with geNorm, NormFinder and BestKeeper, and a comprehensive ranking (geomean) was calculated. In the combined data set of IBV challenged shell gland samples, the comprehensive ranking showed TATA-box binding protein (TBP) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as the two most stable, and succinate dehydrogenase complex flavoprotein subunit A (SDHA) and albumin (ALB) as the two least stable reference genes. In the spleen, and in the combined data set of the shell gland and spleen, the two most stable and the two least stable reference genes were TBP and YWHAZ, and ribosomal protein L4 (RPL4) and ALB, respectively. Different ranking has been due to different algorithms. Validation studies showed that the use of the two most stable reference genes produced accurate and more robust gene expression data. The two most and least stable reference genes obtained in the study, were further used for candidate target gene expression data normalisation of the shell gland and spleen under an IBV infection model.
Collapse
Affiliation(s)
- Samiullah Khan
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Juliet Roberts
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia.
| |
Collapse
|
58
|
Fasanmi OG, Odetokun IA, Balogun FA, Fasina FO. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa. Vet World 2017; 10:1194-1204. [PMID: 29184365 PMCID: PMC5682264 DOI: 10.14202/vetworld.2017.1194-1204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/13/2017] [Indexed: 02/05/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) H5N1 was first officially reported in Africa in 2006; thereafter this virus has spread rapidly from Nigeria to 11 other African countries. This study was aimed at utilizing data from confirmed laboratory reports to carry out a qualitative evaluation of the factors responsible for HPAI H5N1 persistence in Africa and the public health implications; and to suggest appropriate control measures. Relevant publications were sought from data banks and repositories of FAO, OIE, WHO, and Google scholars. Substantiated data on HPAI H5N1 outbreaks in poultry in Africa and in humans across the world were mined. HPAI H5N1 affects poultry and human populations, with Egypt having highest human cases (346) globally. Nigeria had a reinfection from 2014 to 2015, with outbreaks in Côte d'Ivoire, Ghana, Niger, Nigeria, and Burkina Faso throughout 2016 unabated. The persistence of this virus in Africa is attributed to the survivability of HPAIV, ability to evolve other subtypes through genetic reassortment, poor biosecurity compliance at the live bird markets and poultry farms, husbandry methods and multispecies livestock farming, poultry vaccinations, and continuous shedding of HPAIV, transboundary transmission of HPAIV through poultry trades; and transcontinental migratory birds. There is, therefore, the need for African nations to realistically reassess their status, through regular surveillance and be transparent with HPAI H5N1 outbreak data. Also, it is important to have an understanding of HPAIV migration dynamics which will be helpful in epidemiological modeling, disease prevention, control and eradication measures.
Collapse
Affiliation(s)
- Olubunmi Gabriel Fasanmi
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Animal Health, Federal Colleges of Animal Health and Production Technology, Ibadan, Nigeria
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health & Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Fatima Adeola Balogun
- Department of Animal Health, Federal Colleges of Animal Health and Production Technology, Ibadan, Nigeria
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases – Food and Agriculture Organisation, Gigiri, Nairobi, Kenya
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
59
|
Vidaña B, Dolz R, Busquets N, Ramis A, Sánchez R, Rivas R, Valle R, Cordón I, Solanes D, Martínez J, Majó N. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species. Zoonoses Public Health 2017; 65:312-321. [PMID: 28905526 DOI: 10.1111/zph.12393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/30/2022]
Abstract
H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 105 embryo infectious dose (EID)50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection.
Collapse
Affiliation(s)
- B Vidaña
- Pathology Department, Animal and Plant Health Agency (APHA), KT15 3NB, Pathology, Addlestone, UK
| | - R Dolz
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Ramis
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Sánchez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Rivas
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I Cordón
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - D Solanes
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - J Martínez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
60
|
Cui B, Liu ZP. Determinants of Knowledge and Biosecurity Preventive Behaviors for Highly Pathogenic Avian Influenza Risk Among Chinese Poultry Farmers. Avian Dis 2017; 60:480-6. [PMID: 27309291 DOI: 10.1637/11361-010116-reg] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biosecurity measures are the first line of defense against highly pathogenic avian influenza (HPAI) on farms. It is generally recognized that an individual's behavior can be influenced by the knowledge they possess. However, empirical study has not reported an association between poultry producers' awareness of HPAI symptoms and their actual biosecurity actions. The aim of this study is to classify knowledge items of HPAI by exploratory factor analysis (EFA) and to examine the determinants of different types of knowledge and the effect of different types of knowledge on biosecurity preventive behaviors (BPBs). The survey (n = 297) was conducted using a questionnaire to measure the level of awareness of items related to HPAI and the actual adoption of BPBs among poultry farmers in the Chinese province of Jiangsu. The EFA revealed three main types of knowledge, which were categorized as avian influenza (AI) epidemic characteristics, primary biosecurity preventive knowledge (basic biosecurity preventive knowledge against AI), and essential biosecurity preventive knowledge (crucial biosecurity preventive knowledge against infection of AI). Multivariate regression showed that only poultry farmers' awareness of essential biosecurity preventive knowledge was positively associated with their actual BPBs. Additionally, educational attainment, number of years of experience raising poultry, farming operation size, and training were associated both with BPB and most of the knowledge factors or knowledge items. Training of existing poultry farmers is probably a feasible scheme; furthermore, the training should focus on the essential biosecurity preventive knowledge. On the other hand, policy initiatives to encourage large-scale poultry farming while discouraging small-scale backyard poultry husbandry would be an effective method of improving the management standards of rural poultry farming.
Collapse
Affiliation(s)
- Bin Cui
- A Business College of Yangzhou University, Jiangsu Province, China, 196 Huayang West Road, Yangzhou City, Jiangsu Province, 225127, P. R. China.,C Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 88 South University Avenue, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Zong Ping Liu
- B College of Veterinary Medicine, Yangzhou University, Jiangsu Province, P. R. China, 88 South University Avenue, Yangzhou, Jiangsu Province, 225009, P. R. China.,C Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 88 South University Avenue, Yangzhou, Jiangsu Province, 225009, P. R. China
| |
Collapse
|
61
|
Yang L, Zhang YJ. Antagonizing cytokine-mediated JAK-STAT signaling by porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:57-65. [PMID: 28069291 PMCID: PMC7117332 DOI: 10.1016/j.vetmic.2016.12.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 12/18/2022]
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is activated by myriad cytokines, which are involved in regulation of cell growth, proliferation, differentiation, apoptosis, angiogenesis, immunity and inflammatory response. Because of its significance in immune response, JAK-STAT pathway is often targeted by pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV causes reproductive failure in sows and respiratory disease in pigs of all ages. A typical feature of the immune response to PRRSV infection in pigs is delayed production and low titer of virus neutralizing antibodies, and weak cell-mediated immune response. One of the possible reasons for the weak protective immune response is that PRRSV interferes with cytokine-mediated JAK-STAT signaling. PRRSV inhibits interferon-activated JAK-STAT signaling by blocking nuclear translocation of STAT1 and STAT2. The mechanism is that PRRSV non-structural protein 1β (nsp1β) induces degradation of karyopherin α1 (KPNA1), a critical adaptor in nucleo-cytoplasmic transport. PRRSV also antagonizes IL6-activated JAK-STAT3 signaling via inducing degradation of STAT3. In this review, we briefly introduce JAK-STAT signaling, summarize the PRRSV interference with it, and provide perspective on the perturbation in the context of PRRSV-elicited immune response.
Collapse
Affiliation(s)
- Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
62
|
Reference gene selection for the shell gland of laying hens in response to time-points of eggshell formation and nicarbazin. PLoS One 2017; 12:e0180432. [PMID: 28671969 PMCID: PMC5495395 DOI: 10.1371/journal.pone.0180432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/15/2017] [Indexed: 02/03/2023] Open
Abstract
Ten reference genes were investigated for normalization of gene expression data in the shell gland of laying hens. Analyses performed with geNorm revealed that hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS) were the two most stable reference genes in response to post-oviposition time alone (POT) or with nicarbazin treatment (POT+N) of laying hens. NormFinder analyses showed that the two most stable reference genes in response to POT and POT+N were 18S ribosomal RNA (18S rRNA), ribosomal protein L4 (RPL4) and HMBS, RPL4, respectively. BestKeeper analyses showed that 18S rRNA, RPL4 and HPRT1, HMBS were the two most stable reference genes for POT, and POT+N, respectively. Of the ten reference genes, all except B2M showed geNorm M <0.5, suggesting that they were stably expressed in the shell gland tissue. Consensus from these three programs suggested HPRT1 and HMBS could be used as the two most stable reference genes in the present study. Expression analyses of four candidate target genes with the two most and the two least stable genes showed that a combination of stable reference genes leads to more discriminable quantification of expression levels of target genes, while the least stable genes failed to do so. Therefore, HMBS and HPRT1 are recommended as the two most stable reference genes for the normalization of gene expression data at different stages of eggshell formation in brown-egg laying hens. Available statistical programs for reference gene ranking should include more robust analysis capability to analyse the gene expression data generated from factorial design experiments.
Collapse
|
63
|
Avian and human influenza virus compatible sialic acid receptors in little brown bats. Sci Rep 2017; 7:660. [PMID: 28386114 PMCID: PMC5429623 DOI: 10.1038/s41598-017-00793-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.
Collapse
|
64
|
Kalaiyarasu S, Kumar M, Senthil Kumar D, Bhatia S, Dash SK, Bhat S, Khetan RK, Nagarajan S. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells. Microbiol Immunol 2017; 60:687-693. [PMID: 27730669 DOI: 10.1111/1348-0421.12443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India.
| | - Manoj Kumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Dhanapal Senthil Kumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Sandeep Kumar Dash
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sushant Bhat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Rohit K Khetan
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Shanmugasundaram Nagarajan
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| |
Collapse
|
65
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
66
|
Comparative and temporal transcriptome analysis of peste des petits ruminants virus infected goat peripheral blood mononuclear cells. Virus Res 2017; 229:28-40. [DOI: 10.1016/j.virusres.2016.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
|
67
|
Wang J, Cao Z, Guo X, Zhang Y, Wang D, Xu S, Yin Y. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities. Avian Pathol 2016; 45:630-639. [PMID: 27215697 DOI: 10.1080/03079457.2016.1193665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.
Collapse
Affiliation(s)
- Jianlin Wang
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Zhiwei Cao
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Xuejin Guo
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yi Zhang
- b China Animal Health and Epidemiology Center , Qingdao , People's Republic of China
| | - Dongdong Wang
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Shouzheng Xu
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yanbo Yin
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| |
Collapse
|
68
|
G45R on nonstructural protein 1 of influenza A virus contributes to virulence by increasing the expression of proinflammatory cytokines in mice. Arch Virol 2016; 162:45-55. [PMID: 27664027 DOI: 10.1007/s00705-016-3072-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023]
Abstract
Nonstructural protein 1 (NS1) is a multifunctional protein that is a viral replication enhancer and virulence factor. In this study, we investigated the effect of the amino acid substitution G45R on the NS1 of A/Puerto Rico/8/1934 (H1N1) (G45R/NS1) on viral virulence and host gene expression in a mouse model and the human lung cell line A549. The G45R/NS1 virus had increased virulence by inducing an earlier and robust proinflammatory cytokine response in mice. Mice infected with the G45R/NS1 virus lost more body weight and had lower survival rates than mice infected with the wild type (WT/NS1) virus. Replication of the G45R/NS1 virus was higher than that of the WT/NS1 virus in vitro, but the replication of both viruses was similar in mouse lungs. In A549 cells, the majority of G45R/NS1 protein was localized in the cytoplasm whereas the majority of WT/NS1 protein was localized in the nucleus. Microarray analysis revealed that A549 cells infected with the G45R/NS1 virus had higher expression of genes encoding proteins associated with the innate immune response and cytokine activity than cells infected with the WT/NS1 virus. These data agree with cytokine production observed in mouse lungs. Our findings suggest that G45R on NS1 protein contributes to viral virulence by increasing the expression of inflammatory cytokines early in infection.
Collapse
|
69
|
Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds. PLoS One 2016; 11:e0153649. [PMID: 27078641 PMCID: PMC4841636 DOI: 10.1371/journal.pone.0153649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.
Collapse
|
70
|
Wang Z, Loh L, Kedzierski L, Kedzierska K. Avian Influenza Viruses, Inflammation, and CD8(+) T Cell Immunity. Front Immunol 2016; 7:60. [PMID: 26973644 PMCID: PMC4771736 DOI: 10.3389/fimmu.2016.00060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8(+) T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed.
Collapse
Affiliation(s)
- Zhongfang Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
71
|
Chapman JR, Helin AS, Wille M, Atterby C, Järhult JD, Fridlund JS, Waldenström J. A Panel of Stably Expressed Reference Genes for Real-Time qPCR Gene Expression Studies of Mallards (Anas platyrhynchos). PLoS One 2016; 11:e0149454. [PMID: 26886224 PMCID: PMC4757037 DOI: 10.1371/journal.pone.0149454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/31/2016] [Indexed: 02/07/2023] Open
Abstract
Determining which reference genes have the highest stability, and are therefore appropriate for normalising data, is a crucial step in the design of real-time quantitative PCR (qPCR) gene expression studies. This is particularly warranted in non-model and ecologically important species for which appropriate reference genes are lacking, such as the mallard--a key reservoir of many diseases with relevance for human and livestock health. Previous studies assessing gene expression changes as a consequence of infection in mallards have nearly universally used β-actin and/or GAPDH as reference genes without confirming their suitability as normalisers. The use of reference genes at random, without regard for stability of expression across treatment groups, can result in erroneous interpretation of data. Here, eleven putative reference genes for use in gene expression studies of the mallard were evaluated, across six different tissues, using a low pathogenic avian influenza A virus infection model. Tissue type influenced the selection of reference genes, whereby different genes were stable in blood, spleen, lung, gastrointestinal tract and colon. β-actin and GAPDH generally displayed low stability and are therefore inappropriate reference genes in many cases. The use of different algorithms (GeNorm and NormFinder) affected stability rankings, but for both algorithms it was possible to find a combination of two stable reference genes with which to normalise qPCR data in mallards. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies in ducks. The fact that nearly all previous studies of the influence of pathogen infection on mallard gene expression have used a single, non-validated reference gene is problematic. The toolkit of putative reference genes provided here offers a solid foundation for future studies of gene expression in mallards and other waterfowl.
Collapse
Affiliation(s)
- Joanne R. Chapman
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Anu S. Helin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Clara Atterby
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jimmy S. Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
72
|
Samy AA, El-Enbaawy MI, El-Sanousi AA, Nasef SA, Naguib MM, Abdelwhab EM, Hikono H, Saito T. Different counteracting host immune responses to clade 2.2.1.1 and 2.2.1.2 Egyptian H5N1 highly pathogenic avian influenza viruses in naïve and vaccinated chickens. Vet Microbiol 2015; 183:103-9. [PMID: 26790942 DOI: 10.1016/j.vetmic.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022]
Abstract
In Egypt, two distinct lineages of H5N1 highly pathogenic avian influenza (HPAI) viruses, "classic 2.2.1.2" and "variant 2.2.1.1" strains, have evolved. The underlying host immune responses counteracting these viruses in chickens remain not well understood. In the present study, the cytokine responses to a classic strain (C121) and those to a variant strain (V1063) were compared in naïve and vaccinated chickens. In naïve chickens, the C121 replicated more efficiently than the V1063. Both the C121 and the V1063 increased interferon (IFN)-γ and interleukin (IL)-10 gene expression at 48 h post inoculation (hpi) in the lung and spleen but the levels of these cytokines were lower in chickens infected with the C121 than those infected with the V1063. In contrast, in chickens vaccinated with inactivated C121-based vaccine, the C121 replicated less than the V1063. Both challenge with the C121 and that with the V1063 did not increase IFN-γ gene expression at 48 hpi; rather, the C121 increased IL-4 gene expression in the lung accompanied with lower viral titer and higher HI titers. These results suggested that the pathogenicity of HPAI viruses correlated with IFN-γ-producing helper and/or cytotoxic T cell responses in naïve chickens, whereas vaccine efficacy to HPAI viruses correlated with IL-4 producing helper T cell responses in the lung in vaccinated chickens. It implies that IL-4 in the lung, in addition to the traditional serum HI titers, could be used to screen novel vaccine strategies, such as strains, adjuvant, prime/boost protocols, against HPAI in chickens.
Collapse
Affiliation(s)
- Ahmed A Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Mona I El-Enbaawy
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed A El-Sanousi
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Soad A Nasef
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - E M Abdelwhab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt; The Federal Research Institute for Animal Health, Friedrich-Loeffler Institute, Suedufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Hirokazu Hikono
- Influenza and Prion Disease Research Centre, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan; Department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Takehiko Saito
- Influenza and Prion Disease Research Centre, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
73
|
Chhabra R, Kuchipudi SV, Chantrey J, Ganapathy K. Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune responses. Virology 2015; 488:232-41. [PMID: 26655241 PMCID: PMC7111639 DOI: 10.1016/j.virol.2015.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 11/01/2022]
Abstract
To establish a characteristic host response to predict the pathogenicity and tissue tropism of infectious bronchitis viruses (IBV), we investigated innate immune responses (IIR) and apoptosis in chicken embryo kidney cells (CEKC) and tracheal organ cultures (TOC) infected with three IBV strains. Results showed nephropathogenic IBV strains 885 and QX induced greater apoptosis in CEKC than M41, which induced greater apoptosis in TOCs compared to 885 and QX. Elevated IIR is associated with tissue tropism of different IBV strains. Compared to M41, 885 and QX caused greater induction of toll like receptor 3 (TLR3), melanoma differentiation associated protein 5 (MDA5) and interferon beta (IFN-β) in CEKC. In contrast, M41 infection caused greater expression of these genes than 885 or QX in TOCs. In summary, greater levels of apoptosis and elevated levels of TLR3, MDA5 and IFN-β expression are associated with increased pathogenicity of IBV strains in renal and tracheal tissues.
Collapse
Affiliation(s)
- Rajesh Chhabra
- University of Liverpool, Leahurst Campus, Neston, South Wirral CH64 7TE, UK; College Central Laboratory, LLR University of Veterinary & Animal Sciences, Hisar 125004, India.
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Julian Chantrey
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Kannan Ganapathy
- University of Liverpool, Leahurst Campus, Neston, South Wirral CH64 7TE, UK.
| |
Collapse
|
74
|
Sato H, Oshiumi H, Takaki H, Hikono H, Seya T. Evolution of the DEAD box helicase family in chicken: chickens have no DHX9 ortholog. Microbiol Immunol 2015; 59:633-40. [DOI: 10.1111/1348-0421.12322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Haruko Sato
- Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Kita-ku Sapporo 060-8638
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Kita-ku Sapporo 060-8638
| | - Hiromi Takaki
- Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Kita-ku Sapporo 060-8638
| | - Hirokazu Hikono
- National Institute of Animal Health; National Agriculture and Food Research Organization (NARO); Tsukuba 305-8642 Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Kita-ku Sapporo 060-8638
| |
Collapse
|
75
|
Abstract
Signal transducer and activators of transcription-3 (STAT3) regulates diverse biological functions including cell growth, differentiation, and apoptosis. In addition, STAT3 plays a key role in regulating host immune and inflammatory responses and in the pathogenesis of many cancers. Several studies reported differential regulation of STAT3 in a range of viral infections. Interestingly, STAT3 appears to direct seemingly contradictory responses and both pro- and antiviral roles of STAT3 have been described. This review summarized the currently known functions of STAT3 in the regulation of viral replication and pathogenesis of viral infections. Some of the key unanswered questions and the gap in our current understanding of the role of STAT3 in viral pathogenesis are discussed.
Collapse
|
76
|
Kuchipudi SV, Dunham SP, Chang KC. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells. GENOMICS DATA 2015; 4:60-4. [PMID: 26484178 PMCID: PMC4535746 DOI: 10.1016/j.gdata.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 02/02/2023]
Abstract
The data described in this article pertain to the article by Kuchipudi et al. (2014) titled "Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses" [1]. While infection of chickens with highly pathogenic avian influenza (HPAI) H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix) to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI) H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEO)database with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014) [1].
Collapse
|