51
|
Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022; 8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.
Collapse
Affiliation(s)
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany.
| |
Collapse
|
52
|
Schneemann J, Schäfer KC, Spengler B, Heiles S. IR-MALDI Mass Spectrometry Imaging with Plasma Post-Ionization of Nonpolar Metabolites. Anal Chem 2022; 94:16086-16094. [DOI: 10.1021/acs.analchem.2c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Julian Schneemann
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
53
|
Li D, Yi J, Han G, Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS MEASUREMENT SCIENCE AU 2022; 2:385-404. [PMID: 36785658 PMCID: PMC9885950 DOI: 10.1021/acsmeasuresciau.2c00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
In the decade after being awarded the Nobel Prize in Chemistry in 2002, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an analytical chemistry tool for the detection of large and small molecules (e.g., polymers, proteins, peptides, nucleic acids, amino acids, lipids, etc.) and for clinical analysis and research (e.g., pathogen identification, genetic disorders screening, cancer diagnosis, etc.). In view of the fast development of MALDI-TOF MS in clinical usage, this review systematically summarizes the most important applications of MALDI-TOF MS in clinical analysis and research by analyzing MALDI TOF MS-related reviews collected in the Web of Science database. On the basis of the analysis of keyword co-occurrence of over 2000 review articles, four themes consisting of "pathogen identification", "disease diagnosis", "nucleic acids analysis", and "small molecules analysis" were found. For each theme, the review further outlined their application implications, analytical methods, and systems as well as limitations that need to be addressed. Overall, the review summarizes and elaborates on the clinical applications of MALDI-TOF MS, providing a comprehensive picture for researchers embarking on MALDI TOF MS-related clinical analysis and research.
Collapse
|
54
|
Wang G, Heijs B, Kostidis S, Mahfouz A, Rietjens RGJ, Bijkerk R, Koudijs A, van der Pluijm LAK, van den Berg CW, Dumas SJ, Carmeliet P, Giera M, van den Berg BM, Rabelink TJ. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat Metab 2022; 4:1109-1118. [PMID: 36008550 PMCID: PMC9499864 DOI: 10.1038/s42255-022-00615-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
A common drawback of metabolic analyses of complex biological samples is the inability to consider cell-to-cell heterogeneity in the context of an organ or tissue. To overcome this limitation, we present an advanced high-spatial-resolution metabolomics approach using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) combined with isotope tracing. This method allows mapping of cell-type-specific dynamic changes in central carbon metabolism in the context of a complex heterogeneous tissue architecture, such as the kidney. Combined with multiplexed immunofluorescence staining, this method can detect metabolic changes and nutrient partitioning in targeted cell types, as demonstrated in a bilateral renal ischemia-reperfusion injury (bIRI) experimental model. Our approach enables us to identify region-specific metabolic perturbations associated with the lesion and throughout recovery, including unexpected metabolic anomalies in cells with an apparently normal phenotype in the recovery phase. These findings may be relevant to an understanding of the homeostatic capacity of the kidney microenvironment. In sum, this method allows us to achieve resolution at the single-cell level in situ and hence to interpret cell-type-specific metabolic dynamics in the context of structure and metabolism of neighboring cells.
Collapse
Affiliation(s)
- Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarantos Kostidis
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Rosalie G J Rietjens
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Angela Koudijs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Loïs A K van der Pluijm
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Cathelijne W van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Sébastien J Dumas
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Giera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
55
|
Role of Lipids and Lipid Metabolism in Prostate Cancer Progression and the Tumor’s Immune Environment. Cancers (Basel) 2022; 14:cancers14174293. [PMID: 36077824 PMCID: PMC9454444 DOI: 10.3390/cancers14174293] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Modulation of lipid metabolism during cancer development and progression is one of the hallmarks of cancer in solid tumors; its importance in prostate cancer (PCa) has been demonstrated in numerous studies. Lipid metabolism is known to interact with androgen receptor signaling, an established driver of PCa progression and castration resistance. Similarly, immune cell infiltration into prostate tissue has been linked with the development and progression of PCa as well as with disturbances in lipid metabolism. Immuno-oncological drugs inhibit immune checkpoints to activate immune cells’ abilities to recognize and destroy cancer cells. These drugs have proved to be successful in treating some solid tumors, but in PCa their efficacy has been poor, with only a small minority of patients demonstrating a treatment response. In this review, we first describe the importance of lipid metabolism in PCa. Second, we collate current information on how modulation of lipid metabolism of cancer cells and the surrounding immune cells may impact the tumor’s immune responses which, in part, may explain the unimpressive results of immune-oncological treatments in PCa.
Collapse
|
56
|
Stamatelatou A, Scheenen TWJ, Heerschap A. Developments in proton MR spectroscopic imaging of prostate cancer. MAGMA (NEW YORK, N.Y.) 2022; 35:645-665. [PMID: 35445307 PMCID: PMC9363347 DOI: 10.1007/s10334-022-01011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 10/25/2022]
Abstract
In this paper, we review the developments of 1H-MR spectroscopic imaging (MRSI) methods designed to investigate prostate cancer, covering key aspects such as specific hardware, dedicated pulse sequences for data acquisition and data processing and quantification techniques. Emphasis is given to recent advancements in MRSI methodologies, as well as future developments, which can lead to overcome difficulties associated with commonly employed MRSI approaches applied in clinical routine. This includes the replacement of standard PRESS sequences for volume selection, which we identified as inadequate for clinical applications, by sLASER sequences and implementation of 1H MRSI without water signal suppression. These may enable a new evaluation of the complementary role and significance of MRSI in prostate cancer management.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Tom W J Scheenen
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
57
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
58
|
MALDI Mass Spectrometry Imaging Highlights Specific Metabolome and Lipidome Profiles in Salivary Gland Tumor Tissues. Metabolites 2022; 12:metabo12060530. [PMID: 35736462 PMCID: PMC9228942 DOI: 10.3390/metabo12060530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
Salivary gland tumors are relatively uncommon neoplasms that represent less than 5% of head and neck tumors, and about 90% are in the parotid gland. The wide variety of histologies and tumor characteristics makes diagnosis and treatment challenging. In the present study, Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to discriminate the pathological regions of patient-derived biopsies of parotid neoplasms by metabolomic and lipidomic profiles. Fresh frozen parotid tissues were analyzed by MALDI time-of-flight (TOF) MSI, both in positive and negative ionization modes, and additional MALDI-Fourier-transform ion cyclotron resonance (FT-ICR) MSI was carried out for metabolite annotation. MALDI-TOF-MSI spatial segmentation maps with different molecular signatures were compared with the histologic annotation. To maximize the information related to specific alterations between the pathological and healthy tissues, unsupervised (principal component analysis, PCA) and supervised (partial least squares-discriminant analysis, PLS-DA) multivariate analyses were performed presenting a 95.00% accuracy in cross-validation. Glycerophospholipids significantly increased in tumor tissues, while sphingomyelins and triacylglycerols, key players in the signaling pathway and energy production, were sensibly reduced. In addition, a significant increase of amino acids and nucleotide intermediates, consistent with the bioenergetics request of tumor cells, was observed. These results underline the potential of MALDI-MSI as a complementary diagnostic tool to improve the specificity of diagnosis and monitoring of pharmacological therapies.
Collapse
|
59
|
Angerer TB, Bour J, Biagi JL, Moskovets E, Frache G. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:760-771. [PMID: 35358390 PMCID: PMC9074099 DOI: 10.1021/jasms.1c00327] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mass spectrometry imaging is a technique uniquely suited to localize and identify lipids in a tissue sample. Using an atmospheric pressure (AP-) matrix-assisted laser desorption ionization (MALDI) source coupled to an Orbitrap Elite, numerous lipid locations and structures can be determined in high mass resolution spectra and at cellular spatial resolution, but careful sample preparation is necessary. We tested 11 protocols on serial brain sections for the commonly used MALDI matrices CHCA, norharmane, DHB, DHAP, THAP, and DAN in combination with tissue washing and matrix additives to determine the lipid coverage, signal intensity, and spatial resolution achievable with AP-MALDI. In positive-ion mode, the most lipids could be detected with CHCA and THAP, while THAP and DAN without additional treatment offered the best signal intensities. In negative-ion mode, DAN showed the best lipid coverage and DHAP performed superiorly for gangliosides. DHB produced intense cholesterol signals in the white matter. One hundred fifty-five lipids were assigned in positive-ion mode (THAP) and 137 in negative-ion mode (DAN), and 76 peaks were identified using on-tissue tandem-MS. The spatial resolution achievable with DAN was 10 μm, confirmed with on tissue line-scans. This enabled the association of lipid species to single neurons in AP-MALDI images. The results show that the performance of AP-MALDI is comparable to vacuum MALDI techniques for lipid imaging.
Collapse
Affiliation(s)
- Tina B. Angerer
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jerome Bour
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Luc Biagi
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | | | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
60
|
Høiem TS, Andersen MK, Martin‐Lorenzo M, Longuespée R, Claes BS, Nordborg A, Dewez F, Balluff B, Giampà M, Sharma A, Hagen L, Heeren RM, Bathen TF, Giskeødegård GF, Krossa S, Tessem M. An optimized MALDI MSI protocol for spatial detection of tryptic peptides in fresh frozen prostate tissue. Proteomics 2022; 22:e2100223. [PMID: 35170848 PMCID: PMC9285595 DOI: 10.1002/pmic.202100223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.
Collapse
Affiliation(s)
- Therese S. Høiem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Maria K. Andersen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Marta Martin‐Lorenzo
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Rémi Longuespée
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Britt S.R. Claes
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Anna Nordborg
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | - Frédéric Dewez
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Marco Giampà
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Animesh Sharma
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
| | - Lars Hagen
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
- Clinic of Laboratory MedicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Tone F. Bathen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of radiology and nuclear medicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic EpidemiologyDepartment of Public Health and NursingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Sebastian Krossa
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - May‐Britt Tessem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of SurgerySt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| |
Collapse
|
61
|
Unravelling Prostate Cancer Heterogeneity Using Spatial Approaches to Lipidomics and Transcriptomics. Cancers (Basel) 2022; 14:cancers14071702. [PMID: 35406474 PMCID: PMC8997139 DOI: 10.3390/cancers14071702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is a heterogenous disease in terms of disease aggressiveness and therapy response, leading to dilemmas in treatment decisions. This heterogeneity reflects the multifocal nature of prostate cancer and its diversity in cellular and molecular composition, necessitating spatial molecular approaches. Here in view of the emerging importance of rewired lipid metabolism as a source of biomarkers and therapeutic targets for prostate cancer, we highlight recent advancements in technologies that enable the spatial mapping of lipids and related metabolic pathways associated with prostate cancer development and progression. We also evaluate their potential for future implementation in treatment decision-making in the clinical management of prostate cancer. Abstract Due to advances in the detection and management of prostate cancer over the past 20 years, most cases of localised disease are now potentially curable by surgery or radiotherapy, or amenable to active surveillance without treatment. However, this has given rise to a new dilemma for disease management; the inability to distinguish indolent from lethal, aggressive forms of prostate cancer, leading to substantial overtreatment of some patients and delayed intervention for others. Driving this uncertainty is the critical deficit of novel targets for systemic therapy and of validated biomarkers that can inform treatment decision-making and to select and monitor therapy. In part, this lack of progress reflects the inherent challenge of undertaking target and biomarker discovery in clinical prostate tumours, which are cellularly heterogeneous and multifocal, necessitating the use of spatial analytical approaches. In this review, the principles of mass spectrometry-based lipid imaging and complementary gene-based spatial omics technologies, their application to prostate cancer and recent advancements in these technologies are considered. We put in perspective studies that describe spatially-resolved lipid maps and metabolic genes that are associated with prostate tumours compared to benign tissue and increased risk of disease progression, with the aim of evaluating the future implementation of spatial lipidomics and complementary transcriptomics for prognostication, target identification and treatment decision-making for prostate cancer.
Collapse
|
62
|
Boyaval F, Dalebout H, Van Zeijl R, Wang W, Fariña-Sarasqueta A, Lageveen-Kammeijer GSM, Boonstra JJ, McDonnell LA, Wuhrer M, Morreau H, Heijs B. High-Mannose N-Glycans as Malignant Progression Markers in Early-Stage Colorectal Cancer. Cancers (Basel) 2022; 14:1552. [PMID: 35326703 PMCID: PMC8945895 DOI: 10.3390/cancers14061552] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
The increase incidence of early colorectal cancer (T1 CRC) last years is mainly due to the introduction of population-based screening for CRC. T1 CRC staging based on histological criteria remains challenging and there is high variability among pathologists in the scoring of these criteria. It is crucial to unravel the biology behind the progression of adenoma into T1 CRC. Glycomic studies have reported extensively on alterations of the N-glycomic pattern in CRC; therefore, investigating these alterations may reveal new insights into the development of T1 CRC. We used matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) to spatially profile the N-glycan species in a cohort of pT1 CRC using archival formalin-fixed and paraffin-embedded (FFPE) material. To generate structural information on the observed N-glycans, CE-ESI-MS/MS was used in conjunction with MALDI-MSI. Relative intensities and glycosylation traits were calculated based on a panel of 58 N-glycans. Our analysis showed pronounced differences between normal epithelium, dysplastic, and carcinoma regions. High-mannose-type N-glycans were higher in the dysplastic region than in carcinoma, which correlates to increased proliferation of the cells. We observed changes in the cancer invasive front, including higher expression of α2,3-linked sialic acids which followed the glycosylation pattern of the carcinoma region.
Collapse
Affiliation(s)
- Fanny Boyaval
- Department of Pathology, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands;
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Hans Dalebout
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - René Van Zeijl
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Wenjun Wang
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Arantza Fariña-Sarasqueta
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Guinevere S. M. Lageveen-Kammeijer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Jurjen J. Boonstra
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands;
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini, 56017 San Giuliano Terme, Italy;
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands;
| | - Bram Heijs
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands; (H.D.); (R.V.Z.); (W.W.); (G.S.M.L.-K.); (M.W.)
| |
Collapse
|
63
|
Czétány P, Gitta S, Balló A, Sulc A, Máté G, Szántó Á, Márk L. Application of Mass Spectrometry Imaging in Uro-Oncology: Discovering Potential Biomarkers. Life (Basel) 2022; 12:life12030366. [PMID: 35330118 PMCID: PMC8954359 DOI: 10.3390/life12030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
A growing need is emerging worldwide for new molecular markers which could enhance the accuracy of diagnostic and therapeutic methods for detecting urogenital cancers. Mass spectrometry imaging (MSI) is a very promising tool in this regard. In this review, we attempt to provide a subjective summary of the latest publications on potential biomarkers of renal, bladder, prostate, and testicular malignancies detected with MSI through the eyes of a clinical urologist.
Collapse
Affiliation(s)
- Péter Czétány
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary
| | - Stefánia Gitta
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
| | - András Balló
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - Alexandra Sulc
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Gábor Máté
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - Árpád Szántó
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary
| | - László Márk
- National Human Reproduction Laboratory, 7624 Pécs, Hungary; (P.C.); (S.G.); (A.B.); (A.S.); (G.M.); (Á.S.)
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Research Group, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-304-734-714
| |
Collapse
|
64
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
65
|
Chandris P, Giannouli CC, Panayotou G. Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters. Front Cell Dev Biol 2022; 9:725114. [PMID: 35118062 PMCID: PMC8804523 DOI: 10.3389/fcell.2021.725114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Metabolism comprises of two axes in order to serve homeostasis: anabolism and catabolism. Both axes are interbranched with the so-called bioenergetics aspect of metabolism. There is a plethora of analytical biochemical methods to monitor metabolites and reactions in lysates, yet there is a rising need to monitor, quantify and elucidate in real time the spatiotemporal orchestration of complex biochemical reactions in living systems and furthermore to analyze the metabolic effect of chemical compounds that are destined for the clinic. The ongoing technological burst in the field of imaging creates opportunities to establish new tools that will allow investigators to monitor dynamics of biochemical reactions and kinetics of metabolites at a resolution that ranges from subcellular organelle to whole system for some key metabolites. This article provides a mini review of available toolkits to achieve this goal but also presents a perspective on the open space that can be exploited to develop novel methodologies that will merge classic biochemistry of metabolism with advanced imaging. In other words, a perspective of "watching metabolism in real time."
Collapse
Affiliation(s)
- Panagiotis Chandris
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | | | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| |
Collapse
|
66
|
ZHOU J, ZHOU D, CHEN W, XIE H, HU P, ZHOU Y. Study on the clinical application of Streptococcus pneumoniae serotype detection based on MALDI-TOF MS technology. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.34922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Dajin ZHOU
- Second People's Hospital of Lishui, China
| | | | - Hejie XIE
- Second People's Hospital of Lishui, China
| | | | - Yan ZHOU
- Second People's Hospital of Lishui, China
| |
Collapse
|
67
|
Linnan B, Yanzhe W, Ling Z, Yuyuan L, Sijia C, Xinmiao X, Fengqin L, Xiaoxia W. In situ Metabolomics of Metabolic Reprogramming Involved in a Mouse Model of Type 2 Diabetic Kidney Disease. Front Physiol 2021; 12:779683. [PMID: 34916961 PMCID: PMC8670437 DOI: 10.3389/fphys.2021.779683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
The in situ metabolic profiling of the kidney is crucial to investigate the complex metabolic reprogramming underlying diabetic kidney disease (DKD) and to allow exploration of potential metabolic targets to improve kidney function. However, as the kidney is a highly heterogeneous organ, traditional metabolomic methods based on bulk analysis that produce an averaged measurement are inadequate. Herein, we employed an in situ metabolomics approach to discover alternations of DKD-associated metabolites and metabolic pathways. A series of histology-specific metabolic disturbances were discovered in situ using airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI). In combination with integrated metabolomics analysis, five dysfunctional metabolic pathways were identified and located in the kidneys of type-2 DKD mice simultaneously for the first time, including taurine metabolism, arginine and proline metabolism, histidine metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways. As crucial nodes of metabolic pathways, five dysregulated rate-limiting enzymes related to altered metabolic pathways were further identified. These findings reveal alternations from metabolites to enzymes at the molecular level in the progression of DKD and provide insights into DKD-associated metabolic reprogramming.
Collapse
Affiliation(s)
- Bai Linnan
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Yanzhe
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhang Ling
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yuyuan
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Sijia
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xie Xinmiao
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fengqin
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Xiaoxia
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
68
|
Kumar D, Nath K, Lal H, Gupta A. Noninvasive urine metabolomics of prostate cancer and its therapeutic approaches: a current scenario and future perspective. Expert Rev Proteomics 2021; 18:995-1008. [PMID: 34821179 DOI: 10.1080/14789450.2021.2011225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The sensitive, specific, fast, robust and noninvasive biomarkers for the evaluation of prostate cancer (PC) remain elusive in medical research. However, efforts are in full sway to investigate and resolve these puzzles for clinical practice. Advances in modern analytical techniques, sample processing, and the emergence of multiple omics approaches have created a great hope for the development of better detection modalities for PC. The objective of the present review is to provide a concise overview of the PC metabolomics-based potential discriminating molecules in urine samples using nuclear magnetic resonance spectroscopy and mass spectrometry. AREA COVERED A literature search was executed to find the studies reporting the noninvasive urine-based biomarkers for the diagnosis and prognosis of underlying disease. Most studies have extensivelyreported PC discriminating molecules with their respective controls. Additionally, pathophysiology and the treatment paradigm of PC are summarized and related to the insights underpinning the therapeutic intervention of PC. EXPERT OPINION With multi-centric, global, comprehensive omics approaches via either a non- or least-invasive bio-matrix may open new avenues of research for PC biomarker discovery, backed by a molecular mechanistic outline.
Collapse
Affiliation(s)
- Deepak Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Kavindra Nath
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hira Lal
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| |
Collapse
|
69
|
Matsushita S, Hasegawa T, Hiraoka M, Hayashi A, Suzuki Y. TLC-based MS Imaging Analysis of Glycosphingolipids and Glycerin Fatty Acid Esters after 1,2-Dichloroethane Washing. ANAL SCI 2021; 37:1491-1495. [PMID: 34690230 DOI: 10.2116/analsci.21c009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix-assisted laser desorption/ionization-based mass spectrometry imaging (MSI) of separated lipids on thin-layer chromatography (TLC) plates or followed by blotted hydrophilic polyvinylidene fluoride (PVDF) membranes has become a powerful tool in lipidomic analyses. However, background peaks in MS spectra often cover lipid peaks in a low amount/ionization effect; consequently, only low intensities/resolutions MSI are obtained. To address the aforementioned problem, we attempted 1,2-dichloroethane pre-washing of TLC plates before development and found that backgrounds could successfully be removed from the TLC plate or PVDF membrane.
Collapse
Affiliation(s)
- Shoko Matsushita
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Takuma Hasegawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Marina Hiraoka
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Aki Hayashi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| | - Yusuke Suzuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University
| |
Collapse
|
70
|
Fatty Acid Metabolism Reprogramming in Advanced Prostate Cancer. Metabolites 2021; 11:metabo11110765. [PMID: 34822423 PMCID: PMC8618281 DOI: 10.3390/metabo11110765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid metabolism is rewired during PCa development. Although PCa can be treated with hormone therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate cancer patients, and understanding these changes may lead to individualized treatments, especially in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation and development. In this review, we analyzed the literature regarding systemic changes to fatty acid metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites, and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer, including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment and diagnosis.
Collapse
|
71
|
Chen R, Brown HM, Cooks RG. Metabolic profiles of human brain parenchyma and glioma for rapid tissue diagnosis by targeted desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2021; 413:6213-6224. [PMID: 34373931 PMCID: PMC8522078 DOI: 10.1007/s00216-021-03593-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is well suited for intraoperative tissue analysis since it requires little sample preparation and offers rapid and sensitive molecular diagnostics. Currently, intraoperative assessment of the tumor cell percentage of glioma biopsies can be made by measuring a single metabolite, N-acetylaspartate (NAA). The inclusion of additional biomarkers will likely improve the accuracy when distinguishing brain parenchyma from glioma by DESI-MS. To explore this possibility, mass spectra were recorded for extracts from 32 unmodified human brain samples with known pathology. Statistical analysis of data obtained from full-scan and multiple reaction monitoring (MRM) profiles identified discriminatory metabolites, namely gamma-aminobutyric acid (GABA), creatine, glutamic acid, carnitine, and hexane-1,2,3,4,5,6-hexol (abbreviated as hexol), as well as the established biomarker NAA. Brain parenchyma was readily differentiated from glioma based on these metabolites as measured both in full-scan mass spectra and by the intensities of their characteristic MRM transitions. New DESI-MS methods (5 min acquisition using full scans and MS/MS), developed to measure ion abundance ratios among these metabolites, were tested using smears of 29 brain samples. Ion abundance ratios based on signals for GABA, creatine, carnitine, and hexol all had sensitivities > 90%, specificities > 80%, and accuracies > 85%. Prospectively, the implementation of diagnostic ion abundance ratios should strengthen the discriminatory power of individual biomarkers and enhance method robustness against signal fluctuations, resulting in an improved DESI-MS method of glioma diagnosis.
Collapse
Affiliation(s)
- Rong Chen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Hannah Marie Brown
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
72
|
Proteomic Landscape of Prostate Cancer: The View Provided by Quantitative Proteomics, Integrative Analyses, and Protein Interactomes. Cancers (Basel) 2021; 13:cancers13194829. [PMID: 34638309 PMCID: PMC8507874 DOI: 10.3390/cancers13194829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most frequent cancer of men worldwide. While the genetic landscapes and heterogeneity of prostate cancer are relatively well-known already, methodological developments now allow for studying basic and dynamic proteomes on a large scale and in a quantitative fashion. This aids in revealing the functional output of cancer genomes. It has become evident that not all aberrations at the genetic and transcriptional level are translated to the proteome. In addition, the proteomic level contains heterogeneity, which increases as the cancer progresses from primary prostate cancer (PCa) to metastatic and castration-resistant prostate cancer (CRPC). While multiple aspects of prostate adenocarcinoma proteomes have been studied, less is known about proteomes of neuroendocrine prostate cancer (NEPC). In this review, we summarize recent developments in prostate cancer proteomics, concentrating on the proteomic landscapes of clinical prostate cancer, cell line and mouse model proteomes interrogating prostate cancer-relevant signaling and alterations, and key prostate cancer regulator interactomes, such as those of the androgen receptor (AR). Compared to genomic and transcriptomic analyses, the view provided by proteomics brings forward changes in prostate cancer metabolism, post-transcriptional RNA regulation, and post-translational protein regulatory pathways, requiring the full attention of studies in the future.
Collapse
|
73
|
Denti V, Andersen MK, Smith A, Bofin AM, Nordborg A, Magni F, Moestue SA, Giampà M. Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application. Metabolites 2021; 11:577. [PMID: 34564393 PMCID: PMC8467053 DOI: 10.3390/metabo11090577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
The association between lipid metabolism and long-term outcomes is relevant for tumor diagnosis and therapy. Archival material such as formalin-fixed and paraffin embedded (FFPE) tissues is a highly valuable resource for this aim as it is linked to long-term clinical follow-up. Therefore, there is a need to develop robust methodologies able to detect lipids in FFPE material and correlate them with clinical outcomes. In this work, lipidic alterations were investigated in patient-derived xenograft of breast cancer by using a matrix-assisted laser desorption ionization mass spectrometry (MALDI MSI) based workflow that included antigen retrieval as a sample preparation step. We evaluated technical reproducibility, spatial metabolic differentiation within tissue compartments, and treatment response induced by a glutaminase inhibitor (CB-839). This protocol shows a good inter-day robustness (CV = 26 ± 12%). Several lipids could reliably distinguish necrotic and tumor regions across the technical replicates. Moreover, this protocol identified distinct alterations in the tissue lipidome of xenograft treated with glutaminase inhibitors. In conclusion, lipidic alterations in FFPE tissue of breast cancer xenograft observed in this study are a step-forward to a robust and reproducible MALDI-MSI based workflow for pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Vanna Denti
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, MB, Italy; (V.D.); (A.S.); (F.M.)
| | - Maria K. Andersen
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Andrew Smith
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, MB, Italy; (V.D.); (A.S.); (F.M.)
| | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.M.B.); (S.A.M.)
| | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF, 7034 Trondheim, Norway;
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, MB, Italy; (V.D.); (A.S.); (F.M.)
| | - Siver Andreas Moestue
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.M.B.); (S.A.M.)
- Department of Pharmacy, Nord University, 8026 Bodø, Norway
| | - Marco Giampà
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.M.B.); (S.A.M.)
| |
Collapse
|
74
|
Scaglia N, Frontini-López YR, Zadra G. Prostate Cancer Progression: as a Matter of Fats. Front Oncol 2021; 11:719865. [PMID: 34386430 PMCID: PMC8353450 DOI: 10.3389/fonc.2021.719865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Advanced prostate cancer (PCa) represents the fifth cause of cancer death worldwide. Although survival has improved with second-generation androgen signaling and Parp inhibitors, the benefits are not long-lasting, and new therapeutic approaches are sorely needed. Lipids and their metabolism have recently reached the spotlight with accumulating evidence for their role as promoters of PCa development, progression, and metastasis. As a result, interest in targeting enzymes/transporters involved in lipid metabolism is rapidly growing. Moreover, the use of lipogenic signatures to predict prognosis and resistance to therapy has been recently explored with promising results. Despite the well-known association between obesity with PCa lethality, the underlying mechanistic role of diet/obesity-derived metabolites has only lately been unveiled. Furthermore, the role of lipids as energy source, building blocks, and signaling molecules in cancer cells has now been revisited and expanded in the context of the tumor microenvironment (TME), which is heavily influenced by the external environment and nutrient availability. Here, we describe how lipids, their enzymes, transporters, and modulators can promote PCa development and progression, and we emphasize the role of lipids in shaping TME. In a therapeutic perspective, we describe the ongoing efforts in targeting lipogenic hubs. Finally, we highlight studies supporting dietary modulation in the adjuvant setting with the purpose of achieving greater efficacy of the standard of care and of synthetic lethality. PCa progression is "a matter of fats", and the more we understand about the role of lipids as key players in this process, the better we can develop approaches to counteract their tumor promoter activity while preserving their beneficial properties.
Collapse
Affiliation(s)
- Natalia Scaglia
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), National University of La Plata/National Council of Scientific and Technical Research of Argentina, La Plata, Argentina
| | - Yesica Romina Frontini-López
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), National University of La Plata/National Council of Scientific and Technical Research of Argentina, La Plata, Argentina
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| |
Collapse
|
75
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|