51
|
Naseralallah L, Aboujabal B. Profile of tirzepatide in the management of type 2 diabetes mellitus: design, development, and place in therapy. Expert Opin Pharmacother 2023; 24:407-418. [PMID: 36820516 DOI: 10.1080/14656566.2023.2181074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is one of the leading causes of morbidity and mortality. Peptide-based multi-targeting agonists represent a new paradigm in metabolic pharmacology as they manifest multiplexed pharmacological actions over mono-agonists. Tirzepatide is a novel dual glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide-1 receptor (GLP-1R) agonist that has been recently approved by the FDA. This review aims to summarize the available evidence on the discovery, pharmacology, pharmacokinetic, pharmacodynamic, efficacy, and safety of tirzepatide in the pharmacotherapy of T2DM. AREAS COVERED We searched PubMed, Embase, and International Pharmaceutical Abstracts to identify relevant papers on tirzepatide use in T2DM. Clinical trial registries were also searched. EXPERT OPINION Tirzepatide improves glycemic control compared to baseline, placebo, and active comparators. It is also associated with weight reduction and an improvement in some, but not all, dyslipidemia, cardiovascular risk, and nonalcoholic steatohepatitis (NASH) biomarkers. Tirzepatide has a favorable safety profile with a low risk of hypoglycemia; however, adverse events such as gastrointestinal reactions were frequently reported and sometimes even led to therapy discontinuation. Future research should focus on investigating the role of tirzepatide in obesity, NASH, and cardio-renal benefits. Real-world observational studies are also needed to assess rare and long-term adverse events.
Collapse
Affiliation(s)
- Lina Naseralallah
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar.,School of Pharmacy, College of Medical and Dental Sciences, Sir Robert Aitken Institute for Medical Research, University of Birmingham, Birmingham, UK
| | - Bodoor Aboujabal
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar.,College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
52
|
Geisler CE, Antonellis MP, Trumbauer W, Martin JA, Coskun T, Samms RJ, Hayes MR. Tirzepatide suppresses palatable food intake by selectively reducing preference for fat in rodents. Diabetes Obes Metab 2023; 25:56-67. [PMID: 36054312 PMCID: PMC10362946 DOI: 10.1111/dom.14843] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
AIM To investigate the role of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists alone or combined with glucagon-like peptide-1 receptor (GLP-1R) agonists to regulate palatable food intake and the role of specific macronutrients in these preferences. METHODS To understand this regulation, we treated mice and rats on several choice diet paradigms of chow and a palatable food option with individual or dual GIPR and GLP-1R agonists. RESULTS In mice, the dual agonist tirzepatide suppressed total caloric intake, while promoting the intake of chow over a high fat/sucrose diet. Surprisingly, GIPR agonism alone did not alter food choice. The food intake shift observed with tirzepatide in wild-type mice was completely absent in GLP-1R knockout mice, suggesting that GIPR signalling does not regulate food preference. Tirzepatide also selectively suppressed the intake of palatable food but not chow in a rat two-diet choice model. This suppression was specific to lipids, as GLP-1R agonist and dual agonist treatment in rats on a choice paradigm assessing individual palatable macronutrients robustly inhibited the intake of Crisco (lipid) without decreasing the intake of a sucrose (carbohydrate) solution. CONCLUSIONS Decreasing preference for high-caloric, high-fat foods is a powerful action of GLP-1R and dual GIPR/GLP-1R agonist therapeutics, which may contribute to the weight loss success of these drugs.
Collapse
Affiliation(s)
| | - Meghan P. Antonellis
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | | | - Jennifer A. Martin
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | - Tamer Coskun
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | - Ricardo J. Samms
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | | |
Collapse
|
53
|
Zaffina I, Pelle MC, Armentaro G, Giofrè F, Cassano V, Sciacqua A, Arturi F. Effect of dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist on weight loss in subjects with obesity. Front Endocrinol (Lausanne) 2023; 14:1095753. [PMID: 36909312 PMCID: PMC9992880 DOI: 10.3389/fendo.2023.1095753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The occurrence of obesity is an increasing issue worldwide, especially in industrialized countries. Weight loss is important both to treat obesity and to prevent the development of complications. Currently, several drugs are used to treat obesity, but their efficacy is modest. Thus, new anti-obesity treatments are needed. Recently, there has been increased interest in the development of incretins that combine body-weight-lowering and glucose-lowering effects. Therefore, a new drug that simultaneously coactivates both the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R) has been developed. Tirzepatide, the first in this class, improves glycemic control by increasing insulin sensitivity and lipid metabolism as well as by reducing body weight. Combining the activation of the two receptors, greater improvement of β-cell function offers more effective treatment of diabetes and obesity with fewer adverse effects than selective GLP-1R agonists. In the present review, we discuss the progress in the use of GIPR and GLP-1R coagonists and review literature from in vitro studies, animal studies, and human trials, highlighting the synergistic mechanisms of tirzepatide.
Collapse
Affiliation(s)
- Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Armentaro
- Geriatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Velia Cassano
- Geriatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Geriatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Franco Arturi,
| |
Collapse
|
54
|
Ghusn W, Hurtado MD, Acosta A. Weight-centric treatment of type 2 diabetes mellitus. OBESITY PILLARS 2022; 4:100045. [PMID: 37990663 PMCID: PMC10662009 DOI: 10.1016/j.obpill.2022.100045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2023]
Abstract
Background Chronic non-communicable diseases (CNCD) represent a major cause of morbidity and mortality. Type 2 diabetes mellitus (T2DM) is one of the most prevalent CNCD that is associated with a significant medical and economic burden. One of the main modifiable risk factors of T2DM is obesity. Many medications used for T2DM can lead to weight gain, worsening one of the root causes of this disease. Methods In this clinical review, we study the effect of medications for T2DM on body weight. We used MEDLINE, Google scholar, PubMed, Scopus, and Embase databases to search for relevant studies between 1 January 1950 to 20 September 2022 in English language. Here, we review the most prescribed medications for T2DM and summarize their effect on patients' body weight. We will also present an expert opinion on a recommended weight-centric approach to treat T2DM. Results Multiple T2DM medications have been associated with weight gain. Insulin, sulfonylureas, thiazolidinediones and meglitinides may increase body weight. However, biguanides (e.g., metformin), glucagon-like peptide-1 agonists (e.g., semaglutide, liraglutide, tirzepatide), sodium-glucose cotransporter 2 inhibitors, and amylin analogs (e.g., pramlintide) are associated with significant weight loss. Dipeptidyl peptidase-4 inhibitors are considered weight neutral medications. Experts in the fields of endocrinology and obesity recommend utilizing a weight-centric approach when treating T2DM. Conclusion Considering the high prevalence and debilitating complication of T2DM, it is of utmost importance to shift from a weight gain approach (i.e., insulin, sulfonylureas) into a weight loss/neutral one (i.e., GLP-1 agonists, SGLT-2 inhibitors, metformin).
Collapse
Affiliation(s)
- Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MNMayo Clinic, Rochester, MN, USA
| | - Maria Daniela Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MNMayo Clinic, Rochester, MN, USA
| |
Collapse
|
55
|
Tirzepatide: A Systematic Update. Int J Mol Sci 2022; 23:ijms232314631. [PMID: 36498958 PMCID: PMC9741068 DOI: 10.3390/ijms232314631] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Tirzepatide is a new molecule capable of controlling glucose blood levels by combining the dual agonism of Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) receptors. GIP and GLP1 are incretin hormones: they are released in the intestine in response to nutrient intake and stimulate pancreatic beta cell activity secreting insulin. GIP and GLP1 also have other metabolic functions. GLP1, in particular, reduces food intake and delays gastric emptying. Moreover, Tirzepatide has been shown to improve blood pressure and to reduce Low-Density Lipoprotein (LDL) cholesterol and triglycerides. Tirzepatide efficacy and safety were assessed in a phase III SURPASS 1-5 clinical trial program. Recently, the Food and Drug Administration approved Tirzepatide subcutaneous injections as monotherapy or combination therapy, with diet and physical exercise, to achieve better glycemic blood levels in patients with diabetes. Other clinical trials are currently underway to evaluate its use in other diseases. The scientific interest toward this novel, first-in-class medication is rapidly increasing. In this comprehensive and systematic review, we summarize the main results of the clinical trials investigating Tirzepatide and the currently available meta-analyses, emphasizing novel insights into its adoption in clinical practice for diabetes and its future potential applications in cardiovascular medicine.
Collapse
|
56
|
Bradley CL, McMillin SM, Hwang AY, Sherrill CH. Tirzepatide, the Newest Medication for Type 2 Diabetes: A Review of the Literature and Implications for Clinical Practice. Ann Pharmacother 2022:10600280221134127. [DOI: 10.1177/10600280221134127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of this article was to review pharmacology, efficacy, safety, and place in therapy of tirzepatide, a dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist. Data Sources: PubMed/MEDLINE and ClinicalTrials.gov were searched through September 7, 2022, using the keyword “tirzepatide.” Study Selection and Data Extraction: Clinical trials with available results were included. Data Synthesis: Seven published phase 3, multicenter, randomized, parallel-group trials investigated efficacy and safety of tirzepatide versus placebo, semaglutide, insulin degludec, and insulin glargine for type 2 diabetes mellitus (T2DM) treatment. Studies included adults with uncontrolled T2DM and body mass index above 23 or 25 kg/m2. Hemoglobin A1c reduction from baseline was greater with tirzepatide across all studies with absolute reductions up to 3.02% and relative reductions ranging 0.44% (vs semaglutide) to 2.11% (vs placebo). Weight loss was significant. Incidence of gastrointestinal adverse effects (AE) was similar to semaglutide, and major cardiovascular events was similar to insulin glargine. Relevance to Patient Care and Clinical Practice: Studies demonstrated greater A1c lowering and weight reduction versus placebo and active comparators with AE similar to semaglutide, suggesting tirzepatide will be a valuable addition to the growing list of antidiabetic medications. Although tirzepatide’s effects on major cardiovascular events was not increased when compared with insulin glargine, further evidence is needed to assess long-term implications on cardiovascular outcomes compared with agents with proven cardiovascular benefits. Conclusions: Tirzepatide has the potential to significantly impact the clinical management of T2DM, and results of ongoing clinical trials will help to fully determine its place in therapy.
Collapse
Affiliation(s)
- Courtney L. Bradley
- Department of Clinical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Sara M. McMillin
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Andrew Y. Hwang
- Department of Clinical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Christina H. Sherrill
- Department of Clinical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| |
Collapse
|
57
|
Samuel SM, Varghese E, Kubatka P, Büsselberg D. Tirzepatide-Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022; 12:1580. [PMID: 36358930 PMCID: PMC9687454 DOI: 10.3390/biom12111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 09/25/2023] Open
Abstract
It is a well-accepted fact that obesity and diabetes increase the risk of incidence of different cancers and their progression, leading to a decrease in the quality of life among affected cancer patients. In addition to decreasing the risk of cancers, maintaining a healthy body mass index (BMI)/body weight and/or blood glucose levels within the normal range critically impacts the response to anti-cancer therapy among affected individuals. A cancer patient managing their body weight and maintaining blood glucose control responds better to anti-cancer therapy than obese individuals and those whose blood glucose levels remain higher than normal during therapeutic intervention. In some cases, anti-diabetic/glucose-lowering drugs, some of which are also used to promote weight loss, were found to possess anti-cancer potential themselves and/or support anti-cancer therapy when used to treat such patients. On the other hand, certain glucose-lowering drugs promoted the cancer phenotype and risked cancer progression when used for treatment. Tirzepatide (TRZD), the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) agonist, has recently gained interest as a promising injectable drug for the treatment of type 2 diabetes and was approved by the FDA after successful clinical trials (SURPASS 1/2/3/4 and 5, NCT03954834, NCT03987919, NCT03882970, NCT03730662, and NCT04039503). In addition, the reports from the SURMOUNT-1 clinical trial (NCT04184622) support the use of TRZD as an anti-obesity drug. In the current review article, we examine the possibility and molecular mechanisms of how TRZD intervention could benefit cancer therapeutics or increase the risk of cancer progression when used as an anti-diabetic drug in diabetic patients.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
58
|
Corkey BE, Kilpatrick LE, Evans-Molina C. Hypothesis: Induction of Autoimmunity in Type 1 Diabetes-A Lipid Focus. Diabetes 2022; 71:2067-2074. [PMID: 36126206 PMCID: PMC10477405 DOI: 10.2337/db22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/10/2022] [Indexed: 11/13/2022]
Abstract
Several unrelated findings led us to hypothesize that induction of autoimmunity is a consequence of a prior major inflammatory event in individuals with susceptible HLA phenotypes and elevated sensitivity to cytokines and free fatty acids (FFA). We observed provocative enhanced responsiveness of cultured human fibroblasts from individuals with type 1 diabetes (T1D), but not control subjects, to FFA and the inflammatory cytokines TNFα and IL1-β. Major infections increase inflammatory cytokines as well as circulating FFA. Endotoxin-treated animal models of sepsis also exhibit elevated inflammatory cytokines that inhibit FFA oxidation and elevate FFA. The pancreatic β-cell possesses low reactive oxygen species (ROS) scavenging capacity and responds to both elevated FFA and cytokines with increased ROS production, a combination that increases exocytosis and trafficking of secretory vesicles to the plasma membrane. Increased trafficking is accompanied by increased cycling of secretory granule proteins and may be linked with increased surface presentation of granule proteins to the immune system. We propose that this ultimately targets β-cell granular proteins at the cell surface and is consistent with the preponderance of autoantibodies to granule proteins. Our hypothesis encourages testing of potential early therapeutic interventions to prevent progression of β-cell destruction.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine, Center for Diabetes and Metabolic Diseases, and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
59
|
Nauck MA, D'Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol 2022; 21:169. [PMID: 36050763 PMCID: PMC9438179 DOI: 10.1186/s12933-022-01604-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Tirzepatide is the first dual GIP/GLP-1 receptor co-agonist approved for the treatment of type 2 diabetes in the USA, Europe, and the UAE. Tirzepatide is an acylated peptide engineered to activate the GIP and GLP-1 receptors, key mediators of insulin secretion that are also expressed in regions of the brain that regulate food intake. Five clinical trials in type 2-diabetic subjects (SURPASS 1-5) have shown that tirzepatide at 5-15 mg per week reduces both HbA1c (1.24 to 2.58%) and body weight (5.4-11.7 kg) by amounts unprecedented for a single agent. A sizable proportion of patients (23.0 to 62.4%) reached an HbA1c of < 5.7% (which is the upper limit of the normal range indicating normoglycaemia), and 20.7 to 68.4% lost more than 10% of their baseline body weight. Tirzepatide was significantly more effective in reducing HbA1c and body weight than the selective GLP-1 RA semaglutide (1.0 mg per week), and titrated basal insulin. Adverse events related to tirzepatide were similar to what has been reported for selective GLP-1RA, mainly nausea, vomiting, diarrhoea, and constipation, that were more common at higher doses. Cardiovascular events have been adjudicated across the whole study program, and MACE-4 (nonfatal myocardial infarction, non-fatal stroke, cardiovascular death and hospital admission for angina) events tended to be reduced over up to a 2 year-period, albeit with low numbers of events. For none of the cardiovascular events analysed (MACE-4, or its components) was a hazard ratio > 1.0 vs. pooled comparators found in a meta-analysis covering the whole clinical trial program, and the upper bounds of the confidence intervals for MACE were < 1.3, fulfilling conventional definitions of cardiovascular safety. Tirzepatide was found to improve insulin sensitivity and insulin secretory responses to a greater extent than semaglutide, and this was associated with lower prandial insulin and glucagon concentrations. Both drugs caused similar reductions in appetite, although tirzepatide caused greater weight loss. While the clinical effects of tirzepatide have been very encouraging, important questions remain as to the mechanism of action. While GIP reduces food intake and body weight in rodents, these effects have not been demonstrated in humans. Moreover, it remains to be shown that GIPR agonism can improve insulin secretion in type 2 diabetic patients who have been noted in previous studies to be unresponsive to GIP. Certainly, the apparent advantage of tirzepatide, a dual incretin agonist, over GLP-1RA will spark renewed interest in the therapeutic potential of GIP in type 2 diabetes, obesity and related co-morbidities.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, Katholisches Klinikum Bochum gGmbH, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| |
Collapse
|
60
|
Yu Y, Hu G, Yin S, Yang X, Zhou M, Jian W. Optimal dose of tirzepatide for type 2 diabetes mellitus: A meta-analysis and trial sequential analysis. Front Cardiovasc Med 2022; 9:990182. [PMID: 36119737 PMCID: PMC9472131 DOI: 10.3389/fcvm.2022.990182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe purpose of this study is to evaluate the optimal dose of tirzepatide (TZP) for the treatment of type 2 diabetes mellitus (T2DM) by meta-analysis and trial sequential analysis (TSA).MethodsClinical trials of TZP for T2DM were obtained by searching 8 databases with a time limit from database creation to May 2022. Mean differences (MD) and 95% confidence intervals (95%CI) were used for continuous variables, and relative risk (RR) and 95%CI were used for dichotomous variables.ResultsCompared with TZP 5 mg, meta-analysis showed that TZP 10 mg significantly reduced glycosylated hemoglobin type A1c (HbA1c) (MD −0.24, 95%CI −0.31~-0.17, P < 0.00001), fasting serum glucose (FSG) (MD −5.82, 95%CI −8.35~-3.28, P < 0.00001) and weight (MD −2.47, 95%CI −2.95~-1.98, P < 0.00001), and TZP 15 mg significantly reduced HbA1c (MD −0.37, 95%CI −0.44~-0.29, P < 0.00001), FSG (MD −8.52, 95%CI −11.07~-5.98, P < 0.00001) and weight (MD −4.63, 95%CI −5.45~-3.81, P < 0.00001). Compared with TZP 10 mg, TZP 15 mg dramatically reduced HbA1c (MD −0.12, 95%CI −0.19~-0.05, P = 0.001), FSG (MD −2.73, 95%CI −5.29~-0.17, P = 0.04) and weight (MD −2.18, 95%CI −2.67~-1.70, P < 0.00001). The TSA indicated that the benefits observed in the current information set were conclusive, except for the FSG of “TZP 15 mg vs. TZP 10 mg”. In terms of safety endpoints, meta-analysis revealed that there was no significant difference in the serious adverse events (AEs), major adverse cardiovascular events-4 (MACE-4), cardiovascular death, hypertension, cancer and hypoglycemic of the three dose groups of TZP. Compared with TZP 5 mg, TZP 10 mg increased total adverse events (RR 1.06, 95%CI 1.01~1.11, P = 0.03) and gastrointestinal (GI) AEs (RR 1.17, 95%CI 1.03~1.33, P = 0.02), and TZP 15 mg increased total AEs (RR 1.10, 95%CI 1.05~1.15, P = 0.0001). There were no significant differences in total AEs and GI AEs for TZP 15 mg compared to TZP 10 mg. The TSA demonstrated that the total AEs of “TZP 15 mg vs. TZP 5 mg” were conclusive.ConclusionsTZP 15 mg >TZP 10 mg > TZP 5 mg in terms of lowering glycemia and reducing weight. TZP 5 mg > TZP 10 mg = TZP 15 mg in terms of safety. On this basis, we recommend TZP 5 mg as the first-choice dose for patients with T2DM to minimize AEs while reducing glycemia and weight. If patients cannot effectively control their glycemia after taking TZP 5 mg, it is recommended to take TZP 15 mg directly to achieve the best effect of glycemic reduction. However, most of the included studies have the background of basic medication, the independent efficacy and safety of different doses of TZP still need to be tested.Systematic review registrationUnique Identifier: CRD42022341966.
Collapse
Affiliation(s)
- Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Gang Hu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shuang Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinyu Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Manli Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Weixiong Jian
| |
Collapse
|
61
|
Goralska J, Razny U, Calder PC, Gruca A, Childs CE, Zabielski P, Dembinska-Kiec A, Banach M, Solnica B, Malczewska-Malec M. Glucose-Dependent Insulinotropic Polypeptide Plasma Level Influences the Effect of n-3 PUFA Supplementation. Diagnostics (Basel) 2022; 12:diagnostics12081984. [PMID: 36010335 PMCID: PMC9406980 DOI: 10.3390/diagnostics12081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Elevated glucose-dependent insulinotropic peptide (GIP) levels in obesity may predict the metabolic benefits of n-3 PUFA supplementation. This placebo-controlled trial aimed to analyze fasting and postprandial GIP response to 3-month n-3 PUFA supplementation (1.8 g/d; DHA:EPA, 5:1) along with caloric restriction (1200–1500 kcal/d) in obese subjects. Compliance was confirmed by the incorporation of DHA and EPA into red blood cells (RBCs). Blood analyses of glucose, insulin, non-esterified fatty acids (NEFAs), GIP and triglycerides were performed at fasting, and during an oral glucose tolerance test and a high fat mixed-meal tolerance test. Fatty acid composition of RBC was assessed by gas chromatography and total plasma fatty acid content and composition was measured by gas–liquid chromatography. The DHA and EPA content in RBCs significantly increased due to n-3 PUFA supplementation vs. placebo (77% vs. −3%, respectively). N-3 PUFA supplementation improved glucose tolerance and decreased circulating NEFA levels (0.750 vs. 0.615 mmol/L), as well as decreasing plasma saturated (1390 vs. 1001 µg/mL) and monounsaturated (1135 vs. 790 µg/mL) fatty acids in patients with relatively high GIP levels. The effects of n-3 PUFAs were associated with the normalization of fasting (47 vs. 36 pg/mL) and postprandial GIP levels. Obese patients with elevated endogenous GIP could be a target group for n-3 PUFA supplementation in order to achieve effects that obese patients without GIP disturbances can achieve with only caloric restriction.
Collapse
Affiliation(s)
- Joanna Goralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
- Correspondence:
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Mickiewicza Street, 15-222 Bialystok, Poland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Malgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| |
Collapse
|
62
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
63
|
Huang C, Palani A, Yang Z, Deng Q, Reddy V, Nargund RP, Lin S, Altezza S, Bianchi E, Orvieto F, Carrington P. Discovery of Insulin/GLP-1/Glucagon Triagonists for the Treatment of Diabetes and Obesity. ACS Med Chem Lett 2022; 13:1255-1261. [PMID: 35978702 PMCID: PMC9377023 DOI: 10.1021/acsmedchemlett.2c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
The combination of insulin and incretin-based therapies has emerged as a potential promising tactic for the treatment of diabetes. Here we report the first example of a unimolecular triagonist to simultaneously target insulin, GLP-1, and glucagon receptors, aiming for better glycemic control and superior weight loss. The strategy for constructing such a unimolecular triagonist is the conjugation of the insulin moiety and GLP-1R/GCGR coagonist peptide via alkyne-azide click chemistry. Two tractable series differentiated by insulin conjugation sites, B1F and B29K, were identified. Triagonist 13 prepared through the conjugation at insulin B1F and position 24 of GLP-1R/GCGR coagonist exhibited insulin activity comparable to that of insulin degludec and potent and balanced GLP-1R and GCGR activities. Pharmacokinetic profiles of 13 in both rat and minipig were also discussed.
Collapse
Affiliation(s)
- Chunhui Huang
- Merck
& Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anandan Palani
- Merck
& Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Zhiqiang Yang
- Merck
& Co., Inc., 2015
Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qiaolin Deng
- Merck
& Co., Inc., 2015
Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Vijay Reddy
- Merck
& Co., Inc., 2015
Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ravi P. Nargund
- Merck
& Co., Inc., 2015
Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Songnian Lin
- Merck
& Co., Inc., 2015
Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Simona Altezza
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Elisabetta Bianchi
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Federica Orvieto
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Paul Carrington
- Merck
& Co., Inc., 2015
Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
64
|
Palani A, Nawrocki AR, Orvieto F, Bianchi E, Mandić E, Pessi A, Huang C, Deng Q, Toussaint N, Walsh E, Reddy V, Ashley E, He H, Mumick S, Hawes B, Marsh D, Erion M, Nargund R, Carrington PE. Discovery of MK-1462: GLP-1 and Glucagon Receptor Dual Agonist for the Treatment of Obesity and Diabetes. ACS Med Chem Lett 2022; 13:1248-1254. [PMID: 35978682 PMCID: PMC9377002 DOI: 10.1021/acsmedchemlett.2c00217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Peptide-based analogues of the gut-derived incretin hormone, glucagon-like peptide 1 (GLP1), stimulate insulin secretion in a glucose-dependent manner. Currently marketed GLP1 receptor (GLP1R) agonists are safe and effective in the management of Type 2 diabetes but often offer only modest weight loss. This has prompted the search for safe and effective alternatives to enhance the weight loss component of these treatments. We have demonstrated that concomitant activation GLP1R and the glucagon receptor (GCGR) can improve glucose metabolism and provide superior weight loss when compared to selective GLP1R agonism in preclinical species. This paper will highlight chemistry structure-activity relationship optimization and summarize in vivo efficacy studies toward the discovery of a once daily balanced dual agonist 12 (MK-1462), which was advanced into clinical trials.
Collapse
Affiliation(s)
- Anandan Palani
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Andrea R. Nawrocki
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Federica Orvieto
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM SpA, Via Pontina, Km 30.600, 00071 Roma, Italy
| | - Elisabetta Bianchi
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM SpA, Via Pontina, Km 30.600, 00071 Roma, Italy
| | - Emanuela Mandić
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM SpA, Via Pontina, Km 30.600, 00071 Roma, Italy
| | | | - Chunhui Huang
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Qiaolin Deng
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Nathalie Toussaint
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Erika Walsh
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Vijay Reddy
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Eric Ashley
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Huaibing He
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Sheena Mumick
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Brian Hawes
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Donald Marsh
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Mark Erion
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Ravi Nargund
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Paul E. Carrington
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| |
Collapse
|
65
|
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12:35. [PMID: 35931683 PMCID: PMC9356071 DOI: 10.1038/s41387-022-00213-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
66
|
Abstract
Tirzepatide (Mounjaro™) is a single molecule that combines dual agonism of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptors. Native GIP and GLP-1 are incretin hormones that stimulate insulin secretion and decrease glucagon secretion. GIP also plays a role in nutrient and energy metabolism, while GLP-1 also delays gastric emptying, supresses appetite and improves satiety. Eli Lilly is developing tirzepatide for the treatment of type 2 diabetes mellitus (T2DM), obesity, cardiovascular disorders in T2DM, heart failure, non-alcoholic steatohepatitis, obstructive sleep apnoea and for reducing mortality/morbidity in obesity. In May 2022, tirzepatide received its first approval in the USA to improve glycaemic control in adults with T2DM, as an adjunct to diet and exercise. Tirzepatide is in phase III development for heart failure, obesity and cardiovascular disorders in T2DM, and in phase II development for non-alcoholic steatohepatitis. This article summarizes the milestones in the development of tirzepatide leading to this first approval for T2DM.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
67
|
Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. Mol Metab 2022; 64:101550. [PMID: 35921984 PMCID: PMC9396640 DOI: 10.1016/j.molmet.2022.101550] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Tirzepatide, a dual GIP and GLP-1 receptor agonist, delivered superior glycemic control and weight loss compared to selective GLP-1 receptor (GLP-1R) agonism in patients with type 2 diabetes (T2D). These results have fueled mechanistic studies focused on understanding how tirzepatide achieves its therapeutic efficacy. Recently, we found that treatment with tirzepatide improves insulin sensitivity in humans with T2D and obese mice in concert with a reduction in circulating levels of branched-chain amino (BCAAs) and keto (BCKAs) acids, metabolites associated with development of systemic insulin resistance (IR) and T2D. Importantly, these systemic effects were found to be coupled to increased expression of BCAA catabolic genes in thermogenic brown adipose tissue (BAT) in mice. These findings led us to hypothesize that tirzepatide may lower circulating BCAAs/BCKAs by promoting their catabolism in BAT. Methods To address this question, we utilized a murine model of diet-induced obesity and employed stable-isotope tracer studies in combination with metabolomic analyses in BAT and other tissues. Results Treatment with tirzepatide stimulated catabolism of BCAAs/BCKAs in BAT, as demonstrated by increased labeling of BCKA-derived metabolites, and increases in levels of byproducts of BCAA breakdown, including glutamate, alanine, and 3-hydroxyisobutyric acid (3-HIB). Further, chronic administration of tirzepatide increased levels of multiple amino acids in BAT that have previously been shown to be elevated in response to cold exposure. Finally, chronic treatment with tirzepatide led to a substantial increase in several TCA cycle intermediates (α-ketoglutarate, fumarate, and malate) in BAT. Conclusions These findings suggest that tirzepatide induces a thermogenic-like amino acid profile in BAT, an effect that may account for reduced systemic levels of BCAAs in obese IR mice. Tirzepatide augments the catabolism of BCAA in brown adipose tissue (BAT) of obese mice. Tirzepatide promotes BCAA catabolism in BAT, despite its lower potency to activate the mouse GIPR relative to mouse GIP. Tirzepatide increases amino acids and TCA cycle intermediates in BAT, as also observed in BAT thermogenesis.
Collapse
|
68
|
Affiliation(s)
- Ele Ferrannini
- C.N.R. Institute of Clinical Physiology, 56126 Pisa, Italy
| |
Collapse
|
69
|
Gallwitz B. Clinical perspectives on the use of the GIP/GLP-1 receptor agonist tirzepatide for the treatment of type-2 diabetes and obesity. Front Endocrinol (Lausanne) 2022; 13:1004044. [PMID: 36313764 PMCID: PMC9606350 DOI: 10.3389/fendo.2022.1004044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Incretin-based therapies with glucagon-like peptide-1 receptor agonists (GLP-1RA) are already established in the treatment of type 2 diabetes (T2D). The development of novel dual- or triple-receptor agonists that bind to the receptors not only for GLP-1 but also to the receptors for glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon is intended to address different metabolic pathways for carbohydrate, lipid, and protein metabolism simultaneously. Dual- and triple-receptor agonists acting via different receptors and postreceptor pathways seem attractive in view of potentially additive or synergistic effects in the treatment of T2D and obesity. Recently, the first approval for a dual-receptor agonist marks an important step in this development. The GIP/GLP-1-receptor agonist tirzepatide was approved for the treatment of T2D by the Food and Drug Administration (FDA) in the USA for once-weekly subcutaneous injections in May 2022 and has just received a positive opinion from the European Medicines Agency (EMA). Tirzepatide dose-dependently leads to clinically significant reductions in glycemic parameters and body weight and has been shown to have stronger effects in reducing these parameters than standard antidiabetic therapy. This article summarizes the current clinical study program and the respective outcomes and highlights further potential indications for tirzepatide in the treatment of obesity and potentially other comorbidities of T2D.
Collapse
|