51
|
Lesser GJ, Case D, Stark N, Williford S, Giguere J, Garino LA, Naughton MJ, Vitolins MZ, Lively MO, Shaw EG. A randomized, double-blind, placebo-controlled study of oral coenzyme Q10 to relieve self-reported treatment-related fatigue in newly diagnosed patients with breast cancer. THE JOURNAL OF SUPPORTIVE ONCOLOGY 2013; 11:31-42. [PMID: 22682875 PMCID: PMC3501550 DOI: 10.1016/j.suponc.2012.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/16/2012] [Accepted: 03/18/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is a common antioxidant supplement with known cardioprotective effects and potential anticancer benefits. OBJECTIVES We performed a randomized, double-blind, placebo-controlled study of oral CoQ10 in female breast cancer patients with the primary objective of determining CoQ10's effects on self-reported fatigue, depression, and quality of life (QOL). Methods Eligible women with newly diagnosed breast cancer and planned adjuvant chemotherapy were randomized to oral supplements of 300 mg CoQ10 or placebo, each combined with 300 IU vitamin E, divided into 3 daily doses. Treatment was continued for 24 weeks. Blood tests, QOL measures, and levels of plasma CoQ10 and vitamin E were obtained at baseline and at 8, 16, and 24 weeks. Mixed-effects models were used to assess treatment differences in outcomes over time. RESULTS Between September 2004 and March 2009, 236 women were enrolled. Treatment arms were well balanced with respect to age (range, 28-85 years), pathologic stage (stage 0, 91%; stage 1, 8%; stage II, 1%), ethnicity (white, 87%; black, 11%; Hispanic, 2%), and planned therapy. Baseline CoQ10 levels in the CoQ10 and placebo arms were 0.70 and 0.73 microg/mL, respectively; the 24-week CoQ10 levels were 1.83 and 0.79 microg/mL, respectively. There were no significant differences between the CoQ10 and placebo arms at 24 weeks for scores on the Profile of Mood States-Fatigue questionnaire (least squares means, 7.08 vs 8.24, P = .257), the Functional Assessment of Chronic Illness Therapy-Fatigue tool (37.6 vs 37.6, P = .965), the Functional Assessment of Cancer Therapy-Breast Cancer instrument (111.9 vs 110.4, P = .577), or the Center for Epidemiologic Studies-Depression scale (11.6 vs 12.3, P = .632). CONCLUSIONS Supplementation with conventional doses of CoQ10 led to sustained increases in plasma CoQ10 levels but did not result in improved self-reported fatigue or QOL after 24 weeks of treatment.
Collapse
Affiliation(s)
- Glenn J Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Potgieter M, Pretorius E, Pepper MS. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr Rev 2013; 71:180-8. [PMID: 23452285 DOI: 10.1111/nure.12011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is the only lipid-soluble antioxidant that animal cells synthesize de novo. It is found in cell membranes and is particularly well known for its role in the electron transport chain in mitochondrial membranes during aerobic cellular respiration. A deficiency in either its bioavailability or its biosynthesis can lead to one of several disease states. Primary deficiency has been well described and results from mutations in genes involved in CoQ10 biosynthesis. Secondary deficiency may be linked to hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), which are used for the treatment of hypercholesterolemia. Dietary contributions of CoQ10 are very small, but supplementation is effective in increasing plasma CoQ10 levels. It has been clearly demonstrated that treatment with CoQ10 is effective in numerous disorders and deficiency states and that supplementation has a favorable outcome. However, CoQ10 is not routinely prescribed in clinical practice. This review explores primary as well as statin-induced secondary deficiency and provides an overview of the benefits of CoQ10 supplementation.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | |
Collapse
|
53
|
Amyotrophic lateral sclerosis. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
54
|
Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. ScientificWorldJournal 2012; 2012:491737. [PMID: 22547985 PMCID: PMC3323905 DOI: 10.1100/2012/491737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/17/2011] [Indexed: 12/12/2022] Open
Abstract
Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of "aberrant cell cycle diseases" to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberrant cell cycle reentry. In this paper, we also summarize the pharmacological approaches that interfere with classical cell cycle molecules and mitogenic pathways to block the cell cycle of tumor cells (in treatment of cancer) as well as to block the cell cycle of neurons (in treatment of CNS diseases). Since cell cycle inhibition can also block proliferation of neural progenitor cells (NPCs) and thus impair brain neurogenesis leading to cognitive deficits, we propose that future strategies aimed at cell cycle inhibition in treatment of aberrant cell cycle diseases (i.e., cancers or CNS diseases) should be designed with consideration of the important side effects on normal neurogenesis and cognition.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
55
|
A randomized, double-blind, placebo-controlled crossover study of coenzyme Q10 therapy in hypertensive patients with the metabolic syndrome. Am J Hypertens 2012; 25:261-70. [PMID: 22113168 DOI: 10.1038/ajh.2011.209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our aim was to examine the effects of adjunctive coenzyme Q(10) therapy on 24-h ambulatory blood pressure (BP) in subjects with the metabolic syndrome and inadequate BP control. METHODS In a randomized, double-blind, placebo-controlled 12-week crossover trial, coenzyme Q(10) (100 mg twice daily) or placebo was administrated to 30 subjects with the metabolic syndrome, and inadequate BP control (an average clinic BP of ≥140 systolic mm Hg or ≥130 mm Hg for patients with type 2 diabetes) while taking an unchanged, conventional antihypertensive regimen. Clinic and 24-h ambulatory BP were assessed pre- and post-treatment phases. The primary outcomes were the changes in 24-h systolic and diastolic BP during adjunctive therapy with coenzyme Q(10) vs. placebo and prespecified secondary outcomes included changes in BP loads. RESULTS Compared with placebo, treatment with coenzyme Q(10) was not associated with statistically significant reductions in systolic (P = 0.60) or diastolic 24-h ambulatory BP (P = 0.12) or heart rate (P = 0.10), although daytime diastolic BP loads, were significantly lower during coenzyme Q(10) administration with thresholds set at >90 mm Hg (P = 0.007) and ≥85 mm Hg (P = 0.03). Coenzyme Q(10) was well tolerated and was not associated with any clinically relevant changes in safety parameters. CONCLUSIONS Although it is possible that coenzyme Q(10) may improve BP control under some circumstances, any effects are likely to be smaller than reported in previous meta-analyses. Furthermore, our data suggest that coenzyme Q(10) is not currently indicated as adjunctive antihypertensive treatment for patients with the metabolic syndrome whose BP control is inadequate, despite regular antihypertensive therapy.
Collapse
|
56
|
Yerramilli-Rao P, Beal MF, Watanabe D, Kieburtz K, Blieck EAD, Kitano M, Hosoe K, Funahashi I, Cudkowicz ME. Oral repeated-dose toxicity studies of coenzyme Q10 in beagle dogs. Int J Toxicol 2012; 31:58-69. [PMID: 22267890 DOI: 10.1177/1091581811425256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To support phase III testing of coenzyme Q10 (CoQ₁₀) in humans, we conducted pharmacokinetic and toxicology studies in beagle dogs. Following single gavage administration of CoQ₁₀ at 600, 1200, 1800, or 2400 mg/kg per d no obvious dose response was observed in maximum concentration (C(max)) or area under the curve (AUC) versus time curve at the 3 highest dosages. In a repeated-dose study of CoQ₁₀ at 600, 1200, 1800, or 2400 mg/kg per d for 4 weeks, CoQ₁₀ reached steady state in plasma by 2 weeks at all dosages. Both C (max) and AUC increased with increasing dosage of CoQ₁₀. The highest plasma levels were recorded at 1800 mg/kg per d. In a 39-week chronic toxicity study of CoQ₁₀ at 1200 and 1800 mg/kg per d or placebo, CoQ₁₀ reached steady state in plasma by 13 weeks. Behaviors, blood chemistries, and detailed histopathology were normal. No deaths occurred. These results support the use of a 2400 mg/d dosage of CoQ₁₀ in human clinical trials.
Collapse
Affiliation(s)
- Padmaja Yerramilli-Rao
- Neurology Clinical Trials Unit, Massachusetts General Hospital, 13th Street, Building 149, Room 2274, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Hirano M, Garone C, Quinzii CM. CoQ(10) deficiencies and MNGIE: two treatable mitochondrial disorders. Biochim Biophys Acta Gen Subj 2012; 1820:625-31. [PMID: 22274133 DOI: 10.1016/j.bbagen.2012.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/28/2011] [Accepted: 01/10/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). SCOPE OF REVIEW Here, we describe clinical and molecular features of CoQ(10) deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ(10) deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ(10) biosynthesis, often improve with CoQ(10) supplementation. In vitro and in vivo studies of CoQ(10) deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ(10) deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE. MAJOR CONCLUSIONS CoQ(10) deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules. GENERAL SIGNIFICANCE Studies of CoQ(10) deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
58
|
Hickey MA, Zhu C, Medvedeva V, Franich NR, Levine MS, Chesselet MF. Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington's disease. Mol Cell Neurosci 2011; 49:149-57. [PMID: 22044764 DOI: 10.1016/j.mcn.2011.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/01/2011] [Accepted: 10/16/2011] [Indexed: 12/14/2022] Open
Abstract
Controversies surround the usefulness of Coenzyme Q10 (CoQ10) in Huntington's disease (HD), an autosomal dominant, fatal, neurodegenerative disease with no cure or disease modifying treatment. CoQ10, an endogenous substrate for electron transport and an anti-oxidant, has been shown in some but not all studies to improve symptoms and survival in mouse models of HD. Previous studies have been conducted in fast-progressing models that better mimic the juvenile forms of HD than the much more common middle-age onset form, possibly accounting for mixed results. Establishing the usefulness of CoQ10 to alter HD disease course in a model that better recapitulates the progressive features of the human disorder is important because clinical trials of CoQ10, which is safe and well tolerated, are being planned in patients. The CAG140 knock-in (KI) mouse model of HD in which an expanded (approximately 120) CAG repeat is inserted in the mouse gene provides a model of the mutation in the proper genomic and protein context. These mice display progressive motor, cognitive and emotional anomalies, transcriptional disturbances and late striatal degeneration. Homozygote mutant CAG140 KI mice and wild-type littermates were fed CoQ10 (0.2%, 0.6%) in chow, and behavioral and pathological markers of disease were examined. CoQ10 improved early behavioral deficits and normalized some transcriptional deficits without altering huntingtin aggregates in striatum. The lower dose (0.2%) was more beneficial than 0.6%. Similar to previous studies, this low dose also induced deleterious effects in open field and rotarod in WT mice, however these effects are of unclear clinical significance in view of the excellent safety profile of CoQ10 in humans. These data confirm that CoQ10 may be beneficial in HD but suggest that maximum benefit may be observed when treatment is begun at early stages of the disease and that dosage may be critical.
Collapse
Affiliation(s)
- Miriam A Hickey
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Structural changes and abnormal function of mitochondria have been documented in Down's syndrome (DS) cells, patients, and animal models. DS cells in culture exhibit a wide array of functional mitochondrial abnormalities including reduced mitochondrial membrane potential, reduced ATP production, and decreased oxido-reductase activity. New research has also brought to central stage the prominent role of oxidative stress in this condition. This review focuses on recent advances in the field with a particular emphasis on novel translational approaches involving the utilization of coenzyme Q(10) (CoQ(10) ) to treat a variety of clinical phenotypes associated with DS that are linked to increased oxidative stress and energy deficits. CoQ(10) has already provided promising results in several different conditions associated with altered energy metabolism and oxidative stress in the CNS. Two studies conducted in Ancona investigated the effect of CoQ(10) treatment on DNA damage in DS patients. Although the effect of CoQ(10) was evidenced only at single cell level, the treatment affected the distribution of cells according to their content in oxidized bases. In fact, it produced a strong negative correlation linking cellular CoQ(10) content and the amount of oxidized purines. Results suggest that the effect of CoQ(10) treatment in DS not only reflects antioxidant efficacy, but likely modulates DNA repair mechanisms.
Collapse
Affiliation(s)
- Luca Tiano
- Department of Biochemistry, Biology and Genetics, Polytechnic University of the Marche, Ancona, Italy.
| | | |
Collapse
|
60
|
Cozzolino M, Carrì MT. Mitochondrial dysfunction in ALS. Prog Neurobiol 2011; 97:54-66. [PMID: 21827820 DOI: 10.1016/j.pneurobio.2011.06.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
In the present article, we review the many facets of mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease due to loss of upper motor neurons in cerebral cortex and lower motor neurons in brainstem and spinal cord. Accumulating evidence from recent studies suggests that the many, interconnected facets of mitochondrial dysfunction may play a more significant role in the etiopathogenesis of this disorder than previously thought. This notion stems from our expanding knowledge of the complex physiology of mitochondria and of alteration of their properties that might confer an intrinsic susceptibility to long-lived, post-mitotic motor neurons to energy deficit, calcium mishandling and oxidative stress. The wealth of evidence implicating mitochondrial dysfunction as a major event in the pathology of ALS has prompted new studies aimed to the development of new mitochondria-targeted therapies. However, it is now clear that drugs targeting more than one aspect of mitochondrial dysfunction are needed to fight this devastating disease.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Fondazione Santa Lucia IRCCS, c/o CERC, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | |
Collapse
|
61
|
Pritchard SM, Dolan PJ, Vitkus A, Johnson GVW. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics. J Cell Mol Med 2011; 15:1621-35. [PMID: 21348938 PMCID: PMC4373356 DOI: 10.1111/j.1582-4934.2011.01273.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/08/2011] [Indexed: 11/28/2022] Open
Abstract
It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD.
Collapse
Affiliation(s)
- Susanne M Pritchard
- Gail V.W. JOHNSON, Ph.D., Department of Anesthesiology, 601 Elmwood Ave., Box 604, Rm. 4–6314, University of Rochester, Rochester, NY 14642, USA. Tel.: 585-276-3740 Fax: 585-276-2418 E-mail:
| | | | - Alisa Vitkus
- Department of Anesthesiology and the Interdepartmental Graduate Program in Neuroscience, University of RochesterRochester, NY, USA
| | - Gail VW Johnson
- Department of Anesthesiology and the Interdepartmental Graduate Program in Neuroscience, University of RochesterRochester, NY, USA
| |
Collapse
|
62
|
Rahman S, Clarke CF, Hirano M. 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q₁₀ deficiency. Neuromuscul Disord 2011; 22:76-86. [PMID: 21723727 DOI: 10.1016/j.nmd.2011.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Shamima Rahman
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, UK.
| | | | | |
Collapse
|
63
|
Atassi N, Cudkowicz ME, Schoenfeld DA. Advanced statistical methods to study the effects of gastric tube and non-invasive ventilation on functional decline and survival in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 12:272-7. [PMID: 21554030 DOI: 10.3109/17482968.2011.577786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A few studies suggest that non-invasive ventilation (1) and gastric tube (G-tube) may have a positive impact on survival but the effect on functional decline is unclear. Confounding by indication may have produced biased estimates of the benefit seen in some of these retrospective studies. The objective of this study was to evaluate the effects of G-tube and NIV on survival and functional decline using advanced statistical models that adjust for confounding by indications. A database of 331 subjects enrolled in previous clinical trials in ALS was available for analysis. Marginal structural models (MSM) were used to compare the mortality hazards and ALSFRS-R slopes between treatment and non-treatment groups, after adjusting for confounding by indication. Results showed that the placement of a G-tube was associated with an additional 1.42 units/month decline in the ALSFRS-R slope (p < 0.0001) and increased mortality hazard of 0.28 (p = 0.02). The use of NIV had no significant effect on ALSFRS-R decline or mortality. In conclusion, marginal structural models can be used to adjust for confounding by indication in retrospective ALS studies. G-tube placement could be followed by a faster rate of functional decline and increased mortality. Our results may suffer from some of the limitations of retrospective analyses.
Collapse
Affiliation(s)
- Nazem Atassi
- Massachusetts General Hospital, Harvard Medical School, USA.
| | | | | |
Collapse
|
64
|
Experimental Models of HD and Reflection on Therapeutic Strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:419-81. [DOI: 10.1016/b978-0-12-381328-2.00016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
65
|
Glover EI, Martin J, Maher A, Thornhill RE, Moran GR, Tarnopolsky MA. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve 2010; 42:739-48. [PMID: 20886510 DOI: 10.1002/mus.21758] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Case reports and open-label studies suggest that coenzyme Q(10) (CoQ(10)) treatment may have beneficial effects in mitochondrial disease patients; however, controlled trials are warranted to clinically prove its effectiveness. Thirty patients with mitochondrial cytopathy received 1200 mg/day CoQ(10) for 60 days in a randomized, double-blind, cross-over trial. Blood lactate, urinary markers of oxidative stress, body composition, activities of daily living, quality of life, forearm handgrip strength and oxygen desaturation, cycle exercise cardiorespiratory variables, and brain metabolites were measured. CoQ(10) treatment attenuated the rise in lactate after cycle ergometry, increased (∽1.93 ml) VO(2)/kg lean mass after 5 minutes of cycling (P < 0.005), and decreased gray matter choline-containing compounds (P < 0.05). Sixty days of moderate- to high-dose CoQ(10) treatment had minor effects on cycle exercise aerobic capacity and post-exercise lactate but did not affect other clinically relevant variables such as strength or resting lactate.
Collapse
Affiliation(s)
- Elisa I Glover
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
66
|
Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 2010; 19:535-54. [PMID: 20367194 DOI: 10.1517/13543781003727495] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Coenzyme Q(10) (CoQ(10)) is found in blood and in all organs. CoQ(10) deficiencies are due to autosomal recessive mutations, ageing-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer and muscular and cardiovascular diseases have been associated with low CoQ(10) levels, as well as different ataxias and encephalomyopathies. AREAS COVERED IN THIS REVIEW We review the efficacy of a variety of commercial formulations which have been developed to solubilise CoQ(10) and promote its better absorption in vivo, and its use in the therapy of pathologies associated with low CoQ(10) levels, with emphasis in the results of the clinical trials. Also, we review the use of its analogues idebenone and MitoQ. WHAT THE READER WILL GAIN This review covers the most relevant aspects related with the therapeutic use of CoQ(10), including existing formulations and their effects on its bioavailability. TAKE HOME MESSAGE CoQ(10) does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ(10) absorption. Oral CoQ(10) is a viable antioxidant strategy in many diseases, providing a significant to mild symptomatic benefit. Idebenone and MitoQ are promising substitutive CoQ(10)-related drugs which are well tolerated and safe.
Collapse
Affiliation(s)
- Jose M Villalba
- Universidad de Córdoba, Facultad de Ciencias, Departamento de Biología Celular, Fisiología e Inmunología, Campus Universitario de Rabanales, Edificio Severo Ochoa, 3a planta 14014 Córdoba, Spain.
| | | | | | | |
Collapse
|
67
|
Evans M, Sharma P, Guthrie N. A randomized, double-blind, crossover study on the pharmacokinetics of a novel formulation of CoQ₁₀ with pyridoxal 5'-phosphate and phosphatidyl choline. J Diet Suppl 2010; 7:314-24. [PMID: 22432561 DOI: 10.3109/19390211.2010.522551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pharmacokinetics of a single 30-mg dose of a novel enteric-coated coenzyme Q10 (CoQ(10)) formulation with pyridoxal 5'-phosphate and phosphatidyl choline (CoQ(10)-P5P-PC) was investigated against two comparators CoQ(10) (NPN 02176955) and CoQ(10) (DIN 02231736) in 21 healthy volunteers, with screening CoQ(10) levels of 0.8 ± 0.2 mg/L. A randomized, double-blind, crossover study was designed with a washout period of 2 weeks between each formulation and blood sampled at 2, 4, 5, 6, 8, 12, 24, 48 and 72 hr postdose. Significantly, higher plasma concentrations were demonstrated for the CoQ(10) (NPN 02176955) formulation at 6 and 8 hr postdose (p = .010 and p = .042, respectively). There were no significant differences between formulations with respect to the area under the curve, AUC((0-72 hr)), or the maximum plasma concentration (C(max)). Total CoQ(10) (T(max)) reached maximum plasma concentrations at 6.4 ± 2.5 hr after supplementation with CoQ(10) (NPN 02176955), 8.0 ± 9.8 hr with CoQ(10)-P5P-PC, and 9.5 ± 9.3 hr with CoQ(10) (DIN 02231736). The estimated elimination half-life (t(1/2)) was 92.3 hr after a single oral dose of CoQ(10)-P5P-PC, 38.2 hr with CoQ(10) (NPN 02176955), and 80.7 hr with CoQ(10) (DIN 02231736). The results suggest that CoQ(10) is available for a longer time in subjects' administered with CoQ(10)-P5P-PC in comparison with the other two formulations studied. There were no significant differences in adverse events, by severity, causality, or organ system. The CoQ(10)-P5P-PC formulation was found to be superior in the t(1/2), and it may be suggested that fewer doses are required to maintain healthy circulatory CoQ(10) levels.
Collapse
|
68
|
López LC, Quinzii CM, Area E, Naini A, Rahman S, Schuelke M, Salviati L, DiMauro S, Hirano M. Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 2010; 5:e11897. [PMID: 20689595 PMCID: PMC2912846 DOI: 10.1371/journal.pone.0011897] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Coenzyme Q(10) (CoQ(10)) and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS To test these concepts, we have evaluated the effects of CoQ(10), coenzyme Q(2) (CoQ(2)), idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ(10) deficiency. A final concentration of 5 microM of each compound was chosen to approximate the plasma concentration of CoQ(10) of patients treated with oral ubiquinone. CoQ(10) supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ(10) deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements. CONCLUSIONS/SIGNIFICANCE THESE RESULTS INDICATE THAT: 1) pharmacokinetics of CoQ(10) in reaching the mitochondrial respiratory chain is delayed; 2) short-tail ubiquinone analogs cannot replace CoQ(10) in the mitochondrial respiratory chain under conditions of CoQ(10) deficiency; and 3) oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ(10) deficiencies should be treated with CoQ(10) supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ(2). Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present.
Collapse
Affiliation(s)
- Luis C. López
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Catarina M. Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Estela Area
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Ali Naini
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Shamima Rahman
- Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom
| | - Markus Schuelke
- Department of Neuropediatrics, Charité Virchow University Hospital, Berlin, Germany
| | - Leonardo Salviati
- Servizio di Genetica Clinica ed Epidemiologica, Department of Pediatrics, University of Padova, Padova, Italy
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
69
|
Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 2010; 55:299-334. [PMID: 20471050 PMCID: PMC2989385 DOI: 10.1016/j.survophthal.2009.10.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/21/2009] [Accepted: 10/01/2009] [Indexed: 01/16/2023]
Abstract
Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Because of the predilection of mitochondrial disorders to involve the optic nerves, extraocular muscles, retina, and even the retrochiasmal visual pathways, the ophthalmologist is often the first physician to be consulted. Disorders caused by mitochondrial dysfunction can result from abnormalities in either the mitochondrial DNA or in nuclear genes which encode mitochondrial proteins. Inheritance of these mutations will follow patterns specific to their somatic or mitochondrial genetics. Genotype-phenotype correlations are inconstant, and considerable overlap may occur among these syndromes. The diagnostic approach to the patient with suspected mitochondrial disease entails a detailed personal and family history, careful ophthalmic, neurologic, and systemic examination, directed investigations, and attention to potentially life-threatening sequelae. Although curative treatments for mitochondrial disorders are currently lacking, exciting research advances are being made, particularly in the area of gene therapy. Leber hereditary optic neuropathy, with its window of opportunity for timely intervention and its accessibility to directed therapy, offers a unique model to study future therapeutic interventions. Most patients and their relatives benefit from informed genetic counseling.
Collapse
Affiliation(s)
- J. Alexander Fraser
- Departments of Ophthalmology (J.A.F., V.B., N.J.N.), Neurology (V.B., N.J.N.), and Neurological Surgery (N.J.N.), Emory University School of Medicine, Atlanta, GA
| | - Valérie Biousse
- Departments of Ophthalmology (J.A.F., V.B., N.J.N.), Neurology (V.B., N.J.N.), and Neurological Surgery (N.J.N.), Emory University School of Medicine, Atlanta, GA
| | - Nancy J. Newman
- Departments of Ophthalmology (J.A.F., V.B., N.J.N.), Neurology (V.B., N.J.N.), and Neurological Surgery (N.J.N.), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
70
|
Menalled LB, Patry M, Ragland N, Lowden PAS, Goodman J, Minnich J, Zahasky B, Park L, Leeds J, Howland D, Signer E, Tobin AJ, Brunner D. Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no benefit from CoQ10 or minocycline. PLoS One 2010; 5:e9793. [PMID: 20339553 PMCID: PMC2842438 DOI: 10.1371/journal.pone.0009793] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/16/2010] [Indexed: 12/13/2022] Open
Abstract
Previous studies of the effects of coenzyme Q10 and minocycline on mouse models of Huntington's disease have produced conflicting results regarding their efficacy in behavioral tests. Using our recently published best practices for husbandry and testing for mouse models of Huntington's disease, we report that neither coenzyme Q10 nor minocycline had significant beneficial effects on measures of motor function, general health (open field, rotarod, grip strength, rearing-climbing, body weight and survival) in the R6/2 mouse model. The higher doses of minocycline, on the contrary, reduced survival. We were thus unable to confirm the previously reported benefits for these two drugs, and we discuss potential reasons for these discrepancies, such as the effects of husbandry and nutrition.
Collapse
|
71
|
Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 2010; 48:629-41. [PMID: 19969067 DOI: 10.1016/j.freeradbiomed.2009.11.018] [Citation(s) in RCA: 443] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/16/2009] [Accepted: 11/29/2009] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by death of motor neurons leading to muscle wasting, paralysis, and death, usually within 2-3 years of symptom onset. The causes of ALS are not completely understood, and the neurodegenerative processes involved in disease progression are diverse and complex. There is substantial evidence implicating oxidative stress as a central mechanism by which motor neuron death occurs, including elevated markers of oxidative damage in ALS patient spinal cord and cerebrospinal fluid and mutations in the antioxidant enzyme superoxide dismutase 1 (SOD1) causing approximately 20% of familial ALS cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration has not been defined with certainty, and the ultimate trigger for increased oxidative stress in non-SOD1 cases remains unclear. Although some antioxidants have shown potential beneficial effects in animal models, human clinical trials of antioxidant therapies have so far been disappointing. Here, the evidence implicating oxidative stress in ALS pathogenesis is reviewed, along with how oxidative damage triggers or exacerbates other neurodegenerative processes, and we review the trials of a variety of antioxidants as potential therapies for ALS.
Collapse
Affiliation(s)
- Siân C Barber
- Academic Neurology Unit and Sheffield Care & Research Centre for Motor Neuron Disorders, Department of Neuroscience, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
72
|
Affiliation(s)
- Xin Fu
- Department of Women's and Children's Health, Obstetrics and Gynecology, Uppsala University, Uppsala
| | - Rong Ji
- National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
73
|
Choi CH, Kim SH, Shanmugam S, Baskaran R, Park JS, Yong CS, Choi HG, Yoo BK, Han K. Relative Bioavailability of Coenzyme Q10 in Emulsion and Liposome Formulations. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.1.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
74
|
Du H, Yan SS. Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol 2010; 42:560-72. [PMID: 20067840 DOI: 10.1016/j.biocel.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/04/2023]
Abstract
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Heng Du
- Department of Surgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
75
|
Nishimura A, Fujimura M, Hasegawa F, Shibata N. Pharmacokinetic Interaction between Nifedipine and Coenzyme Q10 in Rats: A New Type of Drug-Supplement Interaction. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Asako Nishimura
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Mari Fujimura
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Fuyuka Hasegawa
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Nobuhito Shibata
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
76
|
Mancuso M, Orsucci D, Calsolaro V, Choub A, Siciliano G. Coenzyme Q10 and Neurological Diseases. Pharmaceuticals (Basel) 2009; 2:134-149. [PMID: 27713230 PMCID: PMC3978538 DOI: 10.3390/ph203134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10, or ubiquinone) is a small electron carrier of the mitochondrial respiratory chain with antioxidant properties. CoQ10 supplementation has been widely used for mitochondrial disorders. The rationale for using CoQ10 is very powerful when this compound is primary decreased because of defective synthesis. Primary CoQ10 deficiency is a treatable condition, so heightened "clinical awareness" about this diagnosis is essential. CoQ10 and its analogue, idebenone, have also been widely used in the treatment of other neurodegenerative disorders. These compounds could potentially play a therapeutic role in Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of CoQ10, as well as the rationale and the role in clinical practice of CoQ10 supplementation in different neurological diseases, from primary CoQ10 deficiency to neurodegenerative disorders.
Collapse
Affiliation(s)
- Michelangelo Mancuso
- Department of Neuroscience, Neurological Clinic, University of Pisa, Tuscany, Italy.
| | - Daniele Orsucci
- Department of Neuroscience, Neurological Clinic, University of Pisa, Tuscany, Italy
| | - Valeria Calsolaro
- Department of Neuroscience, Neurological Clinic, University of Pisa, Tuscany, Italy
| | - Anna Choub
- Department of Neuroscience, Neurological Clinic, University of Pisa, Tuscany, Italy
| | - Gabriele Siciliano
- Department of Neuroscience, Neurological Clinic, University of Pisa, Tuscany, Italy
| |
Collapse
|
77
|
Lee J, Boo JH, Ryu H. The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start? Adv Drug Deliv Rev 2009; 61:1316-23. [PMID: 19716395 DOI: 10.1016/j.addr.2009.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/02/2009] [Indexed: 02/01/2023]
Abstract
Mitochondria are the power engine generating biochemical energy in the cell. Mitochondrial dysfunction and bioenergy deficiency is closely linked to the pathogenesis of neurodegenerative disorders. Mitochondria play a variety of roles by integrating extracellular signals and executing important intracellular events in neuronal survival and death. In this context, the regulation of mitochondrial function via therapeutic approaches may exert some salutary and neuroprotective mechanisms. Understanding the relationship of mitochondria-dependent pathogenesis may provide important pharmacological utility in the treatment of neurodegenerative conditions such as Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease and Parkinson's disease. Indeed, the modulation of mitochondrial pathways is rapidly emerging as a novel therapeutic target. This review focuses on how mitochondria are involved in neurodegeneration and what therapeutics are available to target mitochondrial pathways.
Collapse
|
78
|
Liu DZ, Ander BP, Sharp FR. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of central nervous system diseases. Neurobiol Dis 2009; 37:549-57. [PMID: 19944161 DOI: 10.1016/j.nbd.2009.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/10/2009] [Accepted: 11/18/2009] [Indexed: 12/12/2022] Open
Abstract
Classically, the cell cycle is regarded as the process leading to cellular proliferation. However, increasing evidence over the last decade supports the notion that neuronal cell cycle re-entry results in post-mitotic death. A mature neuron that re-enters the cell cycle can neither advance to a new G0 quiescent state nor revert to its earlier G0 state. This presents a critical dilemma to the neuron from which death may be an unavoidable but necessary outcome for adult neurons attempting to complete the cell cycle. In contrast, tumor cells that undergo aberrant cell cycle re-entry divide and can survive. Thus, cell cycle inhibition strategies are of interest in cancer treatment but may also represent an important means of protecting neurons. In this review, we put forth the concept of the "expanded cell cycle" and summarize the cell cycle proteins, signal transduction events and mitogenic molecules that can drive a neuron into the cell cycle in various CNS diseases. We also discuss the pharmacological approaches that interfere with the mitogenic pathways and prevent mature neurons from attempting cell cycle re-entry, protecting them from cell death. Lastly, future attempts at blocking the cell cycle to rescue mature neurons from injury should be designed so as to not block normal neurogenesis.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
79
|
Orsucci D, Filosto M, Siciliano G, Mancuso M. Electron transfer mediators and other metabolites and cofactors in the treatment of mitochondrial dysfunction. Nutr Rev 2009; 67:427-38. [PMID: 19674340 DOI: 10.1111/j.1753-4887.2009.00221.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders (MDs) are caused by impairment of the mitochondrial electron transport chain (ETC). The ETC is needed for oxidative phosphorylation, which provides the cell with the most efficient energy outcome in terms of ATP production. One of the pathogenic mechanisms of MDs is the accumulation of reactive oxygen species. Mitochondrial dysfunction and oxidative stress appear to also have a strong impact on the pathogenesis of neurodegenerative diseases and cancer. The treatment of MDs is still inadequate. Therapies that have been attempted include ETC cofactors, other metabolites secondarily decreased in MDs, antioxidants, and agents acting on lactic acidosis. However, the role of these dietary supplements in the treatment of the majority of MDs remains unclear. This article reviews the rationale for their use and their role in clinical practice in the context of MDs and other disorders involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daniele Orsucci
- Department of Neuroscience, Neurological Clinic, University of Pisa, Italy
| | | | | | | |
Collapse
|
80
|
Kaufmann P, Thompson JLP, Levy G, Buchsbaum R, Shefner J, Krivickas LS, Katz J, Rollins Y, Barohn RJ, Jackson CE, Tiryaki E, Lomen-Hoerth C, Armon C, Tandan R, Rudnicki SA, Rezania K, Sufit R, Pestronk A, Novella SP, Heiman-Patterson T, Kasarskis EJ, Pioro EP, Montes J, Arbing R, Vecchio D, Barsdorf A, Mitsumoto H, Levin B. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 2009; 66:235-44. [PMID: 19743457 DOI: 10.1002/ana.21743] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a devastating, and currently incurable, neuromuscular disease in which oxidative stress and mitochondrial impairment are contributing to neuronal loss. Coenzyme Q10 (CoQ10), an antioxidant and mitochondrial cofactor, has shown promise in ALS transgenic mice, and in clinical trials for neurodegenerative diseases other than ALS. Our aims were to choose between two high doses of CoQ10 for ALS, and to determine if it merits testing in a Phase III clinical trial. METHODS We designed and implemented a multicenter trial with an adaptive, two-stage, bias-adjusted, randomized, placebo-controlled, double-blind, Phase II design (n = 185). The primary outcome in both stages was a decline in the ALS Functional Rating Scale-revised (ALSFRSr) score over 9 months. Stage 1 (dose selection, 35 participants per group) compared CoQ10 doses of 1,800 and 2,700 mg/day. Stage 2 (futility test, 75 patients per group) compared the dose selected in Stage 1 against placebo. RESULTS Stage 1 selected the 2,700 mg dose. In Stage 2, the pre-specified primary null hypothesis that this dose is superior to placebo was not rejected. It was rejected, however, in an accompanying prespecified sensitivity test, and further supplementary analyses. Prespecified secondary analyses showed no significant differences between CoQ10 at 2,700 mg/day and placebo. There were no safety concerns. INTERPRETATION CoQ10 at 2,700 mg daily for 9 months shows insufficient promise to warrant Phase III testing. Given this outcome, the adaptive Phase II design incorporating a dose selection and a futility test avoided the need for a much larger conventional Phase III trial.
Collapse
Affiliation(s)
- Petra Kaufmann
- Department of Neurology, Clinical Coordinating Center, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sumien N, Heinrich KR, Shetty RA, Sohal RS, Forster MJ. Prolonged intake of coenzyme Q10 impairs cognitive functions in mice. J Nutr 2009; 139:1926-32. [PMID: 19710165 PMCID: PMC2744613 DOI: 10.3945/jn.109.110437] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coenzyme Q(10) (CoQ(10)) is widely consumed as a dietary supplement to enhance bioenergetic capacity and to ameliorate the debilitative effects of the aging process or certain pathological conditions. Our main purpose in this study was to determine whether CoQ(10) intake does indeed attenuate the age-associated losses in motor, sensory, and cognitive functions or decrease the rate of mortality in mice. Mice were fed a control nonpurified diet or that diet containing 0.68 mg/g (low dosage) or 2.6 mg/g (high dosage) CoQ(10), starting at 4 mo of age, and were tested for sensory, motor, and cognitive function at 7, 15, and 25 mo of age. Amounts of the ubiquinols CoQ(9)H(2) and CoQ(10)H(2) measured in a parallel study were augmented in the cerebral cortex but not in any other region of the brain. Intake of the low-CoQ(10) diet did not affect age-associated decrements in muscle strength, balance, coordinated running, or learning/memory, whereas intake at the higher amount increased spontaneous activity, worsened the age-related losses in acuity to auditory and shock stimuli, and impaired the spatial learning/memory of old mice. The CoQ(10) diets did not affect survivorship of mice through 25 mo of age. Our results suggest that prolonged intake of CoQ(10) in low amounts has no discernable impact on cognitive and motor functions whereas intake at higher amounts exacerbates cognitive and sensory impairments encountered in old mice. These findings do not support the notion that CoQ(10) is a fitness-enhancing or an "antiaging" substance under normal physiological conditions.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; and Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
| | - Kevin R. Heinrich
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; and Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
| | - Ritu A. Shetty
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; and Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
| | - Rajindar S. Sohal
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; and Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; and Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
82
|
Patel BP, Hamadeh MJ. Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clin Nutr 2009; 28:604-17. [PMID: 19782443 DOI: 10.1016/j.clnu.2009.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Disease pathogenesis in amyotrophic lateral sclerosis (ALS) involves a number of interconnected mechanisms all resulting in the rapid deterioration of motor neurons. The main mechanisms include enhanced free radical production, protein misfolding, aberrant protein aggregation, excitotoxicity, mitochondrial dysfunction, neuroinflammation and apoptosis. The aim of this review is to assess the efficacy of using nutrition- and exercise-related interventions to improve disease outcomes in ALS. METHODS Studies involving nutrition or exercise in human and animal models of ALS were reviewed. RESULTS Treatments conducted in animal models of ALS have not consistently translated into beneficial results in clinical trials due to poor design, lack of power and short study duration, as well as differences in the genetic backgrounds, treatment dosages and disease pathology between animals and humans. However, vitamin E, folic acid, alpha lipoic acid, lyophilized red wine, coenzyme Q10, epigallocatechin gallate, Ginkgo biloba, melatonin, Cu chelators, and regular low and moderate intensity exercise, as well as treatments with catalase and l-carnitine, hold promise to mitigating the effects of ALS, whereas caloric restriction, malnutrition and high-intensity exercise are contraindicated in this disease model. CONCLUSIONS Improved nutritional status is of utmost importance in mitigating the detrimental effects of ALS.
Collapse
Affiliation(s)
- Barkha P Patel
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
83
|
Lanka V, Cudkowicz M. Therapy development for ALS: Lessons learned and path forward. ACTA ACUST UNITED AC 2009; 9:131-40. [DOI: 10.1080/17482960802112819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
84
|
Abstract
Available data on the absorption, metabolism and pharmacokinetics of coenzyme Q10 (CoQ10) are reviewed in this paper. CoQ10 has a fundamental role in cellular bioenergetics. CoQ10 is also an important antioxidant. Because of its hydrophobicity and large molecular weight, absorption of dietary CoQ10 is slow and limited. In the case of dietary supplements, solubilized CoQ10 formulations show enhanced bioavailability. The T(max) is around 6 h, with an elimination half-life of about 33 h. The reference intervals for plasma CoQ10 range from 0.40 to 1.91 micromol/l in healthy adults. With CoQ10 supplements there is reasonable correlation between increase in plasma CoQ10 and ingested dose up to a certain point. Animal data show that CoQ10 in large doses is taken up by all tissues including heart and brain mitochondria. This has implications for therapeutic applications in human diseases, and there is evidence for its beneficial effect in cardiovascular and neurodegenerative diseases. CoQ10 has an excellent safety record.
Collapse
|
85
|
Carter BJ, Anklesaria P, Choi S, Engelhardt JF. Redox modifier genes and pathways in amyotrophic lateral sclerosis. Antioxid Redox Signal 2009; 11:1569-86. [PMID: 19187001 PMCID: PMC2842588 DOI: 10.1089/ars.2008.2414] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhanced redox-stress caused by neuroinflammation, mitochondria, and NADPH oxidases has been hypothesized to play critical roles in disease progression of amyotrophic lateral sclerosis (ALS). However, distinguishing whether the redox-stress observed in ALS is due to a primary defect in cellular reactive oxygen species metabolism/catabolism, or is a secondary consequence of neuroinflammation, has been difficult and the issue remains a matter of debate. Emerging evidence suggests that defects in genes that regulate NADPH oxidases may account for at least some forms of ALS. NADPH oxidases are key signaling complexes that influence cellular responses to growth factors and cytokines. In this context, NADPH oxidase-derived reactive oxygen species exert spatial control over the redox-dependent activation of certain pro-inflammatory receptors. Understanding the biology of how NADPH oxidases control cell signaling may help to clarify how genetic determinants of ALS lead to dysregulated pro-inflammatory signaling. This review provides a framework for understanding endosomal signaling through NADPH oxidases and potential mechanisms whereby gene defects in various forms of ALS may influence this cellular process and lead to motor neuron degeneration. Lastly, this review discusses past and current efforts to treat ALS using antioxidant therapies, as well as the limitations and advantages of each of these approaches.
Collapse
|
86
|
Hyperexcitability, persistent Na+ conductances and neurodegeneration in amyotrophic lateral sclerosis. Exp Neurol 2009; 218:1-4. [DOI: 10.1016/j.expneurol.2009.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 11/18/2022]
|
87
|
Del Signore SJ, Amante DJ, Kim J, Stack EC, Goodrich S, Cormier K, Smith K, Cudkowicz ME, Ferrante RJ. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice. ACTA ACUST UNITED AC 2009; 10:85-94. [PMID: 18618304 DOI: 10.1080/17482960802226148] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent evidence suggests that transcriptional dysregulation may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). The histone deacetylase inhibitor, sodium phenylbutyrate (NaPB), is neuroprotective and corrects aberrant gene transcription in ALS mice and has recently been shown to be safe and tolerable in ALS patients while improving hypoacetylation. Since many patients are already on riluzole, it is important to ensure that any proposed therapy does not result in negative synergy with riluzole. The combined treatment of riluzole and NaPB significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice beyond either agent alone. Combination therapy increased survival by 21.5%, compared to the separate administration of riluzole (7.5%) and NaPB (12.8%), while improving both body weight loss and grip strength. The data show that the combined treatment was synergistic. In addition, riluzole/NaPB treatment ameliorated gross lumbar and ventral horn atrophy, attenuated lumbar ventral horn neuronal cell death, and decreased reactive astrogliosis. Riluzole/NaPB administration increased acetylation at H4 and increased NF-kappaB p50 translocation to the nucleus in G93A mice, consistent with a therapeutic effect. These data suggest that NaPB may not interfere with the pharmacologic action of riluzole in ALS patients.
Collapse
|
88
|
Payne AG. Experimental regimen targeting the ependyma slows disease progression in four patients with amyotrophic lateral sclerosis. Med Hypotheses 2009; 72:548-50. [DOI: 10.1016/j.mehy.2008.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 11/21/2008] [Accepted: 12/26/2008] [Indexed: 12/12/2022]
|
89
|
Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J Neurochem 2009; 109:1427-39. [PMID: 19476553 DOI: 10.1111/j.1471-4159.2009.06074.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coenzyme Q(10) (CoQ(10)) and creatine are promising agents for neuroprotection in neurodegenerative diseases via their effects on improving mitochondrial function and cellular bioenergetics and their properties as antioxidants. We examined whether a combination of CoQ(10) with creatine can exert additive neuroprotective effects in a MPTP mouse model of Parkinson's disease, a 3-NP rat model of Huntington's disease (HD) and the R6/2 transgenic mouse model of HD. The combination of the two agents produced additive neuroprotective effects against dopamine depletion in the striatum and loss of tyrosine hydroxylase neurons in the substantia nigra pars compacta (SNpc) following chronic subcutaneous administration of MPTP. The combination treatment resulted in significant reduction in lipid peroxidation and pathologic alpha-synuclein accumulation in the SNpc neurons of the MPTP-treated mice. We also observed additive neuroprotective effects in reducing striatal lesion volumes produced by chronic subcutaneous administration of 3-NP to rats. The combination treatment showed significant effects on blocking 3-NP-induced impairment of glutathione homeostasis and reducing lipid peroxidation and DNA oxidative damage in the striatum. Lastly, the combination of CoQ(10) and creatine produced additive neuroprotective effects on improving motor performance and extending survival in the transgenic R6/2 HD mice. These findings suggest that combination therapy using CoQ(10) and creatine may be useful in the treatment of neurodegenerative diseases such as Parkinson's disease and HD.
Collapse
Affiliation(s)
- Lichuan Yang
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Brooks BR. Managing amyotrophic lateral sclerosis: slowing disease progression and improving patient quality of life. Ann Neurol 2009; 65 Suppl 1:S17-23. [PMID: 19191306 DOI: 10.1002/ana.21544] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now possible to slow the disease progression of amyotrophic lateral sclerosis (ALS), but documented improvement in the quality of life of ALS patients has been difficult to quantitate. Putative mechanisms involved in motor neuron degeneration in ALS include oxidative damage, mitochondrial dysfunction, neuroinflammation, growth factor deficiency, and glutamate excitotoxicity. Several pharmacological agents that target these potential targets have demonstrated therapeutic potential in animal models with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Many treatments that have been moderately effective in this animal model have not been successfully translated into effective treatments for humans with ALS. Only the glutamate modulator riluzole has demonstrated efficacy in clinical trials and is approved for treating ALS. Combination treatments may represent a potential therapeutic strategy to more robustly prolong life and preserve function, but only vitamin E with riluzole has been formally studied in clinical trials, and to date, no combination treatments have been found to be more effective than currently available single agents.
Collapse
Affiliation(s)
- Benjamin Rix Brooks
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
91
|
Abstract
A large body of evidence from postmortem brain tissue and genetic analysis in humans and biochemical and pathological studies in animal models (transgenic and toxin) of neurodegeneration suggest that mitochondrial dysfunction is a common pathological mechanism. Mitochondrial dysfunction from oxidative stress, mitochondrial DNA deletions, pathological mutations, altered mitochondrial morphology, and interaction of pathogenic proteins with mitochondria leads to neuronal demise. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. This review discusses the potential therapeutic efficacy of creatine, coenzyme Q10, idebenone, synthetic triterpenoids, and mitochondrial targeted antioxidants (MitoQ) and peptides (SS-31) in in vitro studies and in animal models of Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We have also reviewed the current status of clinical trials of creatine, coenzyme Q10, idebenone, and MitoQ in neurodegenerative disorders. Further, we discuss newly identified therapeutic targets, including peroxisome proliferator-activated receptor-gamma-coactivator and sirtuins, which provide promise for future therapeutic developments in neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
92
|
Spindler M, Beal MF, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 2009; 5:597-610. [PMID: 19966907 PMCID: PMC2785862 DOI: 10.2147/ndt.s5212] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson's disease and atypical Parkinson's syndromes, Huntington's disease, Alzheimer disease, Friedreich's ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Meredith Spindler
- Department of Neurology, Weill Medical, College of Cornell University, 525 east 68th Street, Suite F610, New York, NY, USA.
| | | | | |
Collapse
|
93
|
Zoccolella S, Santamato A, Lamberti P. Current and emerging treatments for amyotrophic lateral sclerosis. Neuropsychiatr Dis Treat 2009; 5:577-95. [PMID: 19966906 PMCID: PMC2785861 DOI: 10.2147/ndt.s7788] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a relatively rare neurodegenerative disorder of both upper and lower motoneurons. Currently, the management of ALS is essentially symptoms-based, and riluzole, an antiglutamatergic agent, is the only drug for the treatment of ALS approved by the food and drug administration. OBJECTIVE We reviewed current literature concerning emerging treatments for amyotrophic lateral sclerosis. METHODS A Medline literature search was performed to identify all studies on ALS treatment published from January 1st, 1986 through August 31st, 2009. We selected papers concerning only disease-modifying therapy. RESULTS Forty-eight compounds were identified and reviewed in this study. CONCLUSIONS Riluzole is the only compound that demonstrated a beneficial effect on ALS patients, but with only modest increase in survival. Although several drugs showed effective results in the animal models for ALS, none of them significantly prolonged survival or improved quality of life of ALS patients. Several factors have been implicated in explaining the predominantly negative results of numerous randomized clinical trials in ALS, including methodological problems in the use of animal-drug screening, the lack of assessment of pharmacokinetic profile of the drugs, and methodological pitfalls of clinical trials in ALS patients.
Collapse
Affiliation(s)
- Stefano Zoccolella
- Azienda Ospedaliero-Universitaria Ospedali Riuniti, Department of Medical and Neurological Sciences, Clinic of Nervous System Diseases, University of Foggia, Italy.
| | | | | |
Collapse
|
94
|
Stack EC, Matson WR, Ferrante RJ. Evidence of Oxidant Damage in Huntington's Disease: Translational Strategies Using Antioxidants. Ann N Y Acad Sci 2008; 1147:79-92. [DOI: 10.1196/annals.1427.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
95
|
Horvath R, Gorman G, Chinnery PF. How can we treat mitochondrial encephalomyopathies? Approaches to therapy. Neurotherapeutics 2008; 5:558-68. [PMID: 19019307 PMCID: PMC4514691 DOI: 10.1016/j.nurt.2008.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of diseases affecting different organs (brain, muscle, liver, and heart), and the severity of the disease is highly variable. The chronicity and heterogeneity, both clinically and genetically, means that many patients require surveillance follow-up over their lifetime, often involving multiple disciplines. Although our understanding of the genetic defects and their pathological impact underlying mitochondrial diseases has increased over the past decade, this has not been paralleled with regards to treatment. Currently, no definitive pharmacological treatment exists for patients with mitochondrial dysfunction, except for patients with primary deficiency of coenzyme Q10. Pharmacological and nonpharmacological treatments increasingly being investigated include ketogenic diet, exercise, and gene therapy. Management is aimed primarily at minimizing disability, preventing complications, and providing prognostic information and genetic counseling based on current best practice. Here, we evaluate therapies used previously and review current and future treatment modalities for both adults and children with mitochondrial disease.
Collapse
Affiliation(s)
- Rita Horvath
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| | - Grainne Gorman
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| | - Patrick F. Chinnery
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| |
Collapse
|
96
|
Abstract
Clinical trials in amyotrophic lateral sclerosis have significantly evolved over the last decade. New outcome measures have been developed that have reduced the sample size requirement as compared with survival studies. There has been increasing recognition that dose-ranging studies are crucial to full evaluation of experimental agents. While the requirements of late stage trials have not changed, many new designs have been suggested for earlier phase development. While no design achieves the perfect balance of sensitivity and efficiency, clinical trialists continue to work toward the goals of smaller and shorter trials so that more compounds can be studied concurrently.
Collapse
|
97
|
Distad BJ, Meekins GD, Liou LL, Weiss MD, Carter GT, Miller RG. Drug therapy in amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am 2008; 19:633-51, xi-xii. [PMID: 18625421 DOI: 10.1016/j.pmr.2008.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating condition characterized by progressive muscle wasting, inanition, respiratory failure, and death within approximately 2 to 5 years of onset. ALS is among the most common neuromuscular conditions, with an overall prevalence in the world of approximately 5 to 7 cases/100,000 population. Epidemiologic studies have identified some potential risk factors for developing ALS, including a high-fat, low-fiber diet; cigarette smoking; slimness and athleticism; and living in urban areas. Between 5% and 10% of ALS is genetic, with up to 11 genetic loci identified. Although understanding of the pathophysiology of this disease has advanced over the past 60 years, scant progress has been made regarding effective treatment. The authors review the current understanding of the pathogenic mechanisms of ALS and approaches to treating the disease.
Collapse
Affiliation(s)
- B Jane Distad
- Department of Neurology, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
98
|
The effect of coenzyme Q10 on the pharmacokinetic parameters of theophylline. Arch Pharm Res 2008; 31:938-44. [PMID: 18704339 DOI: 10.1007/s12272-001-1250-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/27/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Interaction of a drug with other drugs and dietary supplements is becoming an emerging issue for patients and health insurance authorities due to awareness of adverse drug event. In this study, we examined the effects of coenzyme Q10 (CoQ10), one of the most popular dietary supplements, on the pharmacokinetic parameters of theophylline in rats. The pharmacokinetic parameters of theophylline changed significantly when the drug was administered after five consecutive days of pretreatment with CoQ10. Time to reach maximum plasma concentration of theophylline delayed when the drug was administered after the pretreatment with CoQ10. Maximum plasma concentration and area under the curve of theophylline were about two-fold increased and other pharmacokinetic parameters such as half-life and volume of distribution were also changed significantly. Therefore, although CoQ10 is generally considered a safe dietary supplement, it appears that patients on theophylline therapy should use caution when they take CoQ10.
Collapse
|
99
|
Abstract
Compromised nutrition leading to weight loss is a common and significant problem in the amyotrophic lateral sclerosis (ALS) patient population. The benefit of aggressive and early nutritional therapy can profoundly influence the disease course, quality of life, and survival. This article reviews the role of nutrition, both as sustenance and treatment for patients who have ALS. Self-medication with dietary supplements has become increasingly popular within this patient population. Despite their popularity, the efficacy of these compounds has been largely unsupported by formal clinical trials. Available data will be highlighted to provide a basis upon which to advise patients requesting guidance.
Collapse
Affiliation(s)
- Jeffrey Rosenfeld
- Division of Neurology, University of California San Francisco-Fresno, Fresno, CA, USA.
| | | |
Collapse
|
100
|
Makhija N, Sendasgupta C, Kiran U, Lakshmy R, Hote MP, Choudhary SK, Airan B, Abraham R. The role of oral coenzyme Q10 in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 2008; 22:832-9. [PMID: 18834786 DOI: 10.1053/j.jvca.2008.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass (CPB) is known to induce oxidative stress. Because total antioxidant level is reduced during CPB, the supplementation of an antioxidant might help in attenuating the oxidative stress response. The authors sought to evaluate the efficacy of oral coenzyme Q10, in attenuating the oxidative stress to CPB and altering the clinical outcome in patients undergoing coronary artery bypass graft (CABG) surgery. DESIGN A prospective, randomized, single-center clinical study. SETTING A cardiothoracic center of a tertiary hospital. PARTICIPANTS Thirty patients scheduled for elective CABG surgery. INTERVENTIONS The study group (n = 15) received oral coenzyme Q10, 150 to 180 mg/d, for 7 to 10 days preoperatively, whereas the control group (n = 15) did not receive any antioxidant or placebo. The anesthesia technique was standardized in both groups. Blood samples for total antioxidant level, blood glucose level, and clinical outcome parameters up to 24 hours postoperatively were compared. MEASUREMENTS AND MAIN RESULTS There was no difference in the antioxidant level between the 2 groups at any point of time. However, in the study group, 24 hours after aortic clamp release, it was significantly higher than baseline (p < 0.05). The blood glucose was significantly lower in the study group at aortic clamp removal and 4 hours after clamp removal as compared with the control group (p = 0.01). The study group had significantly fewer reperfusion arrhythmias, lower total inotropic requirement, mediastinal drainage, blood product requirement, and shorter hospital stays compared with the control group. CONCLUSION Oral coenzyme Q10 therapy for 7 to 10 days preoperatively could improve clinical outcome in patients undergoing CABG surgery. A larger study group is recommended for confirmation.
Collapse
Affiliation(s)
- Neeti Makhija
- Department of Cardiac Anaesthesia, Cardiothoracic Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | | | | | | | | | | | | | |
Collapse
|