51
|
Clinical Speech fMRI in Children and Adolescents : Development of an Optimal Protocol and Analysis Algorithm. Clin Neuroradiol 2021; 32:185-196. [PMID: 34613421 PMCID: PMC8894226 DOI: 10.1007/s00062-021-01097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
Purpose In patients with drug-resistant focal epilepsy, surgical resection is often the only treatment option to achieve long-term seizure control. Prior to brain surgery involving potential language areas, identification of hemispheric language dominance is crucial. Our group developed and validated a functional magnetic resonance imaging (fMRI) battery of four pediatric language tasks. The present study aimed at optimizing fMRI data acquisition and analysis using these tasks. Methods We retrospectively analyzed speech fMRI examinations of 114 neuropediatric patients (age range 5.8–17.8 years) who were examined prior to possible epilepsy surgery. In order to evaluate hemispheric language dominance, 1–4 language tasks (vowel identification task VIT, word-chain task WCT, beep-story task BST, synonym task SYT) were measured. Results Language dominance was classified using fMRI activation in the 13 validly lateralizing ROIs (VLR) in frontal, temporal and parietal lobes and cerebellum of the recent validation study from our group: 47/114 patients were classified as left-dominant, 34/114 as bilateral and 6/114 as right-dominant. In an attempt to enlarge the set of VLR, we then compared for each task agreement of these ROI activations with the classified language dominance. We found four additional task-specific ROIs showing concordant activation and activation in ≥ 10 sessions, which we termed validly lateralizing (VLRnew). The new VLRs were: for VIT the temporal language area and for SYT the middle frontal gyrus, the intraparietal sulcus and cerebellum. Finally, in order to find the optimal sequence of measuring the different tasks, we analyzed the success rates of single tasks and all possible task combinations. The sequence 1) VIT 2) WCT 3) BST 4) SYT was identified as the optimal sequence, yielding the highest chance to obtain reliable results even when the fMRI examination has to be stopped, e.g., due to lack of cooperation. Conclusion Our suggested task order together with the enlarged set of VLRnew may contribute to optimize pediatric speech fMRI in a clinical setting. Supplementary Information The online version of this article (10.1007/s00062-021-01097-z) contains supplementary material, which is available to authorized users.
Collapse
|
52
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
53
|
Yan R, Zhang H, Wang J, Zheng Y, Luo Z, Zhang X, Xu Z. Application value of molecular imaging technology in epilepsy. IBRAIN 2021; 7:200-210. [PMID: 37786793 PMCID: PMC10528966 DOI: 10.1002/j.2769-2795.2021.tb00084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 10/04/2023]
Abstract
Epilepsy is a common neurological disease with various seizure types, complicated etiologies, and unclear mechanisms. Its diagnosis mainly relies on clinical history, but an electroencephalogram is also a crucial auxiliary examination. Recently, brain imaging technology has gained increasing attention in the diagnosis of epilepsy, and conventional magnetic resonance imaging can detect epileptic foci in some patients with epilepsy. However, the results of brain magnetic resonance imaging are normal in some patients. New molecular imaging has gradually developed in recent years and has been applied in the diagnosis of epilepsy, leading to enhanced lesion detection rates. However, the application of these technologies in epilepsy patients with negative brain magnetic resonance must be clarified. Thus, we reviewed the relevant literature and summarized the information to improve the understanding of the molecular imaging application value of epilepsy.
Collapse
Affiliation(s)
- Rong Yan
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hai‐Qing Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jing Wang
- Prevention and Health Care, The Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yong‐Su Zheng
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhong Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xia Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zu‐Cai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
54
|
Algahtany M, Abdrabou A, Elhaddad A, Alghamdi A. Advances in Brain Imaging Techniques for Patients With Intractable Epilepsy. Front Neurosci 2021; 15:699123. [PMID: 34421522 PMCID: PMC8377195 DOI: 10.3389/fnins.2021.699123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Intractable epilepsy, also known as drug resistance or refractory epilepsy, is a major problem affecting nearly one-third of epilepsy patients. Surgical intervention could be an option to treat these patients. Correct identification and localization of epileptogenic foci is a crucial preoperative step. Some of these patients, however, have no abnormality on routine magnetic resonance imaging (MRI) of the brain. Advanced imaging techniques, therefore, can be helpful to identify the area of concern. Moreover, a clear delineation of certain anatomical brain structures and their relation to the surgical lesion or the surgical approach is essential to avoid postoperative complications, and advanced imaging techniques can be very helpful. In this review, we discuss and highlight the use of advanced imaging techniques, particularly positron emission tomography (PET)–MRI, single-photon emission computed tomography, functional MRI, and diffusion tensor imaging–tractography for the preoperative assessment of epileptic patients.
Collapse
Affiliation(s)
- Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Abdrabou
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Ahmed Elhaddad
- Department of Radiology, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
55
|
Koop JI, Credille K, Wang Y, Loman M, Marashly A, Kim I, Lew SM, Maheshwari M. Determination of language dominance in pediatric patients with epilepsy for clinical decision-making: Correspondence of intracarotid amobarbitol procedure and fMRI modalities. Epilepsy Behav 2021; 121:108041. [PMID: 34082317 DOI: 10.1016/j.yebeh.2021.108041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
Identification of the language dominant hemisphere is an essential part of the evaluation of potential pediatric epilepsy surgery patients. Historically, language dominance has been determined using the intracarotid amobarbitol procedure (IAP), but use of functional Magnetic Resonance Imaging (fMRI) scanning is becoming more common. Few studies examine the correspondence between fMRI and IAP in pediatric samples. The current study examined the agreement of hemispheric lateralization as determined by fMRI and IAP in a consecutive sample of 10 pediatric patients with epilepsy evaluated for epilepsy surgery. Data showed a strong correlation between IAP and fMRI lateralilty indices (r=.91) and 70% agreement in determination of hemispheric dominance, despite increased demonstration of bilateral or atypical language representation in this pediatric sample. Clinical implications and interpretation challenges are discussed.
Collapse
Affiliation(s)
- Jennifer I Koop
- Department of Neurology (Neuropsychology), Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Kevin Credille
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michelle Loman
- Department of Neurology (Neuropsychology), Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ahmad Marashly
- Division of Pediatric Neurology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States
| | - Irene Kim
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohit Maheshwari
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
56
|
Phillips NL, Shatil AS, Go C, Robertson A, Widjaja E. Resting-State Functional MRI for Determining Language Lateralization in Children with Drug-Resistant Epilepsy. AJNR Am J Neuroradiol 2021; 42:1299-1304. [PMID: 33832955 DOI: 10.3174/ajnr.a7110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Task-based fMRI is a noninvasive method of determining language dominance; however, not all children can complete language tasks due to age, cognitive/intellectual, or language barriers. Task-free approaches such as resting-state fMRI offer an alternative method. This study evaluated resting-state fMRI for predicting language laterality in children with drug-resistant epilepsy. MATERIALS AND METHODS A retrospective review of 43 children with drug-resistant epilepsy who had undergone resting-state fMRI and task-based fMRI during presurgical evaluation was conducted. Independent component analysis of resting-state fMRI was used to identify language networks by comparing the independent components with a language network template. Concordance rates in language laterality between resting-state fMRI and each of the 4 task-based fMRI language paradigms (auditory description decision, auditory category, verbal fluency, and silent word generation tasks) were calculated. RESULTS Concordance ranged from 0.64 (95% CI, 0.48-0.65) to 0.73 (95% CI, 0.58-0.87), depending on the language paradigm, with the highest concordance found for the auditory description decision task. Most (78%-83%) patients identified as left-lateralized on task-based fMRI were correctly classified as left-lateralized on resting-state fMRI. No patients classified as right-lateralized or bilateral on task-based fMRI were correctly classified by resting-state fMRI. CONCLUSIONS While resting-state fMRI correctly classified most patients who had typical (left) language dominance, its ability to correctly classify patients with atypical (right or bilateral) language dominance was poor. Further study is required before resting-state fMRI can be used clinically for language mapping in the context of epilepsy surgery evaluation in children with drug-resistant epilepsy.
Collapse
Affiliation(s)
- N L Phillips
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Psychology (N.L.P.)
| | - A S Shatil
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - C Go
- Division of Neurology (C.G., E.W.)
| | - A Robertson
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - E Widjaja
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Division of Neurology (C.G., E.W.)
- Department of Diagnostic Imaging (E.W.), The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
57
|
Burkholder DB, Ritaccio AL, Shin C. Pre‐surgical Evaluation. EPILEPSY 2021:345-365. [DOI: 10.1002/9781119431893.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
58
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
59
|
Jobst BC, Conner KR, Coulter D, Fried I, Guilfoyle S, Hirsch LJ, Hogan RE, Hopp JL, Naritoku D, Plueger M, Schevon C, Smith G, Valencia I, Gaillard WD. Highlights From AES2020, a Virtual American Epilepsy Society Experience. Epilepsy Curr 2021; 21:15357597211018219. [PMID: 33998298 PMCID: PMC8512915 DOI: 10.1177/15357597211018219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to COVID-19 a live, in-person meeting was not possible for the American Epilepsy Society in 2020. An alternative, virtual event, the AES2020, was held instead. AES2020 was a great success with 4679 attendees from 70 countries. The educational content was outstanding and spanned the causes, treatments, and outcomes from epileptic encephalopathy to the iatrogenicity of epilepsy interventions to neurocognitive disabilities to the approach to neocortical epilepsies. New gene therapy approaches such as antisense oligonucleotide treatment for Dravet syndrome were introduced and neuromodulation devices were discussed. There were many other topics discussed in special interest groups and investigators' workshops. A highlight was having a Nobel prize winner speak about memory processing. Human intracranial electrophysiology contributes insights into memory processing and complements animal work. In a special COVID symposium, the impact of COVID on patients with epilepsy was reviewed. Telehealth has been expanded rapidly and may be well suited for some parts of epilepsy care. In summary, the epilepsy community was alive and engaged despite being limited to a virtual platform.
Collapse
Affiliation(s)
| | | | | | | | - Shanna Guilfoyle
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Quintiliani M, Bianchi F, Fuggetta F, Chieffo DPR, Ramaglia A, Battaglia DI, Tamburrini G. Role of high-density EEG (hdEEG) in pre-surgical epilepsy evaluation in children: case report and review of the literature. Childs Nerv Syst 2021; 37:1429-1437. [PMID: 33604716 PMCID: PMC8084826 DOI: 10.1007/s00381-021-05069-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Electrical source imaging (ESI) and especially hdEEG represent a noninvasive, low cost and accurate method of localizing epileptic zone (EZ). Such capability can greatly increase seizure freedom rate in surgically treated drug resistant epilepsy cases. Furthermore, ESI might be important in intracranial record planning. CASE REPORT We report the case of a 15 years old boy suffering from drug resistant epilepsy with a previous history of DNET removal. The patient suffered from heterogeneous seizure semiology characterized by anesthesia and loss of tone in the left arm, twisting of the jaw to the left and dysarthria accompanied by daze; lightheadedness sometimes associated with headache and dizziness and at a relatively short time distance negative myoclonus involving the left hand. Clinical evidence poorly match scalp and video EEG monitoring thus requiring hdEEG recording followed by SEEG to define surgical target. Surgery was also guided by ECoG and obtained seizure freedom. DISCUSSION ESI offers an excellent estimate of EZ, being hdEEG and intracranial recordings especially important in defining it. We analyzed our results together with the data from the literature showing how in children hdEEG might be even more crucial than in adults due to the heterogeneity in seizures phenomenology. The complexity of each case and the technical difficulties in dealing with children, stress even more the importance of a noninvasive tool for diagnosis. In fact, hdEEG not only guided in the presented case SEEG planning but may also in the future offer the possibility to replace it.
Collapse
Affiliation(s)
- Michela Quintiliani
- Infantile Neuropsychiatry, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Federico Bianchi
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.
| | - Filomena Fuggetta
- Infantile Neuropsychiatry, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | | | - Antonia Ramaglia
- Institute of Radiology, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Domenica Immacolata Battaglia
- Infantile Neuropsychiatry, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianpiero Tamburrini
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
61
|
Feasibility, Contrast Sensitivity and Network Specificity of Language fMRI in Presurgical Evaluation for Epilepsy and Brain Tumor Surgery. Brain Topogr 2021; 34:511-524. [PMID: 33837867 DOI: 10.1007/s10548-021-00839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
Language fMRI has become an integral part of the planning process in brain surgery. However, fMRI may suffer from confounding factors both on the patient side, as well as on the provider side. In this study, we investigate how patient-related confounds affect the ability of the patient to perform language fMRI tasks (feasibility), the task sensitivity from an image contrast point of view, and the anatomical specificity of expressive and receptive language fMRI protocols. 104 patients were referred for language fMRI in the context of presurgical procedures for epilepsy and brain tumor surgery. Four tasks were used: (1) a verbal fluency (VF) task to map vocabulary use, (2) a semantic description (SD) task to map sentence formation/semantic integration skills, (3) a reading comprehension (RC) task and (4) a listening comprehension (LC) task. Feasibility was excellent in the LC task (100%), but in the acceptable to mediocre range for the rest of the tasks (SD: 87.50%, RC: 85.57%, VF: 67.30%). Feasibility was significantly confounded by age (p = 0.020) and education level (p = 0.003) in VF, by education level (p = 0.004) and lesion laterality (p = 0.019) in SD and by age (p = 0.001), lesion laterality (p = 0.007) and lesion severity (p = 0.048) in RC. All tasks were comparable regarding sensitivity in generating statistically significant image contrast (VF: 90.00%, SD: 92.30%, RC: 93.25%, LC: 88.46%). The lobe of the lesion (p = 0.005) and the age (p = 0.009) confounded contrast sensitivity in the VF and SD tasks respectively. Both VF and LC tasks demonstrated unilateral lateralization of posterior language areas; only the LC task showed unilateral lateralization of anterior language areas. Our study highlights the effects of patient-related confounding factors on language fMRI and proposes LC as the most feasible, less confounded, and efficiently lateralizing task in the clinical presurgical context.
Collapse
|
62
|
Han Y, Tong X, Wang X, Teng F, Deng Q, Zhou J, Guan Y, Yan Z, Chen L, Luan G, Wang M. A concordance study determining language dominance between navigated transcranial magnetic stimulation and the Wada test in patients with drug-resistant epilepsy. Epilepsy Behav 2021; 117:107711. [PMID: 33636527 DOI: 10.1016/j.yebeh.2020.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It remains unclear whether transcranial magnetic stimulation (TMS) can replace the Wada test to determine language hemisphere dominance (HD). Using the Wada test as the gold standard, this study aimed to investigate the accuracy of navigated TMS (nTMS) in determining language HD. METHODS This study enrolled nine right-handed patients with drug-resistant epilepsy. We hypothesized that application of nTMS to language-related areas of the language-dominant hemisphere would induce positive manifestation of language dysfunction (LD). To test our hypothesis, the patients were instructed to perform a visual object-naming task while nTMS was applied to the anterior (e.g., Broca's area) and posterior (e.g., Wernicke's area) regions, which are closely related to language processing. The Wada test result was used as the gold standard, and the diagnostic value of nTMS was assessed using the Kappa consistency test. RESULTS The nTMS-induced LD positive rate for the bilateral anterior language areas (85.7%) was higher than that for the posterior language areas (57.1%). There was high consistency between nTMS stimulation of the left anterior and posterior language areas and the Wada test results for determining language HD. In contrast, the consistency of stimulation of the right anterior and posterior transfer sites was moderate (Kappa value = 0.545, P = 0.171) and low, respectively. For the latter, no statistical calculation was performed because stimulation of the right posterior speech area was negative in all patients compared with the Wada test results. CONCLUSIONS Our findings revealed that using nTMS to stimulate language-related left anterior and posterior areas could predict language HD with high accuracy. When the stimulation performance of these areas is positive, nTMS and the Wada test are equally accurate. Observing only negative performance may indicate that language HD has been transferred to the right side.
Collapse
Affiliation(s)
- Yixian Han
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xuezhi Tong
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Fei Teng
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Qinqin Deng
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Zhaofen Yan
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Lingling Chen
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China.
| | - Mengyang Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
63
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
64
|
Perven G, Podkorytova I, Ding K, Agostini M, Alick S, Das R, Dave H, Dieppa M, Doyle A, Harvey J, Lega B, Zepeda R, Hays R. Non-lesional mesial temporal lobe epilepsy requires bilateral invasive evaluation. Epilepsy Behav Rep 2021; 15:100441. [PMID: 33898964 PMCID: PMC8058515 DOI: 10.1016/j.ebr.2021.100441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bilateral ictal onsets may lead to surgery failure in mesial temporal lobe epilepsy. Bitemporal SEEG seizures were recorded despite of unilateral non-invasive tests. Patients with non-lesional MTLE need bitemporal invasive evaluation before resection.
Purpose Mesial temporal lobe epilepsy (MTLE) usually responds well to surgical treatment, although in non-lesional cases up to 50% of patients experience seizure relapse. The possibility of bilateral independent seizure onset should be considered as a reason for epilepsy surgery failure. Methods In a cohort of 177 patients who underwent invasive presurgical evaluation with stereo-tactically placed electrodes in two level four epilepsy centers, 29 had non-lesional MTLE. Invasive evaluation results are described. Results Among 29 patients with non-lesional MRI and mesial temporal lobe seizure onset recorded during stereo-EEG (SEEG) evaluation, four patients with unilateral preimplantation hypothesis had independent bilateral mesial temporal seizures on SEEG despite of unilateral non-invasive evaluation data. Three of these patients were treated with bitemporal responsive neurostimulator system (RNS). Independent bilateral mesial temporal seizures have been confirmed on RNS ECoG (electrocorticography). The fourth patient underwent right anterior temporal lobectomy. Conclusion We propose that patients with non-lesional mesial temporal lobe epilepsy would benefit from bilateral invasive evaluation of mesial temporal structures to predict those patients who would be at most risk for surgical failure. Neurostimulaiton could be an initial treatment option for patients with independent bitemporal seizure onset.
Collapse
Affiliation(s)
- Ghazala Perven
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Irina Podkorytova
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Kan Ding
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Mark Agostini
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Sasha Alick
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Rohit Das
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Hina Dave
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Marisara Dieppa
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Alexander Doyle
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Jay Harvey
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Bradley Lega
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA.,Department of Neurosurgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8855, USA
| | - Rodrigo Zepeda
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| | - Ryan Hays
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8508, USA
| |
Collapse
|
65
|
Olaru M, Nillo RM, Mukherjee P, Sugrue LP. A quantitative approach for measuring laterality in clinical fMRI for preoperative language mapping. Neuroradiology 2021; 63:1489-1500. [PMID: 33772347 PMCID: PMC8376727 DOI: 10.1007/s00234-021-02685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Purpose fMRI is increasingly used for presurgical language mapping, but lack of standard methodology has made it difficult to combine/compare data across institutions or determine the relative efficacy of different approaches. Here, we describe a quantitative analytic framework for determining language laterality in clinical fMRI that addresses these concerns. Methods We retrospectively analyzed fMRI data from 59 patients who underwent presurgical language mapping at our institution with identical imaging and behavioral protocols. First, we compared the efficacy of different regional masks in capturing language activations. Then, we systematically explored how laterality indices (LIs) computed from these masks vary as a function of task and activation threshold. Finally, we determined the percentile threshold that maximized the correlation between the results of our LI approach and the laterality assessments from the original clinical radiology reports. Results First, we found that a regional mask derived from a meta-analysis of the fMRI literature better captured language task activations than masks based on anatomically defined language areas. Then, we showed that an LI approach based on this functional mask and percentile thresholding of subject activation can quantify the relative ability of different language tasks to lateralize language function at the population level. Finally, we determined that the 92nd percentile of subject-level activation provides the optimal LI threshold with which to reproduce the original clinical reports. Conclusion A quantitative framework for determining language laterality that uses a functionally-derived language mask and percentile thresholding of subject activation can combine/compare results across tasks and patients and reproduce clinical assessments of language laterality. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02685-z.
Collapse
Affiliation(s)
- Maria Olaru
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Nillo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Leo P Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
66
|
Szaflarski JP. Thalamus and Seizures-Here We Come Again…. Epilepsy Curr 2021; 21:1535759721998407. [PMID: 33663247 PMCID: PMC8609598 DOI: 10.1177/1535759721998407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
[Box: see text].
Collapse
|
67
|
Karami M, Mehvari Habibabadi J, Nilipour R, Barekatain M, Gaillard WD, Soltanian-Zadeh H. Presurgical Language Mapping in Patients With Intractable Epilepsy: A Review Study. Basic Clin Neurosci 2021; 12:163-176. [PMID: 34925713 PMCID: PMC8672671 DOI: 10.32598/bcn.12.2.2053.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 11/08/2020] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION about 20% to 30% of patients with epilepsy are diagnosed with drug-resistant epilepsy and one third of these are candidates for epilepsy surgery. Surgical resection of the epileptogenic tissue is a well-established method for treating patients with intractable focal epilepsy. Determining language laterality and locality is an important part of a comprehensive epilepsy program before surgery. Functional Magnetic Resonance Imaging (fMRI) has been increasingly employed as a non-invasive alternative method for the Wada test and cortical stimulation. Sensitive and accurate language tasks are essential for any reliable fMRI mapping. METHODS The present study reviews the methods of presurgical fMRI language mapping and their dedicated fMRI tasks, specifically for patients with epilepsy. RESULTS Different language tasks including verbal fluency are used in fMRI to determine language laterality and locality in different languages such as Persian. there are some considerations including the language materials and technical protocols for task design that all presurgical teams should take into consideration. CONCLUSION Accurate presurgical language mapping is very important to preserve patients language after surgery. This review was the first part of a project for designing standard tasks in Persian to help precise presurgical evaluation and in Iranian PWFIE.
Collapse
Affiliation(s)
- Mahdieh Karami
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Reza Nilipour
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Majid Barekatain
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - William D. Gaillard
- Center for Neuroscience and Behavioral Health, Children’s National Medical Center, George Washington University, Washington, D.C. USA
| | - Hamid Soltanian-Zadeh
- Departments of Communication, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
68
|
de Souza MC, de Paulo CO, Miyashiro L, Twardowschy CA. Comparison of screening tests in the evaluation of cognitive status of patients with epilepsy. Dement Neuropsychol 2021; 15:145-152. [PMID: 33907608 PMCID: PMC8049568 DOI: 10.1590/1980-57642021dn15-010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epilepsy, a chronic neurological condition which is associated with
neurobiological and psychosocial changes, affects 0.5 to 1% of the world's
population, presenting in most cases a deficit in reasoning, memory and
attention.
Collapse
Affiliation(s)
| | | | - Larissa Miyashiro
- Medicine School, Pontifícia Universidade Católica do Paraná - Curitiba, PR, Brazil
| | | |
Collapse
|
69
|
Mbwana JS, You X, Ailion A, Fanto EJ, Krishnamurthy M, Sepeta LN, Newport EL, Vaidya CJ, Berl MM, Gaillard WD. Functional connectivity hemispheric contrast (FC-HC): A new metric for language mapping. Neuroimage Clin 2021; 30:102598. [PMID: 33858809 PMCID: PMC8102641 DOI: 10.1016/j.nicl.2021.102598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Development of a task-free method for presurgical mapping of language function is important for use in young or cognitively impaired patients. Resting state connectivity fMRI (RS-fMRI) is a task-free method that may be used to identify cognitive networks. We developed a voxelwise RS-fMRI metric, Functional Connectivity Hemispheric Contrast (FC-HC), to map the language network and determine language laterality through comparison of within-hemispheric language network connections (Integration) to cross-hemispheric connections (Segregation). For the first time, we demonstrated robustness and efficacy of a RS-fMRI metric to map language networks across five groups (total N = 243) that differed in MRI scanning parameters, fMRI scanning protocols, age, and development (typical vs pediatric epilepsy). The resting state FC-HC maps for the healthy pediatric and adult groups showed higher values in the left hemisphere, and had high agreement with standard task language fMRI; in contrast, the epilepsy patient group map was bilateral. FC-HC has strong but not perfect agreement with task fMRI and thus, may reflect related and complementary information about language plasticity and compensation.
Collapse
Affiliation(s)
- Juma S Mbwana
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Xiaozhen You
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Alyssa Ailion
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Eleanor J Fanto
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Manu Krishnamurthy
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Leigh N Sepeta
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Elissa L Newport
- Department of Neurology, Georgetown University Medical Center, 37th and O Street, N.W., Washington, DC 20057, United States.
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, United States.
| | - Madison M Berl
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - William D Gaillard
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| |
Collapse
|
70
|
Utility of Preoperative Blood-Oxygen-Level-Dependent Functional MR Imaging in Patients with a Central Nervous System Neoplasm. Neuroimaging Clin N Am 2021; 31:93-102. [PMID: 33220831 PMCID: PMC10040207 DOI: 10.1016/j.nic.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional neuroimaging provides means to understand the relationship between brain structure and associated functions. Functional MR (fMR) imaging can offer a unique insight into preoperative planning for central nervous system (CNS) neoplasms by identifying areas of the brain effected or spared by the neoplasm. BOLD (blood-oxygen-level-dependent) fMR imaging can be reliably used to map eloquent cortex presurgically and is sufficiently accurate for neurosurgical planning. In patients with brain tumors undergoing neurosurgical intervention, fMR imaging can decrease postoperative morbidity. This article discusses the applications, significance, and interpretation of BOLD fMR imaging, and its applications in presurgical planning for CNS neoplasms.
Collapse
|
71
|
Cascino GD, Brinkmann BH. Advances in the Surgical Management of Epilepsy: Drug-Resistant Focal Epilepsy in the Adult Patient. Neurol Clin 2020; 39:181-196. [PMID: 33223082 DOI: 10.1016/j.ncl.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pharmacoresistant seizures occur in nearly one-third of people with epilepsy. Medial temporal lobe and lesional epilepsy are the most favorable surgically remediable epileptic syndromes. Successful surgery may render the patient seizure-free, reduce antiseizure drug(s) adverse effects, improve quality of life, and decrease mortality. Surgical management should not be considered a procedure of "last resort." Despite the results of randomized controlled trials, surgery remains an underutilized treatment modality for patients with drug-resistant epilepsy (DRE). Important disparities affect patient referral and selection for surgical treatment. This article discusses the advances in surgical treatment of DRE in adults with focal seizures.
Collapse
Affiliation(s)
| | - Benjamin H Brinkmann
- Mayo Clinic, Department of Neurology, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
72
|
Trébuchon A, Liégeois-Chauvel C, Gonzalez-Martinez JA, Alario FX. Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy. Epilepsy Behav 2020; 112:107407. [PMID: 33181892 DOI: 10.1016/j.yebeh.2020.107407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
A crucial element of the surgical treatment of medically refractory epilepsy is to delineate cortical areas that must be spared in order to avoid clinically relevant neurological and neuropsychological deficits postoperatively. For each patient, this typically necessitates determining the language lateralization between hemispheres and language localization within hemisphere. Understanding cortical language systems is complicated by two primary challenges: the extent of the neural tissue involved and the substantial variability across individuals, especially in pathological populations. We review the contributions made through the study of electrophysiological activity to address these challenges. These contributions are based on the techniques of magnetoencephalography (MEG), intracerebral recordings, electrical-cortical stimulation (ECS), and the electrovideo analyses of seizures and their semiology. We highlight why no single modality alone is adequate to identify cortical language systems and suggest avenues for improving current practice.
Collapse
Affiliation(s)
- Agnès Trébuchon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA
| | | | - F-Xavier Alario
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA; Aix-Marseille Univ, CNRS, LPC, Marseille, France.
| |
Collapse
|
73
|
Abstract
During the past decade, functional MR imaging has rapidly moved from the research environment into clinical practice. Preoperative functional MR imaging is now standard clinical practice not only in major academic institutions, but also in community neurosurgical and neuroradiologic practices. The clinical use of functional MR imaging will only increase in the years to come. Application of functional MR imaging (including resting-state functional MR imaging) to the context of neuropsychiatric diseases is likely to continue to advance.
Collapse
|
74
|
|
75
|
Omisade A, O'Grady C, Sadler RM. Divergence between functional magnetic resonance imaging and clinical indicators of language dominance in preoperative language mapping. Hum Brain Mapp 2020; 41:3867-3877. [PMID: 32519808 PMCID: PMC7469800 DOI: 10.1002/hbm.25092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/31/2020] [Accepted: 05/24/2020] [Indexed: 11/06/2022] Open
Abstract
Accurate determination of hemispheric language dominance prior to epilepsy surgery is critically important to minimize cognitive morbidity. Functional MRI (fMRI) is a noninvasive method that is highly concordant with other clinical indicators of language laterality, and is now commonly used to confirm language dominance. However, there is also a high frequency of divergence between fMRI findings and other clinical indices that complicate determination of dominance and surgical decision-making in individual patients. Despite this, divergent cases are rarely published or discussed. This article provides three illustrative examples to demonstrate common scenarios where fMRI may produce conflicting or otherwise difficult-to-interpret findings. We will also discuss potential reasons for divergence and propose a flow-chart to aid clinical decision making in such situations.
Collapse
Affiliation(s)
- Antonina Omisade
- Acquired Brain Injury (Epilepsy Program), Nova Scotia Health Authority, Halifax, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, Canada
| | - Christopher O'Grady
- Department of Research, Nova Scotia Health Authority, Halifax, Canada.,Biomedical Translational Imaging Centre, Halifax, Canada
| | - R Mark Sadler
- Department of Medicine, Division of Neurology, Dalhousie University, Halifax, Canada
| |
Collapse
|
76
|
Patterns and predictors of language representation and the influence of epilepsy surgery on language reorganization in children and young adults with focal lesional epilepsy. PLoS One 2020; 15:e0238389. [PMID: 32898166 PMCID: PMC7478845 DOI: 10.1371/journal.pone.0238389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mapping brain functions is crucial for neurosurgical planning in patients with drug-resistant seizures. However, presurgical language mapping using either functional or structural networks can be challenging, especially in children. In fact, most of the evidence on this topic derives from cross-sectional or retrospective studies in adults submitted to anterior temporal lobectomy. In this prospective study, we used fMRI and DTI to explore patterns of language representation, their predictors and impact on cognitive performances in 29 children and young adults (mean age at surgery: 14.6 ± 4.5 years) with focal lesional epilepsy. In 20 of them, we also assessed the influence of epilepsy surgery on language lateralization. All patients were consecutively enrolled at a single epilepsy surgery center between 2009 and 2015 and assessed with preoperative structural and functional 3T brain MRI during three language tasks: Word Generation (WG), Rhyme Generation (RG) and a comprehension task. We also acquired DTI data on arcuate fasciculus in 24 patients. We first assessed patterns of language representation (relationship of activations with the epileptogenic lesion and Laterality Index (LI)) and then hypothesized a causal model to test whether selected clinical variables would influence the patterns of language representation and the ensuing impact of the latter on cognitive performances. Twenty out of 29 patients also underwent postoperative language fMRI. We analyzed possible changes of fMRI and DTI LIs and their clinical predictors. Preoperatively, we found atypical language lateralization in four patients during WG task, in one patient during RG task and in seven patients during the comprehension task. Diffuse interictal EEG abnormalities predicted a more atypical language representation on fMRI (p = 0.012), which in turn correlated with lower attention (p = 0.036) and IQ/GDQ scores (p = 0.014). Postoperative language reorganization implied shifting towards atypical language representation. Abnormal postoperative EEG (p = 0.003) and surgical failures (p = 0.015) were associated with more atypical language lateralization, in turn correlating with worsened fluency. Neither preoperative asymmetry nor postoperative DTI LI changes in the arcuate fasciculus were observed. Focal lesional epilepsy associated with diffuse EEG abnormalities may favor atypical language lateralization and worse cognitive performances, which are potentially reversible after successful surgery.
Collapse
|
77
|
Caciagli L, Allen LA, He X, Trimmel K, Vos SB, Centeno M, Galovic M, Sidhu MK, Thompson PJ, Bassett DS, Winston GP, Duncan JS, Koepp MJ, Sperling MR. Thalamus and focal to bilateral seizures: A multiscale cognitive imaging study. Neurology 2020; 95:e2427-e2441. [PMID: 32847951 PMCID: PMC7682917 DOI: 10.1212/wnl.0000000000010645] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the functional correlates of recurrent secondarily generalized seizures in temporal lobe epilepsy (TLE) using task-based fMRI as a framework to test for epilepsy-specific network rearrangements. Because the thalamus modulates propagation of temporal lobe onset seizures and promotes cortical synchronization during cognition, we hypothesized that occurrence of secondarily generalized seizures, i.e., focal to bilateral tonic-clonic seizures (FBTCS), would relate to thalamic dysfunction, altered connectivity, and whole-brain network centrality. METHODS FBTCS occur in a third of patients with TLE and are a major determinant of disease severity. In this cross-sectional study, we analyzed 113 patients with drug-resistant TLE (55 left/58 right), who performed a verbal fluency fMRI task that elicited robust thalamic activation. Thirty-three patients (29%) had experienced at least one FBTCS in the year preceding the investigation. We compared patients with TLE-FBTCS to those without FBTCS via a multiscale approach, entailing analysis of statistical parametric mapping (SPM) 12-derived measures of activation, task-modulated thalamic functional connectivity (psychophysiologic interaction), and graph-theoretical metrics of centrality. RESULTS Individuals with TLE-FBTCS had less task-related activation of bilateral thalamus, with left-sided emphasis, and left hippocampus than those without FBTCS. In TLE-FBTCS, we also found greater task-related thalamotemporal and thalamomotor connectivity, and higher thalamic degree and betweenness centrality. Receiver operating characteristic curves, based on a combined thalamic functional marker, accurately discriminated individuals with and without FBTCS. CONCLUSIONS In TLE-FBTCS, impaired task-related thalamic recruitment coexists with enhanced thalamotemporal connectivity and whole-brain thalamic network embedding. Altered thalamic functional profiles are proposed as imaging biomarkers of active secondary generalization.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA.
| | - Luke A Allen
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Xiaosong He
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Karin Trimmel
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Sjoerd B Vos
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Maria Centeno
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Marian Galovic
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Meneka K Sidhu
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Pamela J Thompson
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Danielle S Bassett
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Gavin P Winston
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - John S Duncan
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Matthias J Koepp
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Michael R Sperling
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
78
|
Yazbek S, Smayra T, Mallak I, Hage S, Sleilaty G, Atat C, Abdel Hay J, Moussa R. Functional MRI study of language organization in left-handed and right-handed trilingual subjects. Sci Rep 2020; 10:13165. [PMID: 32759954 PMCID: PMC7406510 DOI: 10.1038/s41598-020-70167-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Functional MRI (fMRI) is gaining importance in the preoperative assessment of language. Selecting the appropriate language to test by fMRI in trilingual patients is intricate. Our objective is to compare fMRI maps for all three languages in left- and right-handed trilingual subjects. 15 right- and 15 left-handed trilingual volunteers were included in the study. We performed fMRI for each volunteer with a visual responsive naming paradigm that was repeated three times, once in each language. The activated areas and the laterality indices were calculated and correlation with the age of acquisition and proficiency of each language was determined. Strong statistical correlation was found between the Laterality Index (LI) of the three languages, in both the right and left-handed groups. Discordant lateralization of language was only observed in four left-handed subjects who demonstrated bilateral and left-lateralization. In right-handed subjects, the activation maps for the first and the second acquired language were similar. The largest activation was seen with the last acquired language. Irrespective of language proficiency and age of acquisition, the language lateralization might change for left-handed subjects. In right-handed subjects, there is no change and the last acquired language results in the largest activation. fMRI performed for a single language can accurately determine language lateralization in right-handed subjects, whereas in left-handed subjects, it is mandatory to test all languages.
Collapse
Affiliation(s)
- Sandrine Yazbek
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon.
| | - Tarek Smayra
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Iyad Mallak
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Stephanie Hage
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Ghassan Sleilaty
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Chirine Atat
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Joe Abdel Hay
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| | - Ronald Moussa
- Hotel Dieu de France Hospital, Boulevard Alfred Naccache, Achrafieh, PO Box: 166830, Beirut, Lebanon
| |
Collapse
|
79
|
Luckett P, Lee JJ, Park KY, Dierker D, Daniel AGS, Seitzman BA, Hacker CD, Ances BM, Leuthardt EC, Snyder AZ, Shimony JS. Mapping of the Language Network With Deep Learning. Front Neurol 2020; 11:819. [PMID: 32849247 PMCID: PMC7419701 DOI: 10.3389/fneur.2020.00819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Pre-surgical functional localization of eloquent cortex with task-based functional MRI (T-fMRI) is part of the current standard of care prior to resection of brain tumors. Resting state fMRI (RS-fMRI) is an alternative method currently under investigation. Here, we compare group level language localization using T-fMRI vs. RS-fMRI analyzed with 3D deep convolutional neural networks (3DCNN). Methods: We analyzed data obtained in 35 patients with brain tumors that had both language T-fMRI and RS-MRI scans during pre-surgical evaluation. The T-fMRI data were analyzed using conventional techniques. The language associated resting state network was mapped using a 3DCNN previously trained with data acquired in >2,700 normal subjects. Group level results obtained by both methods were evaluated using receiver operator characteristic analysis of probability maps of language associated regions, taking as ground truth meta-analytic maps of language T-fMRI responses generated on the Neurosynth platform. Results: Both fMRI methods localized major components of the language system (areas of Broca and Wernicke). Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion: 3DCNN was able to accurately localize the language network. Additionally, 3DCNN performance was remarkably tolerant of a limited quantity of RS-fMRI data.
Collapse
Affiliation(s)
- Patrick Luckett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andy G. S. Daniel
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric C. Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
80
|
Park KY, Lee JJ, Dierker D, Marple LM, Hacker CD, Roland JL, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Shimony JS, Snyder AZ, Leuthardt EC. Mapping language function with task-based vs. resting-state functional MRI. PLoS One 2020; 15:e0236423. [PMID: 32735611 PMCID: PMC7394427 DOI: 10.1371/journal.pone.0236423] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Background Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. Purpose To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. Methods We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. Results Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura M. Marple
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jarod L. Roland
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mikhail Milchenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle M. Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tammie L. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
81
|
Caciagli L, Wandschneider B, Centeno M, Vollmar C, Vos SB, Trimmel K, Long L, Xiao F, Lowe AJ, Sidhu MK, Thompson PJ, Winston GP, Duncan JS, Koepp MJ. Motor hyperactivation during cognitive tasks: An endophenotype of juvenile myoclonic epilepsy. Epilepsia 2020; 61:1438-1452. [PMID: 32584424 PMCID: PMC7681252 DOI: 10.1111/epi.16575] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is the most common genetic generalized epilepsy syndrome. Myoclonus may relate to motor system hyperexcitability and can be provoked by cognitive activities. To aid genetic mapping in complex neuropsychiatric disorders, recent research has utilized imaging intermediate phenotypes (endophenotypes). Here, we aimed to (a) characterize activation profiles of the motor system during different cognitive tasks in patients with JME and their unaffected siblings, and (b) validate those as endophenotypes of JME. METHODS This prospective cross-sectional investigation included 32 patients with JME, 12 unaffected siblings, and 26 controls, comparable for age, sex, handedness, language laterality, neuropsychological performance, and anxiety and depression scores. We investigated patterns of motor system activation during episodic memory encoding and verb generation functional magnetic resonance imaging (fMRI) tasks. RESULTS During both tasks, patients and unaffected siblings showed increased activation of motor system areas compared to controls. Effects were more prominent during memory encoding, which entailed hand motion via joystick responses. Subgroup analyses identified stronger activation of the motor cortex in JME patients with ongoing seizures compared to seizure-free patients. Receiver-operating characteristic curves, based on measures of motor activation, accurately discriminated both patients with JME and their siblings from healthy controls (area under the curve: 0.75 and 0.77, for JME and a combined patient-sibling group against controls, respectively; P < .005). SIGNIFICANCE Motor system hyperactivation represents a cognitive, domain-independent endophenotype of JME. We propose measures of motor system activation as quantitative traits for future genetic imaging studies in this syndrome.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Britta Wandschneider
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Maria Centeno
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Epilepsy UnitHospital Clínic de BarcelonaBarcelonaSpain
| | - Christian Vollmar
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyLondonUK
| | - Karin Trimmel
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Lili Long
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyXiangya Hospital of Central South UniversityChangshaChina
| | - Fenglai Xiao
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduChina
| | - Alexander J. Lowe
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyQueen's UniversityKingstonONCanada
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| |
Collapse
|
82
|
Soltysik DA. Optimizing data processing to improve the reproducibility of single-subject functional magnetic resonance imaging. Brain Behav 2020; 10:e01617. [PMID: 32307927 PMCID: PMC7303387 DOI: 10.1002/brb3.1617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION High reproducibility is critical for ensuring the confidence needed to use functional magnetic resonance imaging (fMRI) activation maps for presurgical planning. METHODS In this study, the comparison of different motion correction methods, spatial smoothing methods, regression methods, and thresholding methods was performed to see whether specific data processing methods can be employed to improve the reproducibility of single-subject fMRI activation. Three test-retest metrics were used: the percent difference in activation volume (PDAV), the difference in the center of mass (DCM), and the Dice Similarity Coefficient (DSC). RESULTS The PDAV was minimized when using little or no spatial smoothing and AMPLE thresholding. The DCM was minimized when using affine motion correction and little or no spatial smoothing. The DSC was improved when using affine motion correction and generous spatial smoothing. However, it is believed that the overlap metric may be unsuitable for testing fMRI reproducibility. CONCLUSION Processing methods to improve fMRI reproducibility were determined. Importantly, the processing methods needed to improve reproducibility were dependent on the fMRI activation metric of interest.
Collapse
Affiliation(s)
- David A Soltysik
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Office of Medical Products and Tobacco, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
83
|
Boerwinkle VL, Mirea L, Gaillard WD, Sussman BL, Larocque D, Bonnell A, Ronecker JS, Troester MM, Kerrigan JF, Foldes ST, Appavu B, Jarrar R, Williams K, Wilfong AA, Adelson PD. Resting-state functional MRI connectivity impact on epilepsy surgery plan and surgical candidacy: prospective clinical work. J Neurosurg Pediatr 2020; 25:574-581. [PMID: 32197251 DOI: 10.3171/2020.1.peds19695] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors' goal was to prospectively quantify the impact of resting-state functional MRI (rs-fMRI) on pediatric epilepsy surgery planning. METHODS Fifty-one consecutive patients (3 months to 20 years old) with intractable epilepsy underwent rs-fMRI for presurgical evaluation. The team reviewed the following available diagnostic data: video-electroencephalography (n = 51), structural MRI (n = 51), FDG-PET (n = 42), magnetoencephalography (n = 5), and neuropsychological testing (n = 51) results to formulate an initial surgery plan blinded to the rs-fMRI findings. Subsequent to this discussion, the connectivity results were revealed and final recommendations were established. Changes between pre- and post-rs-fMRI treatment plans were determined, and changes in surgery recommendation were compared using McNemar's test. RESULTS Resting-state fMRI was successfully performed in 50 (98%) of 51 cases and changed the seizure onset zone localization in 44 (88%) of 50 patients. The connectivity results prompted 6 additional studies, eliminated the ordering of 11 further diagnostic studies, and changed the intracranial monitoring plan in 10 cases. The connectivity results significantly altered surgery planning with the addition of 13 surgeries, but it did not eliminate planned surgeries (p = 0.003). Among the 38 epilepsy surgeries performed, the final surgical approach changed due to rs-fMRI findings in 22 cases (58%), including 8 (28%) of 29 in which extraoperative direct electrical stimulation mapping was averted. CONCLUSIONS This study demonstrates the impact of rs-fMRI connectivity results on the decision-making for pediatric epilepsy surgery by providing new information about the location of eloquent cortex and the seizure onset zone. Additionally, connectivity results may increase the proportion of patients considered eligible for surgery while optimizing the need for further testing.
Collapse
Affiliation(s)
| | | | - William D Gaillard
- 3Department of Neurology, Children's National Medical Center, Washington, DC
| | | | | | | | - Jennifer S Ronecker
- 5Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona; and
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Massot-Tarrús A, White KP, Mousavi SR, Hayman-Abello S, Hayman-Abello B, Mirsattari SM. Concordance between fMRI and Wada test for memory lateralization in temporal lobe epilepsy: A meta-analysis and systematic review. Epilepsy Behav 2020; 107:107065. [PMID: 32276205 DOI: 10.1016/j.yebeh.2020.107065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The Wada test (WT) is increasingly being replaced by functional magnetic resonance imaging (fMRI) to evaluate memory lateralization before temporal lobe epilepsy (TLE) surgery. We aimed to determine, via meta-analysis, agreement between the two tests and identify predictors of disagreement. METHODS We performed a systematic search for studies comparing WT and fMRI for memory lateralization with individual-patient data. If results were provided as laterality indexes instead of hemispheric lateralization, the cutoff point for memory lateralization was set to the usual ±2 for WT and ±0.20 for fMRI. We also evaluated results at our Epilepsy Center. RESULTS Seven published series plus our own were included, comprising 124 patients. Wada test was performed by recognizing objects in half of the studies, and scenes, drawings, and words in the rest. All used scenes or pictures encoding for fMRI. Wada test-fMRI agreement across the studies ranged from 21.1 to 100%, averaging 46.8% (95% confidence interval [CI]: 37.6-56.0%). When cases with bilateral memory in either test were excluded, agreement reached 78.7% (95% CI: 67.6-89.8%), and concordance with contralateral TLE foci 86.4% for the WT and 83.0% for fMRI. Higher agreement was associated with using multiple items during WT (p = 0.001) and higher disagreement with presence of a lesion on MRI (p = 0.024). Binary logistic regression confirmed use of multiple items on WT as the strongest predictor of agreement (odds ratio [OR]: 6.95, 95% CI: 1.84-26.22; p = 0.004) and a bilateral result on the WT or fMRI of disagreement (OR: 0.24, 95% CI: 0.07-0.89 and OR: 0.12, 95% CI: 0.03-0.45; p < 0.05). CONCLUSION Concordance between WT and fMRI for memory lateralization is low in patients with TLE and bilateral memoryl memory distribution or a structural etiology, and it improves with encoding of a varied set of items. Both tests can help to lateralize the TLE foci.
Collapse
Affiliation(s)
- Andreu Massot-Tarrús
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Kevin P White
- Science Right Research Consulting, London, Ontario, Canada
| | - Seyed Reza Mousavi
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Susan Hayman-Abello
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Brent Hayman-Abello
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada
| |
Collapse
|
85
|
Gould L, Wu A, Tellez-Zenteno JF, Neudorf J, Kress S, Gibb K, Ekstrand C, Dabirzadeh H, Ahmed SU, Borowsky R. Atypical language localization in right temporal lobe epilepsy: An fMRI case report. Epilepsy Behav Rep 2020; 14:100364. [PMID: 32462137 PMCID: PMC7243043 DOI: 10.1016/j.ebr.2020.100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022] Open
Abstract
We report a 41- year-old, left-handed patient with drug-resistant right temporal lobe epilepsy (TLE). Presurgical fMRI was conducted to examine whether the patient had language functioning in the right hemisphere given that left-handedness is associated with a higher prevalence of right hemisphere dominance for language. The fMRI results revealed bilateral activation in Broca's and Wernicke's areas and activation of eloquent cortex near the region of planned resection in the right temporal lobe. Due to right temporal language-related activation, the patient underwent an awake right-sided temporal lobectomy with intraoperative language mapping. Intraoperative direct cortical stimulation (DCS) was conducted in the regions corresponding to the fMRI activation, and the patient showed language abnormalities, such as paraphasic errors, and speech arrest. The decision was made to abort the planned anterior temporal lobe procedure, and the patient instead underwent a selective amygdalohippocampectomy via the Sylvian fissure at a later date. Post-operatively the patient was seizure-free with no neurological deficits. Taken together, the results support previous findings of right hemisphere language activation in left-handed individuals, and should be considered in cases in which presurgical localization is conducted for left-hand dominant patients undergoing neurosurgical procedures. The report evaluates evidence for the possibility of right hemisphere language activation in a left-handed right TLE patient The results of the fMRI tasks showed bilateral speech regions, such as left and right Broca's area and Wernicke's area The results support previous findings of right hemisphere language activation in left-handed individuals The report discusses the value of fMRI of language tasks for presurgical planning in epilepsy cases Report highlights how fMRI findings can alter surgical strategy and how intraoperative brain mapping validates these findings
Collapse
Affiliation(s)
- Layla Gould
- Department of Surgery, Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
- Correspondence to: L. Gould, Department of Surgery, University of Saskatchewan, SK S7N 5A5, Canada.
| | - Adam Wu
- Department of Surgery, Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Jose F. Tellez-Zenteno
- Department of Medicine, Division of Neurology, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Josh Neudorf
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Shaylyn Kress
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Katherine Gibb
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Chelsea Ekstrand
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Hamid Dabirzadeh
- Department of Medical Imaging, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Syed Uzair Ahmed
- Department of Surgery, Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Ron Borowsky
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| |
Collapse
|
86
|
Chaudhary K, Tripathi M, Chandra PS, Nehra A, Kumaran SS. Evaluation of memory in persons with mesial temporal lobe sclerosis: A combined fMRI and VBM study. J Biosci 2020. [DOI: 10.1007/s12038-020-00041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
87
|
Lee RK, Burns J, Ajam AA, Broder JS, Chakraborty S, Chong ST, Kendi AT, Ledbetter LN, Liebeskind DS, Pannell JS, Pollock JM, Rosenow JM, Shaines MD, Shih RY, Slavin K, Utukuri PS, Corey AS. ACR Appropriateness Criteria® Seizures and Epilepsy. J Am Coll Radiol 2020; 17:S293-S304. [PMID: 32370973 DOI: 10.1016/j.jacr.2020.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Seizures and epilepsy are a set of conditions that can be challenging to diagnose, treat, and manage. This document summarizes recommendations for imaging in different clinical scenarios for a patient presenting with seizures and epilepsy. MRI of the brain is usually appropriate for each clinical scenario described with the exception of known seizures and unchanged semiology (Variant 3). In this scenario, it is unclear if any imaging would provide a benefit to patients. In the emergent situation, a noncontrast CT of the head is also usually appropriate as it can diagnose or exclude emergent findings quickly and is an alternative to MRI of the brain in these clinical scenarios. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania.
| | - Judah Burns
- Panel Chair, Montefiore Medical Center, Bronx, New York
| | | | - Joshua S Broder
- Duke University School of Medicine, Durham, North Carolina; American College of Emergency Physicians
| | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada; Canadian Association of Radiologists
| | | | | | | | - David S Liebeskind
- University of California Los Angeles, Los Angeles, California; American Academy of Neurology
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; Neurosurgery expert
| | - Matthew D Shaines
- Albert Einstein College of Medicine Montefiore Medical Center, Bronx, New York; Primary care physician
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Konstantin Slavin
- University of Illinois at Chicago College of Medicine, Chicago, Illinois; Neurosurgery expert
| | | | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
88
|
Schiller K, Choudhri AF, Jones T, Holder C, Wheless JW, Narayana S. Concordance Between Transcranial Magnetic Stimulation and Functional Magnetic Resonance Imaging (MRI) Derived Localization of Language in a Clinical Cohort. J Child Neurol 2020; 35:363-379. [PMID: 32122221 DOI: 10.1177/0883073820901415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a newer noninvasive language mapping tool that is safe and well-tolerated by children. We examined the accuracy of TMS-derived language maps in a clinical cohort by comparing it against functional magnetic resonance imaging (MRI)-derived language map. The number of TMS-induced speech disruptions and the volume of activation during functional MRI tasks were localized to Brodmann areas for each modality in 40 patients with epilepsy or brain tumor. We examined the concordance between TMS- and functional MRI-derived language maps by deriving statistical performance metrics for TMS including sensitivity, specificity, accuracy, and diagnostic odds ratio. Brodmann areas 6, 44, and 9 in the frontal lobe and 22 and 40 in the temporal lobe were the most commonly identified language areas by both modalities. Overall accuracy of TMS compared to functional MRI in localizing language cortex was 71%, with a diagnostic odds ratio of 1.27 and higher sensitivity when identifying left hemisphere regions. TMS was more accurate in determining the dominant hemisphere for language with a diagnostic odds ratio of 6. This study is the first to examine the accuracy of the whole brain language map derived by TMS in the largest cohort examined to date. While this comparison against functional MRI confirmed that TMS reliably localizes cortical areas that are not essential for speech function, it demonstrated only slight concordance between TMS- and functional MRI-derived language areas. That the localization of specific language cortices by TMS demonstrated low accuracy reveals a potential need to use concordant tasks between the modalities and other avenues for further optimization of TMS parameters.
Collapse
Affiliation(s)
- Katherine Schiller
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Asim F Choudhri
- Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA.,Department of Radiology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tamekia Jones
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Christen Holder
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA
| | - James W Wheless
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA
| | - Shalini Narayana
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA.,Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
89
|
Rolinski R, You X, Gonzalez‐Castillo J, Norato G, Reynolds RC, Inati SK, Theodore WH. Language lateralization from task-based and resting state functional MRI in patients with epilepsy. Hum Brain Mapp 2020; 41:3133-3146. [PMID: 32329951 PMCID: PMC7336139 DOI: 10.1002/hbm.25003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/05/2023] Open
Abstract
We compared resting state (RS) functional connectivity and task‐based fMRI to lateralize language dominance in 30 epilepsy patients (mean age = 33; SD = 11; 12 female), a measure used for presurgical planning. Language laterality index (LI) was calculated from task fMRI in frontal, temporal, and frontal + temporal regional masks using LI bootstrap method from SPM12. RS language LI was assessed using two novel methods of calculating RS language LI from bilateral Broca's area seed based connectivity maps across regional masks and multiple thresholds (p < .05, p < .01, p < .001, top 10% connections). We compared LI from task and RS fMRI continuous values and dominance classifications. We found significant positive correlations between task LI and RS LI when functional connectivity thresholds were set to the top 10% of connections. Concordance of dominance classifications ranged from 20% to 30% for the intrahemispheric resting state LI method and 50% to 63% for the resting state LI intra‐ minus interhemispheric difference method. Approximately 40% of patients left dominant on task showed RS bilateral dominance. There was no difference in LI concordance between patients with right‐sided and left‐sided resections. Early seizure onset (<6 years old) was not associated with atypical language dominance during task‐based or RS fMRI. While a relationship between task LI and RS LI exists in patients with epilepsy, language dominance is less lateralized on RS than task fMRI. Concordance of language dominance classifications between task and resting state fMRI depends on brain regions surveyed and RS LI calculation method.
Collapse
Affiliation(s)
- Rachel Rolinski
- National Institute of Neurological Disorders and StrokeClinical Epilepsy SectionBethesdaMarylandUSA
| | - Xiaozhen You
- National Institute of Neurological Disorders and StrokeClinical Epilepsy SectionBethesdaMarylandUSA
- Children's National Medical CenterDepartment of NeurologyWashingtonDistrict of ColumbiaUSA
| | | | - Gina Norato
- National Institute of Neurological Disorders and StrokeClinical Trials UnitBethesdaMarylandUSA
| | - Richard C. Reynolds
- National Institute of Mental HealthScientific and Statistical Computing CoreBethesdaMarylandUSA
| | - Sara K. Inati
- National Institute of Neurological Disorders and StrokeElectroencephalography SectionBethesdaMarylandUSA
| | - William H. Theodore
- National Institute of Neurological Disorders and StrokeClinical Epilepsy SectionBethesdaMarylandUSA
| |
Collapse
|
90
|
Foit NA, Bernasconi A, Bernasconi N. Functional Networks in Epilepsy Presurgical Evaluation. Neurosurg Clin N Am 2020; 31:395-405. [PMID: 32475488 DOI: 10.1016/j.nec.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Continuing advancements in neuroimaging methodology allow for increasingly detailed in vivo characterization of structural and functional brain networks, leading to the recognition of epilepsy as a disorder of large-scale networks. In surgical candidates, analysis of functional networks has proved invaluable for the identification of eloquent brain areas, such as hemispherical language dominance. More recently, connectome-based biomarkers have demonstrated potential to further inform clinical decision making in drug-refractory epilepsy. This article summarizes current evidence on epilepsy as a network disorder, emphasizing potential benefits of network analysis techniques for preoperative assessments and resection planning.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
91
|
Guerin JB, Greiner HM, Mangano FT, Leach JL. Functional MRI in Children: Current Clinical Applications. Semin Pediatr Neurol 2020; 33:100800. [PMID: 32331615 DOI: 10.1016/j.spen.2020.100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional magnetic resonance imaging has become a critical research tool for evaluating brain function during active tasks and resting states. This has improved our understanding of developmental trajectories in children as well as the plasticity of neural networks in disease states. In the clinical setting, functional maps of eloquent cortex in patients with brain lesions and/or epilepsy provides crucial information for presurgical planning. Although children are inherently challenging to scan in this setting, preparing them appropriately and providing adequate resources can help achieve useful clinical data. This article will review the basic underlying physiologic aspects of functional magnetic resonance imaging, review clinically relevant research applications, describe known validation data compared to gold standard techniques and detail future directions of this technology.
Collapse
Affiliation(s)
- Julie B Guerin
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, University of Cincinnati College of Medicine Department of Neurosurgery, Cincinnati, OH
| | - James L Leach
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
92
|
Bargalló N, Cano-López I, Rosazza C, Vernooij MW, Smits M, Vitali P, Alvarez-Linera J, Urbach H, Mancini L, Ramos A, Yousry T. Clinical practice of language fMRI in epilepsy centers: a European survey and conclusions by the ESNR Epilepsy Working Group. Neuroradiology 2020; 62:549-562. [PMID: 32170372 PMCID: PMC7186249 DOI: 10.1007/s00234-020-02397-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023]
Abstract
Purpose To assess current clinical practices throughout Europe with respect to acquisition, implementation, evaluation, and interpretation of language functional MRI (fMRI) in epilepsy patients. Methods An online survey was emailed to all European Society of Neuroradiology members (n = 1662), known associates (n = 6400), and 64 members of European Epilepsy network. The questionnaire featured 40 individual items on demographic data, clinical practice and indications, fMRI paradigms, radiological workflow, data post-processing protocol, and reporting. Results A total of 49 non-duplicate entries from European centers were received from 20 countries. Of these, 73.5% were board-certified neuroradiologists and 69.4% had an in-house epilepsy surgery program. Seventy-one percent of centers performed fewer than five scans per month for epilepsy. The most frequently used paradigms were phonemic verbal fluency (47.7%) and auditory comprehension (55.6%), but variants of 13 paradigms were described. Most centers assessed the fMRI task performance (75.5%), ensured cognitive-task adjustment (77.6%), trained the patient before scanning (85.7%), and assessed handedness (77.6%), but only 28.6% had special paradigms for patients with cognitive impairments. fMRI was post-processed mainly by neuroradiologists (42.1%), using open-source software (55.0%). Reporting was done primarily by neuroradiologists (74.2%). Interpretation was done mainly by visual inspection (65.3%). Most specialists (81.6%) were able to determine the hemisphere dominance for language in more than 75% of exams, attributing failure to the patient not performing the task correctly. Conclusion This survey shows that language fMRI is firmly embedded in the preoperative management of epilepsy patients. The wide variety of paradigms and the use of non-CE-marked software underline the need for establishing reference standards. Electronic supplementary material The online version of this article (10.1007/s00234-020-02397-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N Bargalló
- Magnetic Resonance Image Core Facility, IDIBAPS and Center of Diagnostic Image (CDIC), Hospital Clinic, Barcelona, Spain.
| | - I Cano-López
- Valencian International University, Valencia, Spain
| | - C Rosazza
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - M W Vernooij
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - P Vitali
- Neuroradiology and Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - J Alvarez-Linera
- Neuroradiology Department, Hospital Ruber Internacional, Madrid, Spain
| | - H Urbach
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - L Mancini
- Lysholm Department of Neuro-radiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - A Ramos
- Departments Radiology (A.H., A.R.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - T Yousry
- Lysholm Department of Neuro-radiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
93
|
Wood AG, Foley E, Virk P, Ruddock H, Joshee P, Murphy K, Seri S. Establishing a Developmentally Appropriate fMRI Paradigm Relevant to Presurgical Mapping of Memory in Children. Brain Topogr 2020; 33:267-274. [PMID: 31865488 PMCID: PMC7066272 DOI: 10.1007/s10548-019-00751-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is an established eloquent cortex mapping technique that is now an integral part of the pre-operative work-up in candidates for epilepsy surgery. Emerging evidence in adults with epilepsy suggests that material-specific fMRI paradigms can predict postoperative memory outcomes, however these paradigms are not suitable for children. In pediatric age, the use of memory fMRI paradigms designed for adults is complicated by the effect of developmental stages in cognitive maturation, the impairment experienced by some people with temporal lobe epilepsy (TLE) and the normal representation of memory function during development, which may differ from adults. We present a memory fMRI paradigm designed to activate mesial temporal lobe structures that is brief, independent of reading ability, and therefore a novel candidate for use in children. Data from 33 adults and 19 children (all healthy controls) show that the paradigm captures the expected leftward asymmetry of mesial temporal activation in adults. A more symmetrical pattern was observed in children, consistent with the progressive emergence of hemispheric specialisation across childhood. These data have important implications for the interpretation of presurgical memory fMRI in the pediatric setting. They also highlight the need to carefully consider the impact of cognitive development on fMRI tools used in clinical practice.
Collapse
Affiliation(s)
- Amanda G Wood
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
- School of Psychology, Faculty of Health, Deakin University, Burwood Campus, Deakin, VIC, Australia.
| | - Elaine Foley
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Parnpreet Virk
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Helen Ruddock
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Paras Joshee
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Kelly Murphy
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| |
Collapse
|
94
|
Nair S, Szaflarski JP. Neuroimaging of memory in frontal lobe epilepsy. Epilepsy Behav 2020; 103:106857. [PMID: 31937510 DOI: 10.1016/j.yebeh.2019.106857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
In a large percentage of epilepsies, seizures have focal onset. These epilepsies are associated with a wide range of behavioral and cognitive deficits sometimes limited to the functions encompassed within the ictal onset zone but, more frequently, expanding beyond it. The presence of impairments associated with neuroanatomical areas outside of the ictal onset zone suggests distal propagation of epileptic activity via brain networks and interconnected whole-brain neural circuitry. In patients with frontal lobe epilepsy (FLE), using functional magnetic resonance imaging (fMRI) to identify deficits in working, semantic, and episodic memory may provide a lens through which to understand typical and atypical network organization. A network approach to focal epilepsy is relevant in these patients because of the frequently noted early age of seizure onset. Early seizure-related disruption in healthy brain development may result in a significant brain reorganization, development of compensation-related mechanisms of dealing with function abnormalities and disruptions, and the propagation of epileptic activity from the focus to widespread brain areas (functional deficit zones). Benefits of a network approach in the study of focal epilepsy are discussed along with considerations for future neuroimaging studies of patients with FLE.
Collapse
Affiliation(s)
- Sangeeta Nair
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
95
|
Meinhold T, Hofer W, Pieper T, Kudernatsch M, Staudt M. Presurgical Language fMRI in Children, Adolescents and Young Adults : A Validation Study. Clin Neuroradiol 2020; 30:691-704. [PMID: 31960077 DOI: 10.1007/s00062-019-00852-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/27/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To validate four established, child-friendly functional magnetic resonance imaging (fMRI) language tasks (word chain task [WCT], vowel identification task [VIT], synonym task [SYT] and beep story task [BST]) in a predominantly pediatric cohort. METHODS Intracarotid amobarbital procedures (IAP) (n = 17) and unchanged language after hemispherotomy (n = 6) were used as gold standards. The fMRI activations of nine regions of interest (ROI) in the frontal, temporal and parietal lobes as well as in the cerebellum were visually assessed in 23 fMRI examinations (in total 117 fMRI task sessions) of 23 patients (age range 10.0-23.0 years) with drug-refractory epilepsies. RESULTS The ROIs were considered valid when they showed activation in more than 25% of all sessions for the respective task and never showed false lateralization (in comparison to gold standards). Thus, 13 valid, task-specific ROIs were identified: 5 ROIs for the WCT (frontal operculum, inferior frontal gyrus, middle frontal gyrus, intraparietal sulcus, cerebellum), 3 ROIs for the VIT (frontal operculum, inferior frontal gyrus, middle frontal gyrus), 3 ROIs for the SYT (frontal operculum, inferior frontal gyrus, temporal language area) and 2 ROIs for the BST (inferior frontal gyrus, middle frontal gyrus). CONCLUSION Clinical fMRI using the battery of four tasks is a valid tool for lateralizing language in children, adolescents and young adults. Each task proved to be specifically useful, which confirms that applying different tasks increases the probability of diagnosing language dominance in presurgical candidates.
Collapse
Affiliation(s)
- Theresa Meinhold
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Clinic Vogtareuth, Krankenhausstraße 20, 83569, Vogtareuth, Germany. .,Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tübingen, Tübingen, Germany.
| | - Wiebke Hofer
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Clinic Vogtareuth, Krankenhausstraße 20, 83569, Vogtareuth, Germany
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Clinic Vogtareuth, Krankenhausstraße 20, 83569, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Center for Neurosurgery and Epilepsy Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Research Institute "Rehabilitation, Transition, Palliation", PMU Salzburg, Salzburg, Austria
| | - Martin Staudt
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Clinic Vogtareuth, Krankenhausstraße 20, 83569, Vogtareuth, Germany.,Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tübingen, Tübingen, Germany
| |
Collapse
|
96
|
Kwon CS, Chang EF, Jetté N. Cost-Effectiveness of Advanced Imaging Technologies in the Presurgical Workup of Epilepsy. Epilepsy Curr 2020; 20:7-11. [PMID: 31910665 PMCID: PMC7020533 DOI: 10.1177/1535759719894307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The cost-effectiveness and benefit of many diagnostic tests used in the presurgical evaluation for persons with epilepsy is for the most part uncertain as is their influence on decision-making. The options we have at our disposal are ever increasing. Advanced imaging modalities aim to improve surgical candidacy by helping us better define the epileptogenic zone and optimize surgical planning. However, judicious use is important. Randomized controlled trials delineating which mode of investigation is superior are lacking. Presurgical tests do have incremental value by increasing surgical candidacy and refining surgical planning. The yield of additional imaging will increase with complex localization. However, every case must be tailored by hypothesis, cost, and accessibility. Future studies using a quantitative cost–benefit framework are needed to determine the cost-effectiveness of advanced diagnostic tests (beyond magnetic resonance imaging) in the presurgical evaluation of those with epilepsy.
Collapse
Affiliation(s)
- Churl-Su Kwon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Health Outcomes & Knowledge Translation Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nathalie Jetté
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Health Outcomes & Knowledge Translation Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
97
|
Patel NJ, Gavvala JR, Jimenez-Shahed J. Awake Testing to Confirm Target Engagement. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
98
|
Kaestner E, Balachandra AR, Bahrami N, Reyes A, Lalani SJ, Macari AC, Voets NL, Drane DL, Paul BM, Bonilha L, McDonald CR. The white matter connectome as an individualized biomarker of language impairment in temporal lobe epilepsy. Neuroimage Clin 2019; 25:102125. [PMID: 31927128 PMCID: PMC6953962 DOI: 10.1016/j.nicl.2019.102125] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The distributed white matter network underlying language leads to difficulties in extracting clinically meaningful summaries of neural alterations leading to language impairment. Here we determine the predictive ability of the structural connectome (SC), compared with global measures of white matter tract microstructure and clinical data, to discriminate language impaired patients with temporal lobe epilepsy (TLE) from TLE patients without language impairment. METHODS T1- and diffusion-MRI, clinical variables (CVs), and neuropsychological measures of naming and verbal fluency were available for 82 TLE patients. Prediction of language impairment was performed using a robust tree-based classifier (XGBoost) for three models: (1) a CV-model which included demographic and epilepsy-related clinical features, (2) an atlas-based tract-model, including four frontotemporal white matter association tracts implicated in language (i.e., the bilateral arcuate fasciculus, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus), and (3) a SC-model based on diffusion MRI. For the association tracts, mean fractional anisotropy was calculated as a measure of white matter microstructure for each tract using a diffusion tensor atlas (i.e., AtlasTrack). The SC-model used measurement of cortical-cortical connections arising from a temporal lobe subnetwork derived using probabilistic tractography. Dimensionality reduction of the SC was performed with principal components analysis (PCA). Each model was trained on 49 patients from one epilepsy center and tested on 33 patients from a different center (i.e., an independent dataset). Randomization was performed to test the stability of the results. RESULTS The SC-model yielded a greater area under the curve (AUC; .73) and accuracy (79%) compared to both the tract-model (AUC: .54, p < .001; accuracy: 70%, p < .001) and the CV-model (AUC: .59, p < .001; accuracy: 64%, p < .001). Within the SC-model, lateral temporal connections had the highest importance to model performance, including connections similar to language association tracts such as links between the superior temporal gyrus to pars opercularis. However, in addition to these connections many additional connections that were widely distributed, bilateral and interhemispheric in nature were identified as contributing to SC-model performance. CONCLUSION The SC revealed a white matter network contributing to language impairment that was widely distributed, bilateral, and lateral temporal in nature. The distributed network underlying language may be why the SC-model has an advantage in identifying sub-components of the complex fiber networks most relevant for aspects of language performance.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Akshara R Balachandra
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Naeim Bahrami
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Sanam J Lalani
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA
| | - Anna Christina Macari
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel L Drane
- Departments of Neurology and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington, Seattle, WA, USA
| | - Brianna M Paul
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA
| | - Leonardo Bonilha
- Medical University of South Carolina, Department of Neurology, USA
| | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
99
|
Kuchukhidze G, Siedentopf C, Unterberger I, Koppelstaetter F, Kronbichler M, Zamarian L, Haberlandt E, Ischebeck A, Delazer M, Felber S, Trinka E. Language Dominance in Patients With Malformations of Cortical Development and Epilepsy. Front Neurol 2019; 10:1209. [PMID: 31824399 PMCID: PMC6881376 DOI: 10.3389/fneur.2019.01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Language function may be reorganized in patients with malformations of cortical development (MCD). This prospective cohort study aimed in assessing language dominance in a large group of patients with MCD and epilepsy using functional MRI (fMRI). Methods: Sixty-eight patients (40 women) aged 10-73 years (median, 28.0; interquartile range, 19) with MCD and epilepsy underwent 1.5 T MRI and fMRI (word generation task). Single-subject image analysis was performed with statistical parametric mapping (SPM12). Language lateralization indices (LIs) were defined for statistically significantly activated voxels in Broca's and Wernicke's areas using the formula: LI = (V L - V R)/(V L + V R) × 100, where V L and V R were sets of activated voxels on the left and on the right, respectively. Language laterality was considered typical if LI was between +20 and +100 or atypical if LI was between +19 and -100. Results: fMRI signal was elicited in 55 of 68 (81%) patients. In 18 of 55 (33%) patients, language dominance was typical, and in 37 of 55 (67%) patients, atypical (in 68%, right hemispheric; in 32%, bilateral). Language dominance was not influenced by handedness, electroclinical, and imaging features. Conclusions: In this prospective study on a large group of patients with MCD and epilepsy, about two-thirds had atypical language dominance. These results may contribute to assessing risks of postsurgical language deficits and could assist in planning of "cortical mapping" with intracranial electrodes in patients who undergo presurgical assessment.
Collapse
Affiliation(s)
- Giorgi Kuchukhidze
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Christian Siedentopf
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Unterberger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Koppelstaetter
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Radiology, Sanatorium Kettenbrücke, Innsbruck, Austria
| | - Martin Kronbichler
- Neuroscience Institute, Christian Doppler Klinik, Paracelsus Medical University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Laura Zamarian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Edda Haberlandt
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pediatrics, City Hospital, Dornbirn, Austria
| | - Anja Ischebeck
- Institute of Psychology, University of Graz, Graz, Austria
| | - Margarete Delazer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Felber
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany
| | - Eugen Trinka
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
100
|
Baumgartner C, Koren JP, Britto-Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res 2019; 8. [PMID: 31700611 PMCID: PMC6820825 DOI: 10.12688/f1000research.17714.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
With a prevalence of 0.8 to 1.2%, epilepsy represents one of the most frequent chronic neurological disorders; 30 to 40% of patients suffer from drug-resistant epilepsy (that is, seizures cannot be controlled adequately with antiepileptic drugs). Epilepsy surgery represents a valuable treatment option for 10 to 50% of these patients. Epilepsy surgery aims to control seizures by resection of the epileptogenic tissue while avoiding neuropsychological and other neurological deficits by sparing essential brain areas. The most common histopathological findings in epilepsy surgery specimens are hippocampal sclerosis in adults and focal cortical dysplasia in children. Whereas presurgical evaluations and surgeries in patients with mesial temporal sclerosis and benign tumors recently decreased in most centers, non-lesional patients, patients requiring intracranial recordings, and neocortical resections increased. Recent developments in neurophysiological techniques (high-density electroencephalography [EEG], magnetoencephalography, electrical and magnetic source imaging, EEG-functional magnetic resonance imaging [EEG-fMRI], and recording of pathological high-frequency oscillations), structural magnetic resonance imaging (MRI) (ultra-high-field imaging at 7 Tesla, novel imaging acquisition protocols, and advanced image analysis [post-processing] techniques), functional imaging (positron emission tomography and single-photon emission computed tomography co-registered to MRI), and fMRI significantly improved non-invasive presurgical evaluation and have opened the option of epilepsy surgery to patients previously not considered surgical candidates. Technical improvements of resective surgery techniques facilitate successful and safe operations in highly delicate brain areas like the perisylvian area in operculoinsular epilepsy. Novel less-invasive surgical techniques include stereotactic radiosurgery, MR-guided laser interstitial thermal therapy, and stereotactic intracerebral EEG-guided radiofrequency thermocoagulation.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Johannes P Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Martha Britto-Arias
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Lea Zoche
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Susanne Pirker
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| |
Collapse
|