51
|
Angom RS, Kulkarni T, Wang E, Kumar Dutta S, Bhattacharya S, Das P, Mukhopadhyay D. Vascular Endothelial Growth Factor Receptor-1 Modulates Hypoxia-Mediated Endothelial Senescence and Cellular Membrane Stiffness via YAP-1 Pathways. Front Cell Dev Biol 2022; 10:903047. [PMID: 35846360 PMCID: PMC9283904 DOI: 10.3389/fcell.2022.903047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer’s disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.
Collapse
Affiliation(s)
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Pritam Das
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
- *Correspondence: Debabrata Mukhopadhyay,
| |
Collapse
|
52
|
Agrawal S, Schneider JA. Vascular pathology and pathogenesis of cognitive impairment and dementia in older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100148. [PMID: 36324408 PMCID: PMC9616381 DOI: 10.1016/j.cccb.2022.100148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
It is well recognized that brains of older people often harbor cerebrovascular disease pathology including vessel disease and vascular-related tissue injuries and that this is associated with vascular cognitive impairment and contributes to dementia. Here we review vascular pathologies, cognitive impairment, and dementia. We highlight the importance of mixed co-morbid AD/non-AD neurodegenerative and vascular pathology that has been collected in multiple clinical pathologic studies, especially in community-based studies. We also provide an update of vascular pathologies from the Rush Memory and Aging Project and Religious Orders Study cohorts with special emphasis on the differences across age in persons with and without dementia. Finally, we discuss neuropathological perspectives on the interpretation of clinical-pathological studies and emerging data in community-based studies.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
53
|
Del Cuore A, Pacinella G, Riolo R, Tuttolomondo A. The Role of Immunosenescence in Cerebral Small Vessel Disease: A Review. Int J Mol Sci 2022; 23:7136. [PMID: 35806140 PMCID: PMC9266569 DOI: 10.3390/ijms23137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of vascular dementia. Immunosenescence and inflammatory response, with the involvement of the cerebrovascular system, constitute the basis of this disease. Immunosenescence identifies a condition of deterioration of the immune organs and consequent dysregulation of the immune response caused by cellular senescence, which exposes older adults to a greater vulnerability. A low-grade chronic inflammation status also accompanies it without overt infections, an "inflammaging" condition. The correlation between immunosenescence and inflammaging is fundamental in understanding the pathogenesis of age-related CSVD (ArCSVD). The production of inflammatory mediators caused by inflammaging promotes cellular senescence and the decrease of the adaptive immune response. Vice versa, the depletion of the adaptive immune mechanisms favours the stimulation of the innate immune system and the production of inflammatory mediators leading to inflammaging. Furthermore, endothelial dysfunction, chronic inflammation promoted by senescent innate immune cells, oxidative stress and impairment of microglia functions constitute, therefore, the framework within which small vessel disease develops: it is a concatenation of molecular events that promotes the decline of the central nervous system and cognitive functions slowly and progressively. Because the causative molecular mechanisms have not yet been fully elucidated, the road of scientific research is stretched in this direction, seeking to discover other aberrant processes and ensure therapeutic tools able to enhance the life expectancy of people affected by ArCSVD. Although the concept of CSVD is broader, this manuscript focuses on describing the neurobiological basis and immune system alterations behind cerebral aging. Furthermore, the purpose of our work is to detect patients with CSVD at an early stage, through the evaluation of precocious MRI changes and serum markers of inflammation, to treat untimely risk factors that influence the burden and the worsening of the cerebral disease.
Collapse
Affiliation(s)
- Alessandro Del Cuore
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Renata Riolo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
54
|
Xu W, Bai Q, Dong Q, Guo M, Cui M. Blood–Brain Barrier Dysfunction and the Potential Mechanisms in Chronic Cerebral Hypoperfusion Induced Cognitive Impairment. Front Cell Neurosci 2022; 16:870674. [PMID: 35783093 PMCID: PMC9243657 DOI: 10.3389/fncel.2022.870674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major cause of vascular cognitive impairment and dementia (VCID). Although the underlying mechanisms have not been fully elucidated, the emerging data suggest that blood–brain barrier (BBB) dysfunction is one of the pivotal pathological changes in CCH. BBB dysfunction appears early in CCH, contributing to the deterioration of white matter and the development of cognitive impairment. In this review, we summarize the latest experimental and clinical evidence implicating BBB disruption as a major cause of VCID. We discuss the mechanisms of BBB dysfunction in CCH, focusing on the cell interactions within the BBB, as well as the potential role of APOE genotype. In summary, we provide novel insights into the pathophysiological mechanisms underlying BBB dysfunction and the potential clinical benefits of therapeutic interventions targeting BBB in CCH.
Collapse
Affiliation(s)
- WenQing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingke Bai
- Department of Neurology, Pudong People’s Hospital, Shanghai, China
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Min Guo,
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Mei Cui,
| |
Collapse
|
55
|
Ren B, Tan L, Song Y, Li D, Xue B, Lai X, Gao Y. Cerebral Small Vessel Disease: Neuroimaging Features, Biochemical Markers, Influencing Factors, Pathological Mechanism and Treatment. Front Neurol 2022; 13:843953. [PMID: 35775047 PMCID: PMC9237477 DOI: 10.3389/fneur.2022.843953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is the most common chronic vascular disease involving the whole brain. Great progress has been made in clinical imaging, pathological mechanism, and treatment of CSVD, but many problems remain. Clarifying the current research dilemmas and future development direction of CSVD can provide new ideas for both basic and clinical research. In this review, the risk factors, biological markers, pathological mechanisms, and the treatment of CSVD will be systematically illustrated to provide the current research status of CSVD. The future development direction of CSVD will be elucidated by summarizing the research difficulties.
Collapse
Affiliation(s)
- Beida Ren
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Ling Tan
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuebo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Danxi Li
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Bingjie Xue
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Xinxing Lai
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
56
|
Montagne A, Barnes SR, Nation DA, Kisler K, Toga AW, Zlokovic BV. Imaging subtle leaks in the blood-brain barrier in the aging human brain: potential pitfalls, challenges, and possible solutions. GeroScience 2022; 44:1339-1351. [PMID: 35469116 PMCID: PMC9213625 DOI: 10.1007/s11357-022-00571-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Recent studies using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium-based contrast agents (GBCA) have demonstrated subtle blood-brain barrier (BBB) leaks in the human brain during normal aging, in individuals with age-related cognitive dysfunction, genetic risk for Alzheimer's disease (AD), mild cognitive impairment, early AD, cerebral small vessel disease (SVD), and other neurodegenerative disorders. In these neurological conditions, the BBB leaks, quantified by the unidirectional BBB GBCA tracer's constant Ktrans maps, are typically orders of magnitude lower than in brain tumors, after stroke and/or during relapsing episodes of multiple sclerosis. This puts extra challenges for the DCE-MRI technique by pushing calculations towards its lower limits of detectability. In addition, presently, there are no standardized multivendor protocols or evidence of repeatability and reproducibility. Nevertheless, subtle BBB leaks may critically contribute to the pathophysiology of cognitive impairment and dementia associated with AD or SVD, and therefore, efforts to improve sensitivity of detection, reliability, and reproducibility are warranted. A larger number of participants scanned by different MR scanners at different clinical sites are sometimes required to detect differences in BBB integrity between control and at-risk groups, which impose additional challenges. Here, we focus on these new challenges and propose some approaches to normalize and harmonize DCE data between different scanners. In brief, we recommend specific regions to be used for the tracer's vascular input function and DCE data processing and how to find and correct negative Ktrans values that are physiologically impossible. We hope this information will prove helpful to new investigators wishing to study subtle BBB damage in neurovascular and neurodegenerative conditions and in the aging human brain.
Collapse
Affiliation(s)
- Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Samuel R Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA.
| | - Daniel A Nation
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California Irvine, Irvine, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
57
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
58
|
Wang SD, Wang X, Zhao Y, Xue BH, Wang XT, Chen YX, Zhang ZQ, Tian YR, Xie F, Qian LJ. Homocysteine-Induced Disturbances in DNA Methylation Contribute to Development of Stress-Associated Cognitive Decline in Rats. Neurosci Bull 2022; 38:887-900. [PMID: 35435568 PMCID: PMC9352847 DOI: 10.1007/s12264-022-00852-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic stress is generally accepted as the main risk factor in the development of cognitive decline; however, the underlying mechanisms remain unclear. Previous data have demonstrated that the levels of homocysteine (Hcy) are significantly elevated in the plasma of stressed animals, which suggests that Hcy is associated with stress and cognitive decline. To test this hypothesis, we analyzed the cognitive function, plasma concentrations of Hcy, and brain-derived neurotropic factor (BDNF) levels in rats undergoing chronic unpredicted mild stress (CUMS). The results showed that decreased cognitive behavioral performance and decreased BDNF transcription and protein expression were correlated with hyperhomocysteinemia (HHcy) levels in stressed rats. Diet-induced HHcy mimicked the cognitive decline and BDNF downregulation in the same manner as CUMS, while Hcy reduction (by means of vitamin B complex supplements) alleviated the cognitive deficits and BDNF reduction in CUMS rats. Furthermore, we also found that both stress and HHcy disturbed the DNA methylation process in the brain and induced DNA hypermethylation in the BDNF promoter. In contrast, control of Hcy blocked BDNF promoter methylation and upregulated BDNF levels in the brain. These results imply the possibility of a causal role of Hcy in stress-induced cognitive decline. We also used ten-eleven translocation (TET1), an enzyme that induces DNA demethylation, to verify the involvement of Hcy and DNA methylation in the regulation of BDNF expression and the development of stress-related cognitive decline. The data showed that TET1-expressing viral injection into the hippocampus inhibited BDNF promoter methylation and significantly mitigated the cognitive decline in HHcy rats. Taken together, novel evidence from the present study suggests that Hcy is likely involved in chronic stress-induced BDNF reduction and related cognitive deficits. In addition, the negative side-effects of HHcy may be associated with Hcy-induced DNA hypermethylation in the BDNF promoter. The results also suggest the possibility of Hcy as a target for therapy and the potential value of vitamin B intake in preventing stress-induced cognitive decline.
Collapse
|
59
|
Bai T, Yu S, Feng J. Advances in the Role of Endothelial Cells in Cerebral Small Vessel Disease. Front Neurol 2022; 13:861714. [PMID: 35481273 PMCID: PMC9035937 DOI: 10.3389/fneur.2022.861714] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) poses a serious socio-economic burden due to its high prevalence and severe impact on the quality of life of elderly patients. Pathological changes in CSVD mainly influence small cerebral arteries, microarteries, capillaries, and small veins, which are usually caused by multiple vascular risk factors. CSVD is often identified on brain magnetic resonance imaging (MRI) by recent small subcortical infarcts, white matter hyperintensities, lacune, cerebral microbleeds (CMBs), enlarged perivascular spaces (ePVSs), and brain atrophy. Endothelial cell (EC) dysfunction is earlier than clinical symptoms. Immune activation, inflammation, and oxidative stress may be potential mechanisms of EC injury. ECs of the blood–brain–barrier (BBB) are the most important part of the neurovascular unit (NVU) that ensures constant blood flow to the brain. Impaired cerebral vascular autoregulation and disrupted BBB cause cumulative brain damage. This review will focus on the role of EC injury in CSVD. Furthermore, several specific biomarkers will be discussed, which may be useful for us to assess the endothelial dysfunction and explore new therapeutic directions.
Collapse
|
60
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
61
|
Li Y, Gao H, Zhang D, Gao X, Lu L, Liu C, Li Q, Miao C, Ma H, Li Y. Clinical Prediction Model for Screening Acute Ischemic Stroke Patients With More Than 10 Cerebral Microbleeds. Front Neurol 2022; 13:833952. [PMID: 35463120 PMCID: PMC9021829 DOI: 10.3389/fneur.2022.833952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Hemorrhagic transformation is one of the most serious complications in intravenous thrombolysis. Studies show that the existence of more than 10 cerebral microbleeds is strongly associated with hemorrhagic transformation. The current study attempts to develop and validate a clinical prediction model of more than 10 cerebral microbleeds. Methods We reviewed the computed tomography markers of cerebral small vessel diseases and the basic clinical information of acute ischemic stroke patients who were investigated using susceptibility weighted imaging from 2018 to 2021. A clinical prediction model of more than 10 cerebral microbleeds was established. Discrimination, calibration, and the net benefit of the model were assessed. Finally, a validation was conducted to evaluate the accuracy and stability of the model. Results The multivariate logistic regression model showed hypertension, and some computed tomography markers (leukoaraiosis, lacunar infarctions, brain atrophy) were independent risk factors of more than 10 cerebral microbleeds. These risk factors were used for establishing the clinical prediction model. The area under the receiver operating characteristic curve (AUC) was 0.894 (95% CI: 0.870–0.919); Hosmer–Lemeshow chi-squared test yielded χ2 = 3.946 (P = 0.862). The clinical decision cure of the model was higher than the two extreme lines. The simplified score of the model ranged from 0 to 12. The model in the internal and external validation cohort also had good discrimination (AUC 0.902, 95% CI: 0.868–0.937; AUC 0.914, 95% CI: 0.882–0.945) and calibration (P = 0.157, 0.247), and patients gained a net benefit from the model. Conclusions We developed and validated a simple scoring tool for acute ischemic stroke patients with more than 10 cerebral microbleeds; this tool may be beneficial for paradigm decision regarding intravenous recombinant tissue plasminogen activator therapy of acute ischemic stroke.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haifeng Gao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Dongsen Zhang
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Xuan Gao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Lin Lu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Chunqin Liu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Qian Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Chunzhi Miao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Hongying Ma
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
- *Correspondence: Hongying Ma
| | - Yongqiu Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
- Yongqiu Li
| |
Collapse
|
62
|
Characterization of cerebral small vessel disease by neutrophil and platelet activation markers using artificial intelligence. J Neuroimmunol 2022; 367:577863. [DOI: 10.1016/j.jneuroim.2022.577863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
63
|
Kettunen P, Bjerke M, Eckerström C, Jonsson M, Zetterberg H, Blennow K, Svensson J, Wallin A. Blood-brain barrier dysfunction and reduced cerebrospinal fluid levels of soluble amyloid precursor protein-β in patients with subcortical small-vessel disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12296. [PMID: 35356486 PMCID: PMC8949877 DOI: 10.1002/dad2.12296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Introduction Subcortical small-vessel disease (SSVD) is the most common vascular cognitive disorder. However, because no disease-specific cerebrospinal fluid (CSF) biomarkers are available for SSVD, our aim was to identify such markers. Methods We included 170 healthy controls and patients from the Gothenburg Mild Cognitive Impairment (MCI) study clinically diagnosed with SSVD dementia, Alzheimer's disease (AD), or mixed AD/SSVD. We quantified CSF levels of amyloid-β (Aβ)x-38, Aβx-40, Aβx-42, as well as soluble amyloid precursor protein (sAPP)-α and sAPP-β. Results sAPP-β was lower in SSVD patients than in AD patients and controls. Receiver-operating characteristic (ROC) analyses showed that sAPP-β moderately separated SSVD from AD and controls. Moreover, the CSF/serum albumin ratio was elevated exclusively in SSVD and could moderately separate SSVD from the other groups in ROC analyses. Discussion SSVD has a biomarker profile that differs from that of AD and controls, and to some extent also from mixed AD/SSVD, suggesting that signs of blood-brain barrier (BBB) dysfunction and sAPP-β could be additional tools to diagnose SSVD. Highlights Patients with subcortical small-vessel disease (SSVD) exhibited reduced levels of sAPP-β and disturbances of the blood-brain barrier (BBB).This biochemical pattern is different from that of Alzheimer's disease (AD) and to some degree from that of mixed AD/SSVD.Our findings are speaking in favor of the concept that SSVD is a distinct vascular cognitive disorder (VCD) form.
Collapse
Affiliation(s)
- Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria Bjerke
- Laboratory of Neurochemistry, Department of Clinical Biology and Center for NeurosciencesUniversitair Ziekenhuis BrusselBrusselsBelgium
- Department of Biomedical SciencesInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | - Carl Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Immunology and Transfusion MedicineSahlgrenska University HospitalGothenburgSweden
| | - Michael Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Region Västra Götaland, Department of Internal MedicineSkaraborg Central HospitalSkövdeSweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
64
|
Moretti R, Caruso P. Small Vessel Disease: Ancient Description, Novel Biomarkers. Int J Mol Sci 2022; 23:3508. [PMID: 35408867 PMCID: PMC8998274 DOI: 10.3390/ijms23073508] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Small vessel disease (SVD) is one of the most frequent pathological conditions which lead to dementia. Biochemical and neuroimaging might help correctly identify the clinical diagnosis of this relevant brain disease. The microvascular alterations which underlie SVD have common origins, similar cognitive outcomes, and common vascular risk factors. Nevertheless, the arteriolosclerosis process, which underlines SVD development, is based on different mechanisms, not all completely understood, which start from a chronic hypoperfusion state and pass through a chronic brain inflammatory condition, inducing a significant endothelium activation and a consequent tissue remodeling action. In a recent review, we focused on the pathophysiology of SVD, which is complex, involving genetic conditions and different co-morbidities (i.e., diabetes, chronic hypoxia condition, and obesity). Currently, many points still remain unclear and discordant. In this paper, we wanted to focus on new biomarkers, which can be the expression of the endothelial dysfunction, or of the oxidative damage, which could be employed as markers of disease progression or for future targets of therapies. Therefore, we described the altered response to the endothelium-derived nitric oxide-vasodilators (ENOV), prostacyclin, C-reactive proteins, and endothelium-derived hyperpolarizing factors (EDHF). At the same time, due to the concomitant endothelial activation and chronic neuroinflammatory status, we described hypoxia-endothelial-related markers, such as HIF 1 alpha, VEGFR2, and neuroglobin, and MMPs. We also described blood-brain barrier disruption biomarkers and imaging techniques, which can also describe perivascular spaces enlargement and dysfunction. More studies should be necessary, in order to implement these results and give them a clinical benefit.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | | |
Collapse
|
65
|
Wang Y, Chen W, Zhou J, Wang Y, Wang H, Wang Y. Nitrate Metabolism and Ischemic Cerebrovascular Disease: A Narrative Review. Front Neurol 2022; 13:735181. [PMID: 35309590 PMCID: PMC8927699 DOI: 10.3389/fneur.2022.735181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Inorganic and organic nitrates are present in vivo and in vitro. Inorganic nitrate is considered a pool of nitric oxide (NO), but it can be converted into nitrite and NO through various mechanisms. It plays an important role in the regulation of complex physiological and biochemical reactions, such as anti-inflammatory processes and the inhibition of platelet aggregation, which are closely related to the pathology and treatment of cerebrovascular disease. Ischemic cerebrovascular disease is characterized by high incidence, recurrence, and disability rates. Nitrate, nitrite, and NO were recently found to be involved in cerebrovascular disease. In this review, we describe the relationship between cerebrovascular disease and nitrate metabolism to provide a basis for further advances in laboratory and clinical medicine.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- School of Stomatology, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Wang
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hao Wang
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Yilong Wang
| |
Collapse
|
66
|
Xin H, Wen H, Feng M, Gao Y, Sui C, Zhang N, Liang C, Guo L. Disrupted topological organization of resting-state functional brain networks in cerebral small vessel disease. Hum Brain Mapp 2022; 43:2607-2620. [PMID: 35166416 PMCID: PMC9057099 DOI: 10.1002/hbm.25808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
We aimed to investigate alterations in functional brain networks and assess the relationship between functional impairment and topological network changes in cerebral small vessel disease (CSVD) patients with and without cerebral microbleeds (CMBs). We constructed individual whole‐brain, region of interest (ROI) level functional connectivity (FC) networks for 24 CSVD patients with CMBs (CSVD‐c), 42 CSVD patients without CMBs (CSVD‐n), and 36 healthy controls (HCs). Then, we used graph theory analysis to investigate the global and nodal topological disruptions between groups and relate network topological alterations to clinical parameters. We found that both the CSVD and control groups showed efficient small‐world organization in FC networks. However, compared to CSVD‐n patients and controls, CSVD‐c patients exhibited a significantly decreased clustering coefficient, global efficiency, and local efficiency and an increased shortest path length, indicating a disrupted balance between local specialization and global integration in FC networks. Although both the CSVD and control groups showed highly similar hub distributions, the CSVD‐c group exhibited significantly altered nodal betweenness centrality (BC), mainly distributed in the default mode network (DMN), attention, and visual functional areas. There were almost no global or regional alterations between CSVD‐n patients and controls. Furthermore, the altered nodal BC of the right anterior/posterior cingulate gyrus and left cuneus were significantly correlated with cognitive parameters in CSVD patients. These results suggest that CSVD patients with and without CMBs had segregated disruptions in the topological organization of the intrinsic functional brain network. This study advances our current understanding of the pathophysiological mechanisms underlying CSVD.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
67
|
Wardlaw JM, Benveniste H, Williams A. Cerebral Vascular Dysfunctions Detected in Human Small Vessel Disease and Implications for Preclinical Studies. Annu Rev Physiol 2022; 84:409-434. [PMID: 34699267 DOI: 10.1146/annurev-physiol-060821-014521] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell-cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences; UK Dementia Research Institute; and Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom;
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
68
|
Stringer MS, Heye AK, Armitage PA, Chappell F, Valdés Hernández MDC, Makin SDJ, Sakka E, Thrippleton MJ, Wardlaw JM. Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: Associations with disease burden and vascular risk factors. Neuroimage Clin 2022; 32:102883. [PMID: 34911189 PMCID: PMC8607271 DOI: 10.1016/j.nicl.2021.102883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Permeability surface area (PS) was higher, even in normal appearing tissue. PS was higher in patients with more white matter hyperintensities. Tissue damage affecting vascular surface area may affect how we interpret tracer kinetic results.
Subtle blood–brain barrier (BBB) permeability increases have been shown in small vessel disease (SVD) using various analysis methods. Following recent consensus recommendations, we used Patlak tracer kinetic analysis, considered optimal in low permeability states, to quantify permeability-surface area product (PS), a BBB leakage estimate, and blood plasma volume (vP) in 201 patients with SVD who underwent dynamic contrast-enhanced MRI scans. We ran multivariable regression models with a quantitative or qualitative metric of white matter hyperintensity (WMH) severity, demographic and vascular risk factors. PS increased with WMH severity in grey (B = 0.15, Confidence Interval (CI): [0.001,0.299], p = 0.049) and normal-appearing white matter (B = 0.015, CI: [−0.008,0.308], p = 0.062). Patients with more severe WMH had lower vP in WMH (B = -0.088, CI: [−0.138,-0.039], p < 0.001), but higher vP in normal-appearing white matter (B = 0.031, CI: [−0.004,0.065], p = 0.082). PS and vP were lower at older ages in WMH, grey and white matter. We conclude higher PS in normal-appearing tissue with more severe WMH suggests impaired BBB integrity beyond visible lesions indicating that the microvasculature is compromised in normal-appearing white matter and WMH. BBB dysfunction is an important mechanism in SVD, but associations with clinical variables are complex and underlying damage affecting vascular surface area may alter interpretation of tracer kinetic results.
Collapse
Affiliation(s)
- Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Anna K Heye
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Paul A Armitage
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
69
|
|
70
|
Kwon YM, Han SH, Sung KS, Song YJ. Cerebral Microangiopathy Mimicking a High-Grade Glioma in Old Age: A Case Report. Brain Tumor Res Treat 2022; 10:195-199. [PMID: 35929118 PMCID: PMC9353164 DOI: 10.14791/btrt.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cerebral microangiopathy (CM) has become a common disease related to improved neuroimaging modalities and an increased life expectancy. Intracerebral tumor-like mass lesions have rarely been reported in cases of cerebral amyloid angiopathy (CAA) in elderly patients. However, tumor-like mass lesions from CM without amyloid deposits have rarely been reported. These two angiopathies may have different pathogeneses and neuroimaging characteristics. Herein, we present the case of an 83-year-old man with CM mimicking a high-grade glioma. We described the possible pathogenesis and different neuroimaging features of CM compared to CAA.
Collapse
Affiliation(s)
- Young Min Kwon
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Young Jin Song
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
71
|
Li S, Li G, Luo X, Huang Y, Wen L, Li J. Endothelial Dysfunction and Hyperhomocysteinemia-Linked Cerebral Small Vessel Disease: Underlying Mechanisms and Treatment Timing. Front Neurol 2021; 12:736309. [PMID: 34899561 PMCID: PMC8651556 DOI: 10.3389/fneur.2021.736309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (cSVD)—a common cause of stroke and vascular dementia—is a group of clinical syndromes that affects the brain's small vessels, including arterioles, capillaries, and venules. Its pathogenesis is not fully understood, and effective treatments are limited. Increasing evidence indicates that an elevated total serum homocysteine level is directly and indirectly associated with cSVD, and endothelial dysfunction plays an active role in this association. Hyperhomocysteinemia affects endothelial function through oxidative stress, inflammatory pathways, and epigenetic alterations at an early stage, even before the onset of small vessel injuries and the disease. Therefore, hyperhomocysteinemia is potentially an important therapeutic target for cSVD. However, decreasing the homocysteine level is not sufficiently effective, possibly due to delayed treatment, which underlying reason remains unclear. In this review, we examined endothelial dysfunction to understand the close relationship between hyperhomocysteinemia and cSVD and identify the optimal timing for the therapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guangjian Li
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
72
|
Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R. Pathogeneses and Imaging Features of Cerebral White Matter Lesions of Vascular Origins. Aging Dis 2021; 12:2031-2051. [PMID: 34881084 PMCID: PMC8612616 DOI: 10.14336/ad.2021.0414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
White matter lesion (WML), also known as white matter hyperintensities or leukoaraiosis, was first termed in 1986 to describe the hyperintense signals on T2-weighted imaging (T2WI) and fluid-attenuated inversion recovery (FLAIR) maps. Over the past decades, a growing body of pathophysiological findings regarding WMLs have been discovered and discussed. Currently, the generally accepted WML pathogeneses mainly include hypoxia-ischemia, endothelial dysfunction, blood-brain barrier disruption, and infiltration of inflammatory mediators or cytokines. However, none of them can explain the whole dynamics of WML formation. Herein, we primarily focus on the pathogeneses and neuroimaging features of vascular WMLs. To achieve this goal, we searched papers with any type published in PubMed from 1950 to 2020 and cross-referenced the keywords including "leukoencephalopathy", "leukoaraiosis", "white matter hyperintensity", "white matter lesion", "pathogenesis", "pathology", "pathophysiology", and "neuroimaging". Moreover, references of the selected articles were browsed and searched for additional pertinent articles. We believe this work will supply the robust references for clinicians to further understand the different WML patterns of varying vascular etiologies and thus make customized treatment.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Division of Clinical Neuroscience, Queen's Medical Center School of Medicine, the University of Nottingham, Nottingham NG7 2UH, UK.
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuchuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
73
|
Li MT, Ke J, Guo SF, Wu Y, Bian YF, Shan LL, Liu QY, Huo YJ, Guo C, Liu MY, Liu YJ, Han Y. The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation. Front Pharmacol 2021; 12:732874. [PMID: 34744717 PMCID: PMC8564287 DOI: 10.3389/fphar.2021.732874] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Cerebral small vessel disease (CSVD) is a group of clinical syndromes covering all pathological processes of small vessels in the brain, which can cause stroke and serious dementia. However, as the pathogenesis of CSVD is not clear, so the treatment is limited. Endothelial cell dysfunction is earlier than clinical symptoms, such as hypertension and leukosis. Therefore, the treatment of endothelial cells is expected to be a new breakthrough. Quercetin, a flavonoid present in a variety of plants, has the function of anti-inflammation and anti-oxidation. This study aimed to investigate the protective effect of quercetin on endothelial cell injury and provide a basic theory for subsequent application in the clinic. Methods: Human brain microvascular endothelial cells (HBMECs) were cultured in vitro, and the injury model of endothelial cells was established by hypoxia and reoxygenation (H/R). The protective effects of quercetin on HBMECs were studied from the perspectives of cell viability, cell migration, angiogenesis and apoptosis. In order to further study the mechanism of quercetin, oxidative stress and endoplasmic reticulum stress were analyzed. What's more, blood-brain barrier (BBB) integrity was also studied. Results: Quercetin can promote the viability, migration and angiogenesis of HBMECs, and inhibit the apoptosis. In addition, quercetin can also activate Keap1/Nrf2 signaling pathway, reduce ATF6/GRP78 protein expression. Further study showed that quercetin could increase the expression of Claudin-5 and Zonula occludens-1. Conclusions: Our experiments show that quercetin can protect HBMECs from H/R, which contains promoting cell proliferation, cell migration and angiogenesis, reducing mitochondrial membrane potential damage and inhibiting cell apoptosis. This may be related to its antioxidation and inhibition of endoplasmic reticulum stress. At the same time, quercetin can increase the level of BBB connexin, suggesting that quercetin can maintain BBB integrity.
Collapse
Affiliation(s)
- Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Feng Bian
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Li Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian-Yun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Jie Liu
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
74
|
Chagnot A, Barnes SR, Montagne A. Magnetic Resonance Imaging of Blood-Brain Barrier permeability in Dementia. Neuroscience 2021; 474:14-29. [PMID: 34400249 PMCID: PMC8528227 DOI: 10.1016/j.neuroscience.2021.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) and cerebral small vessel disease (cSVD) are the two main causes of dementia with blood-brain barrier (BBB) breakdown being a common contributor. Recent advances in neuroimaging techniques offer new possibilities to understand how the brain functions in health and disease. This includes methods such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) which allows the detection of subtle regional changes in the BBB integrity. The purpose of this work is to provide a review on the recent DCE-MRI findings of subtle BBB leakage focusing on cSVD and AD, including both clinical and pre-clinical studies. Despite being widely used and well-established, we also highlight some of the DCE-MRI challenges and pitfalls faced in the context of dementia inherent to the subtle nature of BBB impairment.
Collapse
Affiliation(s)
- Audrey Chagnot
- Normandie Université, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Samuel R Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
75
|
Narasimhan M, Schwartz R, Halliday G. Parkinsonism and cerebrovascular disease. J Neurol Sci 2021; 433:120011. [PMID: 34686356 DOI: 10.1016/j.jns.2021.120011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The relationship between cerebrovascular disease and parkinsonism is commonly seen in everyday clinical practice but remains ill-defined and under-recognised with little guidance for the practising neurologist. We attempt to define this association and to illustrate key clinical, radiological and pathological features of the syndrome of Vascular Parkinsonism (VaP). VaP is a major cause of morbidity in the elderly associated with falls, hip fractures and cognitive impairment. Although acute parkinsonism is reported in the context of an acute cerebrovascular event, the vast majority of VaP presents as an insidious syndrome usually in the context of vascular risk factors and radiological evidence of small vessel disease. There may be an anatomic impact on basal ganglia neuronal networks, however the effect of small vessel disease (SVD) on these pathways is not clear. There are now established reporting standards for radiological features of SVD on MRI. White matter hyperintensities and lacunes have been thought to be the representative radiological features of SVD but other features such as the perivascular space are gaining more importance, especially in context of the glymphatic system. It is important to consider VaP in the differential diagnosis of Parkinson disease (PD) and in these situations, neuroimaging may offer diagnostic benefit especially in those patients with atypical presentations or refractoriness to levodopa. Proactive management of vascular risk factors, monitoring of bone density and an exercise program may offer easily attainable therapeutic targets in PD and VaP. Levodopa therapy should be considered in patients with VaP, however the dose and effect may be different from use in PD. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Manisha Narasimhan
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Raymond Schwartz
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
76
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
77
|
Lu YW, Hao RJ, Wei YY, Yu GR. The protective effect of harpagoside on angiotensin II (Ang II)-induced blood-brain barrier leakage in vitro. Phytother Res 2021; 35:6241-6254. [PMID: 34486189 DOI: 10.1002/ptr.7269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Hypertension and its associated dysfunction of the blood-brain barrier (BBB) contribute to cerebral small vessel disease (cSVD). Angiotensin II (Ang II), a vasoactive peptide of the renin-angiotensin system (RAS), is not only a pivotal molecular signal in hypertension but also causes BBB leakage, cSVD, and cognitive impair. Harpagoside, the major bioactive constituent of Scrophulariae Radix, has been commonly used for the treatment of multiple diseases including hypertension in China. The effect of harpagoside on Ang II-induced BBB damage is unclear. We employed an immortalized endothelial cell line (bEnd.3) to mimic a BBB monolayer model in vitro and investigated the effect of harpagoside on BBB and found that harpagoside alleviated Ang II-induced BBB destruction, inhibited Ang II-associated cytotoxicity in a concentration-dependent manner and attenuated Ang II-induced reactive oxygen species (ROS) impair by downregulation of Nox2, Nox4, and COX-2. Harpagoside prevented Ang II-induced apoptosis via keeping Bax/Bcl-2 balance, decreasing cytochrome c release, and inactivation of caspase-8, caspase-9, and caspase-3 (the mitochondria-dependent and death receptor-mediated apoptosis pathways). Moreover, harpagoside can alleviate Ang II-induced BBB damage through upregulation of tight junction proteins and decrease of caveolae-mediated endocytosis. Thus, harpagoside might be a potential drug to treat Ang II-induced cSVD.
Collapse
Affiliation(s)
- Yun Wei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Juan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Yan Wei
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gu Ran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
78
|
Elevated complement mediator levels in endothelial-derived plasma exosomes implicate endothelial innate inflammation in diminished brain function of aging humans. Sci Rep 2021; 11:16198. [PMID: 34376699 PMCID: PMC8355229 DOI: 10.1038/s41598-021-91759-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/26/2021] [Indexed: 02/04/2023] Open
Abstract
We test the hypothesis that endothelial cells adopt an inflammatory phenotype in functionally intact aged human subjects with radiographic evidence of white matter hyperintensity (WMH) suggestive of small cerebrovascular disease. Components of all three complement effector pathways and regulatory proteins were quantified in extracts of plasma endothelial-derived exosomes (EDE) of 11 subjects (age 70-82) with and 15 without evidence of WMH on MRI. Group differences and associations with plasma markers of immune activation (IL6, ICAM1), cognition and neuroimaging were calculated via regression modelling. EDE complement factors within the alternative and classical pathways were found to be higher and regulatory proteins lower in subjects with WMH. EDE levels of some complement components demonstrated significant associations with cognitive slowing and elevated systolic blood pressure. The inhibitor of the membrane attack complex, CD46, showed a significant positive association with cerebral grey matter volume. Plasma inflammatory markers, IL6 and ICAM1, were positively associated with EDE levels of several complement components. These findings provide the first in vivo evidence of the association of endothelial cell inflammation with white matter disease, age-associated cognitive changes, and brain degeneration in functionally normal older individuals. Future endothelial biomarker development may permit recognition of early or preclinical stages of vascular contributions to cognitive impairment and dementia.
Collapse
|
79
|
Che Mohd Nassir CMN, Damodaran T, Yusof SR, Norazit A, Chilla G, Huen I, K. N. BP, Mohamed Ibrahim N, Mustapha M. Aberrant Neurogliovascular Unit Dynamics in Cerebral Small Vessel Disease: A Rheological Clue to Vascular Parkinsonism. Pharmaceutics 2021; 13:1207. [PMID: 34452169 PMCID: PMC8398765 DOI: 10.3390/pharmaceutics13081207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
The distinctive anatomical assemble and functionally discrete multicellular cerebrovasculature dynamics confer varying rheological and blood-brain barrier permeabilities to preserve the integrity of cerebral white matter and its neural microenvironment. This homeostasis intricately involves the glymphatic system that manages the flow of interstitial solutes, metabolic waste, and clearance through the venous circulation. As a physiologically integrated neurogliovascular unit (NGVU) serving a particularly vulnerable cerebral white matter (from hypoxia, metabolic insults, infection, and inflammation), a likely insidious process over a lifetime could inflict microenvironment damages that may lead to pathological conditions. Two such conditions, cerebral small vessel disease (CSVD) and vascular parkinsonism (VaP), with poorly understood pathomechanisms, are frequently linked to this brain-wide NGVU. VaP is widely regarded as an atypical parkinsonism, described by cardinal motor manifestations and the presence of cerebrovascular disease, particularly white matter hyperintensities (WMHs) in the basal ganglia and subcortical region. WMHs, in turn, are a recognised imaging spectrum of CSVD manifestations, and in relation to disrupted NGVU, also include enlarged perivascular spaces. Here, in this narrative review, we present and discuss on recent findings that argue for plausible clues between CSVD and VaP by focusing on aberrant multicellular dynamics of a unique integrated NGVU-a crossroad of the immune-vascular-nervous system-which may also extend fresher insights into the elusive interplay between cerebral microvasculature and neurodegeneration, and the potential therapeutic targets.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (T.D.); (S.R.Y.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (T.D.); (S.R.Y.)
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia;
| | - Geetha Chilla
- A*STAR Institute of Bioengineering and Bioimaging, Helios, 11 Biopolis Way, Singapore 138667, Singapore; (G.C.); (I.H.); (B.P.K.N.)
| | - Isaac Huen
- A*STAR Institute of Bioengineering and Bioimaging, Helios, 11 Biopolis Way, Singapore 138667, Singapore; (G.C.); (I.H.); (B.P.K.N.)
| | - Bhanu Prakash K. N.
- A*STAR Institute of Bioengineering and Bioimaging, Helios, 11 Biopolis Way, Singapore 138667, Singapore; (G.C.); (I.H.); (B.P.K.N.)
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia;
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
80
|
Che Mohd Nassir CMN, Hashim S, Wong KK, Abdul Halim S, Idris NS, Jayabalan N, Guo D, Mustapha M. COVID-19 Infection and Circulating Microparticles-Reviewing Evidence as Microthrombogenic Risk Factor for Cerebral Small Vessel Disease. Mol Neurobiol 2021; 58:4188-4215. [PMID: 34176095 PMCID: PMC8235918 DOI: 10.1007/s12035-021-02457-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is cerebral small vessel disease (CSVD) which represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger subsequent neuroinflammation and neurodegeneration. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, and Alzheimer's disease. In the background of COVID-19 infection, the heightened cellular activations from inflammations and oxidative stress may result in elevated levels of microthrombogenic extracellular-derived circulating microparticles (MPs). Consequently, MPs could act as pro-coagulant risk factor that may serve as microthrombi for the vulnerable microcirculation in the brain leading to CSVD manifestations. This review aims to appraise the accumulating body of evidence on the plausible impact of COVID-19 infection on the formation of microthrombogenic MPs that could lead to microthrombosis in CSVD manifestations, including occult CSVD which may last well beyond the pandemic era.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sanihah Abdul Halim
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Suhaila Idris
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, UQ Centre for Clinical Research, the University of Queensland, Herston, Brisbane, 4029, Australia
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Rd, Beijing, 100048, China
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
81
|
Su C, Wu H, Yang X, Zhao B, Zhao R. The relation between antihypertensive treatment and progression of cerebral small vessel disease: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e26749. [PMID: 34397717 PMCID: PMC8322490 DOI: 10.1097/md.0000000000026749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease is relevant to hypertension. We tried to figure out whether antihypertensive treatment is beneficial for this disease. METHODS We systematically searched PubMed, Embase, and Cochrane electronic databases for randomized controlled trials about white matter hyperintensities (WMH), brain atrophy, microbleeds, and lacunar infarcts with antihypertensive treatment and performed a meta-analysis. RESULTS We identified 7 trials on white matter hyperintensities and brain atrophy with antihypertensive treatment. Pooled analysis showed antihypertensive treatment performed positively in the progression of WMH (standardized mean difference, -0.22; 95% CI, -0.36 to -0.07, I^2 = 52%). And in the subgroup meta-analysis, only lower SBP controlled level (110-129 mm Hg) had effect on the progression of WMH (standardized mean difference, -0.37; 95% CI, -0.54 to -0.29, I^2 =0). The meta-regression showed larger difference of SBP in treatment groups having a smaller WMH progression. Antihypertensive treatment is not significant in the progression of brain atrophy (standardized mean difference, -0.02; 95% CI, -0.26 to 0.30, I^2 = 85%). Only 1 trial reported the new patients of lacunar infarcts in the follow-up, no association with antihypertensive treatment (odds ratio, 2.2; 95% CI, 0.4-12.1; P = .36). CONCLUSIONS Antihypertensive treatment is beneficial for cerebral small vessel disease on white matter hyperintensities progression, but no impact on brain atrophy. And lower SBP level is more effective on the progression of WMH. There is not enough evidence to prove the relationship between antihypertensive treatment and lacunar stroke, microbleeds.
Collapse
Affiliation(s)
- Chen Su
- Neurology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hao Wu
- Neurology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyu Yang
- Neurology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Zhao
- Neurology Department, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Renliang Zhao
- Neurology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
82
|
Chen Y, Wang X, Guan L, Wang Y. Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review. Biomolecules 2021; 11:biom11081102. [PMID: 34439769 PMCID: PMC8391787 DOI: 10.3390/biom11081102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
White matter hyperintensities (WMHs) of presumed vascular origin are one of the imaging markers of cerebral small-vessel disease, which is prevalent in older individuals and closely associated with the occurrence and development of cognitive impairment. The heterogeneous nature of the imaging manifestations of WMHs creates difficulties for early detection and diagnosis of vascular cognitive impairment (VCI) associated with WMHs. Because the underlying pathological processes and biomarkers of WMHs and their development in cognitive impairment remain uncertain, progress in prevention and treatment is lagging. For this reason, this paper reviews the status of research on the features of WMHs related to VCI, as well as mediators associated with both WMHs and VCI, and summarizes potential treatment strategies for the prevention and intervention in WMHs associated with VCI.
Collapse
Affiliation(s)
- Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Y.C.); (X.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Xing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Y.C.); (X.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400000, China
| | - Ling Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Y.C.); (X.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Correspondence: (L.G.); (Y.W.)
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Y.C.); (X.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Correspondence: (L.G.); (Y.W.)
| |
Collapse
|
83
|
Rastogi A, Weissert R, Bhaskar SMM. Emerging role of white matter lesions in cerebrovascular disease. Eur J Neurosci 2021; 54:5531-5559. [PMID: 34233379 DOI: 10.1111/ejn.15379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
White matter lesions have been implicated in the setting of stroke, dementia, intracerebral haemorrhage, several other cerebrovascular conditions, migraine, various neuroimmunological diseases like multiple sclerosis, disorders of metabolism, mitochondrial diseases and others. While much is understood vis a vis neuroimmunological conditions, our knowledge of the pathophysiology of these lesions, and their role in, and implications to, management of cerebrovascular diseases or stroke, especially in the elderly, are limited. Several clinical assessment tools are available for delineating white matter lesions in clinical practice. However, their incorporation into clinical decision-making and specifically prognosis and management of patients is suboptimal for use in standards of care. This article sought to provide an overview of the current knowledge and recent advances on pathophysiology, as well as clinical and radiological assessment, of white matter lesions with a focus on its development, progression and clinical implications in cerebrovascular diseases. Key indications for clinical practice and recommendations on future areas of research are also discussed. Finally, a conceptual proposal on putative mechanisms underlying pathogenesis of white matter lesions in cerebrovascular disease has been presented. Understanding of pathophysiology of white matter lesions and how they mediate outcomes is important to develop therapeutic strategies.
Collapse
Affiliation(s)
- Aarushi Rastogi
- South Western Sydney Clinical School, University of New South Wales (UNSW), Liverpool, New South Wales, Australia.,Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Robert Weissert
- Department of Neurology, Regensburg University Hospital, University of Regensburg, Regensburg, Germany
| | - Sonu Menachem Maimonides Bhaskar
- South Western Sydney Clinical School, University of New South Wales (UNSW), Liverpool, New South Wales, Australia.,Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,NSW Brain Clot Bank, NSW Health Pathology, Sydney, New South Wales, Australia.,Department of Neurology and Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
84
|
Galmiche C, Moal B, Marnat G, Sagnier S, Schweitzer C, Dousset V, Sibon I, Tourdias T. Delayed Gadolinium Leakage in Ocular Structures: A Potential Marker for Age- and Vascular Risk Factor-Related Small Vessel Disease? Invest Radiol 2021; 56:425-432. [PMID: 33481460 DOI: 10.1097/rli.0000000000000757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Gadolinium leakage in ocular structures (GLOS) was recently observed in fluid-attenuated inversion recovery (FLAIR) images obtained the day after an initial gadolinium injection in stroke patients. The specificity of GLOS to stroke and its mechanisms remain unclear. OBJECTIVE We investigated the factors associated with GLOS in a cohort of patients presenting with acute neurological deficits. MATERIALS AND METHODS This retrospective study included consecutive patients admitted to our stroke unit for acute neurological deficit between July 2017 and August 2018 who underwent baseline brain magnetic resonance imaging with the injection of a macrocyclic gadolinium agent and another scan without injection within 72 hours. The patients were separated into a stroke group and a stroke mimic group based on diffusion-weighted images. Gadolinium leakage in ocular structures was defined as a bright signal in the vitreous in follow-up FLAIR compared with baseline FLAIR (pregadolinium). Clinical data were collected together with imaging features from the baseline scans, including the volume of the infarct and of hypoperfusion if applicable, white matter hyperintensities, the number of lacunes, and the number of microbleeds, which were combined to yield a small vessel disease (SVD) score. We compared the prevalence of GLOS in both groups using the χ2 test. In the entire cohort, univariate and multivariate regression models were used to test the associations between GLOS and the collected data. RESULTS Among the 467 patients included in the study, GLOS was observed in similar proportions in the stroke group (32.2%, 136/422) and the stroke mimic group (28.9%, 13/45; mean difference, 3.3%; 95% confidence interval, -10.9 to 17.6; P = 0.65). In univariate analysis, GLOS was associated with older age, increased prevalence of vascular risk factors, brain imaging features of SVD (white matter hyperintensities, lacunes, microbleeds), as well as with impairment of renal function and increased dose of gadolinium. No associations were found with factors related to stroke, such as its volume, acute treatment, or rate of recanalization. Multivariate analyses showed that aging (P < 0.001), diabetes (P = 0.010), severe renal failure (P = 0.004), and increased dose of gadolinium (P < 0.001) were independent contributors to GLOS. CONCLUSIONS Gadolinium leakage in ocular structures, which occurs more commonly at higher concentrations of gadolinium, is not specific to stroke and may represent increased permeability of the blood-retinal barrier associated with age- and vascular risk factor-related SVD.
Collapse
Affiliation(s)
- Chloé Galmiche
- From the Service de Neuroimagerie Diagnostique et Thérapeutique
| | - Bertrand Moal
- Pôle de Santé Publique, Unité de Soutien Méthodologique à la Recherche Clinique et Epidémiologique
| | - Gaultier Marnat
- From the Service de Neuroimagerie Diagnostique et Thérapeutique
| | | | | | | | | | | |
Collapse
|
85
|
Imaging neurovascular, endothelial and structural integrity in preparation to treat small vessel diseases. The INVESTIGATE-SVDs study protocol. Part of the SVDs@Target project. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100020. [PMID: 36324725 PMCID: PMC9616332 DOI: 10.1016/j.cccb.2021.100020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/25/2021] [Accepted: 06/20/2021] [Indexed: 12/30/2022]
Abstract
Background Sporadic cerebral small vessel disease (SVD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) share clinical and neuroimaging features and possibly vascular dysfunction(s). However few studies have included both conditions, assessed more than one vascular dysfunction simultaneously, or included more than one centre. The INVESTIGATE-SVDs study will assess several cerebrovascular dysfunctions with MRI in participants with sporadic SVD or CADASIL at three European centres. Methods We will recruit participants with sporadic SVDs (ischaemic stroke or vascular cognitive impairment) and CADASIL in Edinburgh, Maastricht and Munich. We will perform detailed clinical and neuropsychological phenotyping of the participants, and neuroimaging including structural MRI, cerebrovascular reactivity MRI (CVR: using carbon dioxide challenge), phase contrast MRI (arterial, venous and CSF flow and pulsatility), dynamic contrast-enhanced MRI (blood brain barrier (BBB) leakage) and multishell diffusion imaging. Participants will measure their blood pressure (BP) and its variability over seven days using a telemetric device. Discussion INVESTIGATE-SVDs will assess the relationships of BBB integrity, CVR, pulsatility and CSF flow in sporadic SVD and CADASIL using a multisite, multimodal MRI protocol. We aim to establish associations between these measures of vascular function, risk factors particularly BP and its variability, and brain parenchymal lesions in these two SVD phenotypes. Additionally we will test feasibility of complex multisite MRI, provide reliable intermediary outcome measures and sample size estimates for future trials.
Collapse
Key Words
- BBB, blood brain barrier
- BOLD, blood oxygen level dependent
- BP, blood pressure
- BPv, blood pressure variability
- Blood-brain barrier permeability
- CADASIL
- CADASIL, cerebral autosomal dominant arteriopathy with leukoencephalopathy and subcortical infarcts
- CBF, cerebral blood flow
- CERAD+, consortium to establish a disease registry for Alzheimer's disease plus battery
- CO2, carbon dioxide
- CSF, cerebrospinal fluid
- CVR, cerebrovascular reactivity
- Cerebral small vessel disease
- Cerebrovascular reactivity
- DCE, dynamic contrast enhanced
- EtCO2, end-tidal carbon dioxide
- GM, grey matter
- MMSE, mini-mental state examination
- MRI
- MoCA, Montreal cognitive exam
- NIHSS, national institute for health stroke scale
- PI, pulsatility index
- PVS, perivascular space
- RSSI, recent small subcortical infarct
- SVDs, small vessel diseases
- WM, white matter
- WMH, white matter hyperintensity
Collapse
|
86
|
Kerkhofs D, Wong SM, Zhang E, Uiterwijk R, Hoff EI, Jansen JFA, Staals J, Backes WH, van Oostenbrugge RJ. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study. GeroScience 2021; 43:1643-1652. [PMID: 34160780 PMCID: PMC8492799 DOI: 10.1007/s11357-021-00399-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction is one of the pathophysiological mechanisms in cerebral small vessel disease (SVD). Previously, it was shown that BBB leakage volume is larger in patients with SVD compared with controls. In this study, we investigated the link between BBB leakage and cognitive decline over 2 years in patients with cSVD. At baseline, 51 patients with clinically overt cSVD (lacunar stroke or mild vascular cognitive impairment) received a dynamic contrast-enhanced MRI scan to quantify BBB permeability in the normal-appearing white matter (NAWM), white matter hyperintensities (WMH), cortical grey matter (CGM), and deep grey matter (DGM). Cognitive function in the domain executive function, information processing speed, and memory was measured in all patients at baseline and after 2 years. The association between baseline BBB leakage and cognitive decline over 2 years was determined with multivariable linear regression analysis, corrected for age, sex, educational level, baseline WMH volume, and baseline brain volume. Regression analyses showed that higher baseline leakage volume and rate in the NAWM and CGM were significantly associated with increased overall cognitive decline. Furthermore, higher baseline leakage volume in the NAWM and CGM, and higher baseline leakage rate in the CGM were significantly associated with increased decline in executive function. This longitudinal study showed that higher BBB leakage at baseline is associated with stronger cognitive decline, specifically in executive function, over 2 years of follow-up in patients with cSVD. These results emphasize the key role of BBB disruption in the pathophysiology and clinical progression of cSVD.
Collapse
Affiliation(s)
- Danielle Kerkhofs
- Department of Neurology, Maastricht University Medical Center+, Oxfordlaan 10, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- CARIM - School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Sau May Wong
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- MH&Ns - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Eleana Zhang
- Department of Neurology, Maastricht University Medical Center+, Oxfordlaan 10, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands
- MH&Ns - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Renske Uiterwijk
- Department of Neurology, Maastricht University Medical Center+, Oxfordlaan 10, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- MH&Ns - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Erik I Hoff
- Department of Neurology, Zuyderland Medical Centre, Heerlen, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- MH&Ns - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center+, Oxfordlaan 10, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- MH&Ns - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center+, Oxfordlaan 10, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands
- MH&Ns - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
87
|
Moon WJ, Lim C, Ha IH, Kim Y, Moon Y, Kim HJ, Han SH. Hippocampal blood-brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J Cereb Blood Flow Metab 2021; 41:1351-1361. [PMID: 32936729 PMCID: PMC8142140 DOI: 10.1177/0271678x20952012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain barrier (BBB) disruption, modulated by APOE4 mutation, is implicated in the pathogenesis of cognitive decline. We determined whether BBB permeability differed according to cognitive functioning and APOE4 status in elderly subjects without dementia. In this prospective study, 33 subjects with mild cognitive impairment (MCI) and 33 age-matched controls (normal cognition [NC]) underwent 3 T brain magnetic resonance imaging. The Patlak model was used to calculate tissue permeability (Ktrans). A region-of interest analysis of Ktrans was performed to compare relevant brain regions. Effects of Ktrans on cognitive functioning were evaluated with linear regression analysis adjusted for confounding factors. NC and MCI groups did not differ in terms of vascular risk factors or hippocampal Ktrans, except for hippocampal volume. Hippocampal Ktrans was significantly higher in APOE4 carriers than in non-carriers (p = 0.007). Factors which predicted cognitive functioning included hippocampal volume (beta=-0.445, standard error [SE]=0.137, p = 0.003) and hippocampal BBB permeability (beta = 0.142, SE = 0.050, p = 0.008) after correcting for age, education, and APOE4 status. This suggests that hippocampal BBB permeability is associated with APOE4 mutation, and may predict cognitive functioning. BBB permeability imaging represents a distinct imaging biomarker for APOE4 mutations in NC and MCI subjects and for determining the degree of APOE4-related pathology.
Collapse
Affiliation(s)
- Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Changmok Lim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Il Heon Ha
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yeahoon Kim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
88
|
Manning C, Stringer M, Dickie B, Clancy U, Valdés Hernandez MC, Wiseman SJ, Garcia DJ, Sakka E, Backes WH, Ingrisch M, Chappell F, Doubal F, Buckley C, Parkes LM, Parker GJM, Marshall I, Wardlaw JM, Thrippleton MJ. Sources of systematic error in DCE-MRI estimation of low-level blood-brain barrier leakage. Magn Reson Med 2021; 86:1888-1903. [PMID: 34002894 DOI: 10.1002/mrm.28833] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B 1 + error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B 1 + correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.
Collapse
Affiliation(s)
- Cameron Manning
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Una Clancy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria C Valdés Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart J Wiseman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience and School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Geoff J M Parker
- Centre for Medical Image Computing and Department of Neuroinflammation, UCL, London, United Kingdom
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
89
|
Sun Z, Gao C, Gao D, Sun R, Li W, Wang F, Wang Y, Cao H, Zhou G, Zhang J, Shang J. Reduction in pericyte coverage leads to blood-brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion. Fluids Barriers CNS 2021; 18:21. [PMID: 33952281 PMCID: PMC8101037 DOI: 10.1186/s12987-021-00255-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background Chronic cerebral hypoperfusion (CCH) is the leading cause of cerebral small vessel disease (CSVD). CCH is strongly associated with blood–brain barrier (BBB) dysfunction and white matter lesions (WMLs) in CSVD. However, the effects of CCH on BBB integrity and components and the cellular and molecular mechanisms underlying the effects of BBB dysfunction remain elusive. Whether maintaining BBB integrity can reverse CCH-induced brain damage has also not been explored. Methods In this study, we established a rat model of CSVD via permanent bilateral common carotid artery occlusion (2VO) to mimic the chronic hypoperfusive state of CSVD. The progression of BBB dysfunction and components of the BBB were assessed using immunostaining, Western blotting, transmission electron microscopy (TEM) and RNA sequencing. We also observed the protective role of imatinib, a tyrosine kinase inhibitor, on BBB integrity and neuroprotective function following CCH. The data were analyzed using one-way or two-way ANOVA. Results We noted transient yet severe breakdown of the BBB in the corpus callosum (CC) following CCH. The BBB was severely impaired as early as 1 day postoperation and most severely impaired 3 days postoperation. BBB breakdown preceded neuroinflammatory responses and the formation of WMLs. Moreover, pericyte loss was associated with BBB impairment, and the accumulation of serum protein was mediated by increased endothelial transcytosis in the CC. RNA sequencing also revealed increased transcytosis genes expression. BBB dysfunction led to brain damage through regulation of TGF-β/Smad2 signaling. Furthermore, imatinib treatment ameliorated serum protein leakage, oligodendrocyte progenitor cell (OPC) activation, endothelial transcytosis, microglial activation, and aberrant TGF-β/Smad2 signaling activation. Conclusions Our results indicate that reduced pericyte coverage leads to increased BBB permeability via endothelial transcytosis. Imatinib executes a protective role on the BBB integrity via inhibition of endothelial transcytosis. Maintenance of BBB integrity ameliorates brain damage through regulation of TGF-β/Smad2 signaling following CCH; therefore, reversal of BBB dysfunction may be a promising strategy for CSVD treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00255-2.
Collapse
Affiliation(s)
- Zhengyu Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Chenhao Gao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dandan Gao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruihua Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Wei Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fengyu Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yanliang Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Guoyu Zhou
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Junkui Shang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
90
|
Li M, Li Y, Zuo L, Hu W, Jiang T. Increase of blood-brain barrier leakage is related to cognitive decline in vascular mild cognitive impairment. BMC Neurol 2021; 21:159. [PMID: 33858381 PMCID: PMC8048027 DOI: 10.1186/s12883-021-02189-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown, as an early biomarker for vascular mild cognitive impairment (vMCI), has only been validated by a few studies. The aim of this study was to investigate whether compromised BBB integrity is involved in vMCI patients, and detect the relationship between BBB breakdown and cognitive function. BBB leakage in vMCI was explored, and the relationship between BBB leakage and cognitive function was discussed in this study. METHODS This is a cross-sectional study involving 26 vMCI patients and 21 sex- and age-matched healthy controls. Dynamic contrast-enhanced-magnetic resonance imaging was performed for all participants, to determine BBB leakage. Leakage volume, leakage rate, and fractional blood plasma volume (Vp) in the grey and white matter were evaluated. Neuropsychological tests were used to determine cognitive function. Leakage rate, leakage volume, and Vp in different brain locations, including deep grey matter, cortical grey matter, white matter hyperintensity, and normal-appearing white matter were compared between the two groups. RESULTS Multivariable linear regression analyses revealed that in all regions of interest, the leakage rate was significantly higher in vMCI patients relative to controls. Leakage volume in normal-appearing white matter and white matter hyperintensity were significantly higher, while Vp in normal-appearing white matter, deep grey matter, and cortical grey matter were significantly lower in vMCI patients. Moreover, Montreal Cognitive Assessment scores decreased with the increase of leakage rate in white matter hyperintensity. CONCLUSION Increased BBB permeability was detected in vMCI patients and was related to cognitive decline, which suggested that BBB breakdown might be involved in cognitive dysfunction pathogenesis.
Collapse
Affiliation(s)
- Man Li
- Radiology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, 100020, P.R. China.
| | - Yue Li
- Neurology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, P.R. China
| | - Long Zuo
- Radiology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, 100020, P.R. China
| | - Wenli Hu
- Neurology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, P.R. China
| | - Tao Jiang
- Radiology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, 100020, P.R. China
| |
Collapse
|
91
|
Kerkhofs D, Wong SM, Zhang E, Staals J, Jansen JFA, van Oostenbrugge RJ, Backes WH. Baseline Blood-Brain Barrier Leakage and Longitudinal Microstructural Tissue Damage in the Periphery of White Matter Hyperintensities. Neurology 2021; 96:e2192-e2200. [PMID: 33762423 PMCID: PMC8166427 DOI: 10.1212/wnl.0000000000011783] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/29/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate the 2-year change in parenchymal diffusivity, a quantitative marker of microstructural tissue condition, and the relationship with baseline blood-brain barrier (BBB) permeability, in tissue at risk, i.e., the perilesional zone surrounding white matter hyperintensities (WMH) in patients with cerebral small vessel disease (cSVD). METHODS Patients with sporadic cSVD (lacunar stroke or mild vascular cognitive impairment) underwent 3T MRI at baseline, including dynamic contrast-enhanced MRI to quantify BBB permeability (i.e., leakage volume and rate) and intravoxel incoherent motion imaging (IVIM), a diffusion technique that provides parenchymal diffusivity D. After 2 years, IVIM was repeated. We assessed the relation between BBB leakage measures at baseline and change in parenchymal diffusivity (∆D) over 2 years in the perilesional zones (divided in 2-mm contours) surrounding WMH. RESULTS We analyzed 43 patients (age 68 ± 12 years, 58% male). In the perilesional zones, ∆D increased 0.10% (confidence interval [CI] 0.07-0.013%) (p < 0.01) per 2 mm closer to the WMH. Furthermore, ∆D over 2 years showed a positive correlation with both baseline BBB leakage volume (r = 0.29 [CI 0.06-0.52], p = 0.013) and leakage rate (r = 0.24 [CI 0.02-0.47], p = 0.034). CONCLUSION BBB leakage at baseline is related to the 2-year change in parenchymal diffusivity in the perilesional zone of WMH. These results support the hypothesis that BBB impairment might play an early role in subsequent microstructural white matter degeneration as part of the pathophysiology of cSVD.
Collapse
Affiliation(s)
- Danielle Kerkhofs
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands.
| | - Sau May Wong
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
| | - Eleana Zhang
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
| | - Julie Staals
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
| | - Jacobus F A Jansen
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
| | - Robert J van Oostenbrugge
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
| | - Walter H Backes
- From the Departments of Neurology (D.K., E.Z., J.S., R.J.v.O.) and Radiology and Nuclear Medicine (S.M.W., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
| |
Collapse
|
92
|
Ashby JW, Mack JJ. Endothelial Control of Cerebral Blood Flow. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1906-1916. [PMID: 33713686 DOI: 10.1016/j.ajpath.2021.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Since constant perfusion of blood throughout the brain is critical for neuronal health, the regulation of cerebral blood flow is complex and highly controlled. This regulation is controlled, in part, by the cerebral endothelium. In this review, multiple modes of endothelium-derived blood flow regulation is discussed, including chemical control of vascular tone, heterotypic and homotypic cell-cell interactions, second messenger signaling, and cellular response to physical forces and inflammatory mediators. Because cerebral small vessel disease is often associated with endothelial dysfunction and a compromised blood-brain barrier, understanding the endothelial factors that regulate vessel function to maintain cerebral blood flow and prevent vascular permeability may provide insights into disease prevention and treatment.
Collapse
Affiliation(s)
- Julianne W Ashby
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California
| | - Julia J Mack
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
93
|
Dao E, Tam R, Hsiung GYR, Ten Brinke L, Crockett R, Barha CK, Yoo Y, Al Keridy W, Doherty SH, Laule C, MacKay AL, Liu-Ambrose T. Exploring the Contribution of Myelin Content in Normal Appearing White Matter to Cognitive Outcomes in Cerebral Small Vessel Disease. J Alzheimers Dis 2021; 80:91-101. [PMID: 33523006 DOI: 10.3233/jad-201134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Myelin damage is a salient feature in cerebral small vessel disease (cSVD). Of note, myelin damage extends into the normal appearing white matter (NAWM). Currently, the specific role of myelin content in cognition is poorly understood. OBJECTIVE The objective of this exploratory study was to investigate the association between NAWM myelin and cognitive function in older adults with cSVD. METHODS This exploratory study included 55 participants with cSVD. NAWM myelin was measured using myelin water imaging and was quantified as myelin water fraction (MWF). Assessment of cognitive function included processing speed (Trail Making Test Part A), set shifting (Trail Making Test Part B minus A), working memory (Verbal Digit Span Backwards Test), and inhibition (Stroop Test). Multiple linear regression analyses assessed the contribution of NAWM MWF on cognitive outcomes controlling for age, education, and total white matter hyperintensity volume. The overall alpha was set at ≤0.05. RESULTS After accounting for age, education, and total white matter hyperintensity volume, lower NAWM MWF was significantly associated with slower processing speed (β = -0.29, p = 0.037) and poorer working memory (β= 0.30, p = 0.048). NAWM MWF was not significantly associated with set shifting or inhibitory control (p > 0.132). CONCLUSION Myelin loss in NAWM may play a role in the evolution of impaired processing speed and working memory in people with cSVD. Future studies, with a longitudinal design and larger sample sizes, are needed to fully elucidate the role of myelin as a potential biomarker for cognitive function.
Collapse
Affiliation(s)
- Elizabeth Dao
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Department of Radiology, UBC, Vancouver, Canada.,School of Biomedical Engineering, UBC, Vancouver, Canada
| | - Ging-Yuek R Hsiung
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Division of Neurology, UBC Hospital, Vancouver, Canada
| | - Lisanne Ten Brinke
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Rachel Crockett
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Cindy K Barha
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | | | - Walid Al Keridy
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Division of Neurology, UBC Hospital, Vancouver, Canada.,Department of Medicine, King Saud University, College of Medicine, Riyadh, Saudi Arabia
| | - Stephanie H Doherty
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, UBC, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada.,Department of Physics and Astronomy, UBC, Vancouver, Canada.,International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Alex L MacKay
- Department of Radiology, UBC, Vancouver, Canada.,UBC MRI Research Centre, UBC, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
94
|
Primary empty sella: The risk factors and associations with the cerebral small vessel diseases-An observational study. Clin Neurol Neurosurg 2021; 203:106586. [PMID: 33730618 DOI: 10.1016/j.clineuro.2021.106586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the risk factors of primary empty sella (PES) and its associations with cerebral small vessel diseases (CSVD). METHODS A total of 132 consecutive patients were recruited from Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University from December 2018 to January 2020, including 69 cases of PES, and age, gender-matched 63 subjects without PES. Demographics and clinical characteristics were recorded. Enlarged perivascular spaces (PVS) and white matter hyperintensities (WMH), which are image markers for CSVD, were assessed. Univariate logistic regression models and multivariate logistic regression models were performed to predict the independent risk factors of PES. RESULTS There was a significant difference in baseline characteristics in terms of hypertension (p < 0.001) and pregnancy (p = 0.019) between PES and the control group; among markers of CSVD, whole WMH (p = 0.030) and periventricular hyperintensities (PVH) (p = 0.027) were significantly different; however, no significant differences concerning deep WMH, total PVS, basilar ganglia-PVS and centrum semiovale-PVS (p > 0.05). After adjusting relevant potential confounders, multivariate logistic regression revealed hypertension (OR=3.158, 95 %CI: 1.452∼6.865, p = 0.004) and pregnancy (OR=2.236, 95 %CI: 1.036-4.826, p = 0.040) were independent risk factors for PES. CONCLUSION Hypertension and pregnancy are independent risk factors of PES. There is a possible correlation between PES and WMH, especially PVH, however, further studies are required to confirm these findings.
Collapse
|
95
|
Nassir CMNCM, Ghazali MM, Hashim S, Idris NS, Yuen LS, Hui WJ, Norman HH, Gau CH, Jayabalan N, Na Y, Feng L, Ong LK, Abdul Hamid H, Ahamed HN, Mustapha M. Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Front Cardiovasc Med 2021; 8:632131. [PMID: 33718454 PMCID: PMC7943466 DOI: 10.3389/fcvm.2021.632131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable risk factors such as unhealthy diet including high intake of processed food, high-fat foods, and animal by-products are known to influence the non-neural peripheral events, such as in the gastrointestinal tract and cardiovascular stress through cellular inflammation and oxidation. One key outcome from such events, among others, includes the cellular activations that lead to elevated levels of endogenous cellular-derived circulating microparticles (MPs). MPs can be produced from various cellular origins including leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as microthrombogenic procoagulant that served as a plausible culprit for the vulnerable end-artery microcirculation in the brain as the end-organ leading to CSVD manifestations. However, little attention has been paid on the potential role of MPs in the onset and progression of CSVD spectrum. Corroboratively, the formation of MPs is known to be influenced by diet-induced cellular stress. Thus, this review aims to appraise the body of evidence on the dietary-related impacts on circulating MPs from non-neural peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical features of MPs in health and disease states; relevance of dietary patterns on MP release; preclinical studies pertaining to diet-based MPs contribution to disease; MP level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs manipulation with diet-based approach as a novel preventive measure for CSVD in an aging society worldwide.
Collapse
Affiliation(s)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Suhaila Idris
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Lee Si Yuen
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wong Jia Hui
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Haziq Hazman Norman
- Anatomy Unit, International Medical School (IMS), Management and Science University (MSU), Shah Alam, Malaysia
| | - Chuang Huei Gau
- Department of Psychology and Counselling, Faculty of Arts and Social Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, University of Queensland (UQ), Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Yuri Na
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Linqing Feng
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, National Health and Medical Research Council (NHMRC), Heidelberg, VIC, Australia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian, Malaysia
| |
Collapse
|
96
|
Chen X, Lu D, Guo N, Kang Z, Zhang K, Wang J, Men X, Lu Z, Qiu W. Left ventricular ejection fraction and right atrial diameter are associated with deep regional CBF in arteriosclerotic cerebral small vessel disease. BMC Neurol 2021; 21:67. [PMID: 33573621 PMCID: PMC7877009 DOI: 10.1186/s12883-021-02096-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/04/2021] [Indexed: 02/21/2023] Open
Abstract
Background Systemic cardiac hypoperfusion is a well-acknowledged contributor to ischemic leukoencephalopathy. However, it has remained elusive how atherosclerosis-mediated cardiac remodelling modifies cerebral perfusion homeostasis as well as neuroimaging burden in cerebral small vessel disease (CSVD) development. Methods This retrospective study identified 103 arteriosclerotic CSVD (aCSVD) patients (CSVD burdenlow 0 ~ 1, n = 61 and CSVD burdenhigh 2 ~ 4, n = 42) from Sep. 2017 to Dec. 2019 who underwent transthoracic echocardiography(n = 81), structural magnetic resonance imaging and arterial spin labelling (ASL). Total CSVD burden was graded according to the ordinal “small vessel disease” rating score (0–4). We investigated the univariate and multivariate linear regression of mean deep regional cerebral blood flow (CBF) as well as logistic regression analysis of CSVD burdenhigh. Results Right atrial diameter (B coefficient, − 0.289; 95% CI, − 0.578 to − 0.001; P = 0.049) and left ventricular ejection fraction (B coefficient, 32.555; 95% CI, 7.399 to 57.711; P = 0.012) were independently associated with deep regional CBF in aCSVD patients. Binary logistic regression analysis demonstrated decreased deep regional CBF (OR 0.894; 95% CI 0.811–0.985; P = 0.024) was independently associated with higher CSVD burden after adjusted for clinical confounders. Multivariate receiver operating characteristics curve integrating clinical risk factors, mean deep CBF and echocardiographic parameters showed predictive significance for CSVD burdenhigh diagnosis (area under curve = 84.25, 95% CI 74.86–93.65%, P < 0.0001). Conclusion The interrelationship of “cardiac -deep regional CBF-neuroimaging burden” reinforces the importance and prognostic significance of echocardiographic and cerebral hemodynamic assessment in CSVD early-warning. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02096-w.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Danli Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ning Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhuang Kang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jihui Wang
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Men
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
97
|
Chen YC, Lu BZ, Shu YC, Sun YT. Spatiotemporal Dynamics of Cerebral Vascular Permeability in Type 2 Diabetes-Related Cerebral Microangiopathy. Front Endocrinol (Lausanne) 2021; 12:805637. [PMID: 35087478 PMCID: PMC8786705 DOI: 10.3389/fendo.2021.805637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Diabetes-related cerebral microangiopathy can manifest as cerebral small vessel disease (CSVD) and exhibit cognitive decline. To find the early change of function in advance, this study examined the spatiotemporal dynamics of cerebral vascular permeability (Ktrans) in the progression of type 2 diabetes mellitus (T2DM). METHODS Ktrans was cross-sectionally measured in T2DM and non-diabetes groups with or without CSVD using dynamic contrast-enhanced MRI (DCE-MRI). RESULTS In all patients with T2DM, the Ktrans of white matter (WM) was increased, whereas the Ktrans of gray matter (GM) was increased only in T2DM with CSVD. The involvement of WM was earlier than GM and was before the CSVD features could be visualized on MRI. Among the commonly available four CSVD items of MRI, microbleeds were the most sensitive, indicating the increased permeability in all patients. Increased Ktrans in T2DM was more associated with moderate WM hyperintensity but less with the presence of lacunae or multiple perivascular spaces, in contrast to patients without diabetes. The differential correlation suggested distinct mechanisms underlying diabetes-related CSVD and other CSVDs. CONCLUSIONS This study highlights the early development of cerebral microangiopathy with increased BBB leakage in T2DM, before the CSVD features can be visualized on MRI. The results may increase the proactivity of clinicians in recognizing the subsequent neurological comorbidities.
Collapse
Affiliation(s)
- Ying-Chen Chen
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Radiology, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan
| | - Bing-Ze Lu
- Department of Mathematics, College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Shu
- Department of Mathematics, College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Genomics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Yuan-Ting Sun,
| |
Collapse
|
98
|
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol 2020; 11:594672. [PMID: 33362697 PMCID: PMC7756029 DOI: 10.3389/fneur.2020.594672] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining the central nervous system homeostasis. Its unique characteristics allow protecting the brain from unwanted compounds, but its impairment is involved in a vast number of pathological conditions. Disruption of the BBB and increase in its permeability are key in the development of several neurological diseases and have been extensively studied in stroke. Ischemic stroke is the most prevalent type of stroke and is characterized by a myriad of pathological events triggered by an arterial occlusion that can eventually lead to fatal outcomes such as hemorrhagic transformation (HT). BBB permeability seems to follow a multiphasic pattern throughout the different stroke stages that have been associated with distinct biological substrates. In the hyperacute stage, sudden hypoxia damages the BBB, leading to cytotoxic edema and increased permeability; in the acute stage, the neuroinflammatory response aggravates the BBB injury, leading to higher permeability and a consequent risk of HT that can be motivated by reperfusion therapy; in the subacute stage (1-3 weeks), repair mechanisms take place, especially neoangiogenesis. Immature vessels show leaky BBB, but this permeability has been associated with improved clinical recovery. In the chronic stage (>6 weeks), an increase of BBB restoration factors leads the barrier to start decreasing its permeability. Nonetheless, permeability will persist to some degree several weeks after injury. Understanding the mechanisms behind BBB dysregulation and HT pathophysiology could potentially help guide acute stroke care decisions and the development of new therapeutic targets; however, effective translation into clinical practice is still lacking. In this review, we will address the different pathological and physiological repair mechanisms involved in BBB permeability through the different stages of ischemic stroke and their role in the development of HT and stroke recovery.
Collapse
Affiliation(s)
| | - João André Sousa
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Brás
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carla Cecília
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bruno Rodrigues
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luciano Almendra
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Machado
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Gustavo Santo
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Silva
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
99
|
Verheggen ICM, de Jong JJA, van Boxtel MPJ, Postma AA, Jansen JFA, Verhey FRJ, Backes WH. Imaging the role of blood-brain barrier disruption in normal cognitive ageing. GeroScience 2020; 42:1751-1764. [PMID: 33025410 PMCID: PMC7732959 DOI: 10.1007/s11357-020-00282-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
To investigate whether blood-brain barrier (BBB) disruption is a potential mechanism of usual age-related cognitive decline, we conducted dynamic contrast-enhanced (DCE) MRI to measure BBB leakage in a healthy sample, and investigated the association with longitudinal cognitive decline. In a sample of neurologically and cognitively healthy, older individuals, BBB leakage rate in the white and grey matter and hippocampus was measured using DCE MRI with pharmacokinetic modelling. Regression analysis was performed to investigate whether the leakage rate was associated with decline in cognitive performance (memory encoding, memory retrieval, executive functioning and processing speed) over 12 years. White and grey matter BBB leakages were significantly associated with decline in memory retrieval. No significant relations were found between hippocampal BBB leakage and cognitive performance. BBB disruption already being associated with usual cognitive ageing, supports that this neurovascular alteration is a possible explanation for the cognitive decline inherent to the ageing process. More insight into BBB leakage during the normal ageing process could improve estimation and interpretation of leakage rate in pathological conditions. The current results might also stimulate the search for strategies to maintain BBB integrity and help increase the proportion people experiencing successful ageing. Netherlands Trial Register number: NL6358, date of registration: 2017-03-24.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
- Alzheimer Center Limburg, Maastricht, The Netherlands.
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin P J van Boxtel
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
100
|
Shao X, Jann K, Ma SJ, Yan L, Montagne A, Ringman JM, Zlokovic BV, Wang DJJ. Comparison Between Blood-Brain Barrier Water Exchange Rate and Permeability to Gadolinium-Based Contrast Agent in an Elderly Cohort. Front Neurosci 2020; 14:571480. [PMID: 33328848 PMCID: PMC7733970 DOI: 10.3389/fnins.2020.571480] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Dynamic contrast-enhanced (DCE) MRI using intravenous injection of gadolinium-based contrast agents (GBCAs) is commonly used for imaging blood-brain barrier (BBB) permeability. Water is an alternative endogenous tracer with limited exchange rate across the BBB. A direct comparison between BBB water exchange rate and BBB permeability to GBCA is missing. The purpose of this study was to directly compare BBB permeability to GBCA (Ktrans and kGad = Ktrans/Vp) and water exchange rate (kw) in a cohort of elderly subjects at risk of cerebral small vessel disease (cSVD). Methods: Ktrans/kGad and kw were measured by DCE-MRI and diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL), respectively, at 3 Tesla in 16 elderly subjects (3 male, age = 67.9 ± 3.0 yrs) at risk of cSVD. The test-retest reproducibility of kw measurements was evaluated with repeated scans ~6 weeks apart. Mixed effects linear regression was performed in the whole brain, gray matter (GM), white matter (WM), and 6 subcortical brain regions to investigate associations between Ktrans/kGad and test-retest kw. In addition, kw and Ktrans/kGad were compared in normal appearing white matter (NAWM), white matter hyperintensity (WMH) lesions and penumbra. Results: Significant correlation was found between kw and Ktrans only in WM (β = 6.7 × 104, P = 0.036), caudate (β = 8.6 × 104, P = 0.029), and middle cerebral artery (MCA) perforator territory (β = 6.9 × 104, P = 0.009), but not in the whole brain, GM or rest 5 brain regions. Significant correlation was found between kw and kGad in MCA perforator territory (β = 1.5 × 103, P = 0.049), medial-temporal lobe (β = 3.5 × 103, P = 0.032), and hippocampus (β = 3.4 × 103, P = 0.038), but not in the rest brain regions. Good reproducibility of kw measurements (ICC=0.75) was achieved. Ktrans was significantly lower inside WMH than WMH penumbra (16.2%, P = 0.026), and kGad was significantly lower in NAWM than in the WMH penumbra (20.8%, P < 0.001). Conclusion: kw provides a measure of water exchange rate across the BBB with good test-retest reproducibility. The BBB mechanism underlying kw and Ktrans/kGad is likely to be different, as manifested by correlations in only three brain regions for each pair of comparison between kw and Ktrans or kGad.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J. Ma
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|