51
|
Tataranno ML, Vijlbrief DC, Dudink J, Benders MJNL. Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury. Front Pediatr 2021; 9:634092. [PMID: 34095022 PMCID: PMC8171663 DOI: 10.3389/fped.2021.634092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite advances in neonatal care to prevent neonatal brain injury and neurodevelopmental impairment, predicting long-term outcome in neonates at risk for brain injury remains difficult. Early prognosis is currently based on cranial ultrasound (CUS), MRI, EEG, NIRS, and/or general movements assessed at specific ages, and predicting outcome in an individual (precision medicine) is not yet possible. New algorithms based on large databases and machine learning applied to clinical, neuromonitoring, and neuroimaging data and genetic analysis and assays measuring multiple biomarkers (omics) can fulfill the needs of modern neonatology. A synergy of all these techniques and the use of automatic quantitative analysis might give clinicians the possibility to provide patient-targeted decision-making for individualized diagnosis, therapy, and outcome prediction. This review will first focus on common neonatal neurological diseases, associated risk factors, and most common treatments. After that, we will discuss how precision medicine and machine learning (ML) approaches could change the future of prediction and prognosis in this field.
Collapse
Affiliation(s)
| | | | | | - Manon J. N. L. Benders
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
52
|
Malova M, Morelli E, Cardiello V, Tortora D, Severino M, Calevo MG, Parodi A, De Angelis LC, Minghetti D, Rossi A, Ramenghi LA. Nosological Differences in the Nature of Punctate White Matter Lesions in Preterm Infants. Front Neurol 2021; 12:657461. [PMID: 33995255 PMCID: PMC8117674 DOI: 10.3389/fneur.2021.657461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The pathogenesis of punctuate white matter lesions (PWMLs), a mild form of white matter damage observed in preterm infants, is still a matter of debate. Susceptibility-weighted imaging (SWI) allows to differentiate PWMLs based on the presence (SWI+) or absence (SWI-) of hemosiderin, but little is known about the significance of this distinction. This retrospective study aimed to compare neuroradiological and clinical characteristics of SWI+ and SWI- PWMLs. Materials and Methods: MR images of all VLBW infants scanned consecutively at term-equivalent age between April 2012 and May 2018 were retrospectively reviewed, and infants with PWMLs defined as small areas of high T1 and/or low T2 signal in the periventricular white matter were selected and included in the study. Each lesion was analyzed separately and characterized by localization, organization pattern, and distance from the lateral ventricle. Clinical data were retrieved from the department database. Results: A total of 517 PWMLs were registered in 81 patients, with 93 lesions (18%) visible on SWI (SWI+), revealing the presence of hemosiderin deposits. On univariate analysis, compared to SWI- PWML, SWI+ lesions were closer to the ventricle wall, more frequently organized in linear pattern and associated with lower birth weight, lower gestational age, lower admission temperature, need for intubation, bronchopulmonary dysplasia, retinopathy of prematurity, and presence of GMH-IVH. On multivariate analysis, closer distance to the ventricle wall on axial scan and lower birth weight were associated with visibility of PMWLs on SWI (p = 0.003 and p = 0.0001, respectively). Conclusions: Our results suggest a nosological difference between SWI+ and SWI- PWMLs. Other prospective studies are warranted to corroborate these observations.
Collapse
Affiliation(s)
- Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elena Morelli
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Diego Minghetti
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
53
|
Adle-Biassette H. Neurodevelopmental Sequelae of Preterm Infants: Scientific Challenges. J Neuropathol Exp Neurol 2021; 80:390-392. [PMID: 33842955 DOI: 10.1093/jnen/nlab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
54
|
Shin Y, Nam Y, Shin T, Choi JW, Lee JH, Jung DE, Lim J, Kim HG. Brain MRI radiomics analysis may predict poor psychomotor outcome in preterm neonates. Eur Radiol 2021; 31:6147-6155. [PMID: 33758957 DOI: 10.1007/s00330-021-07836-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to apply a radiomics approach to predict poor psychomotor development in preterm neonates using brain MRI. METHODS Prospectively enrolled preterm neonates underwent brain MRI near or at term-equivalent age and neurodevelopment was assessed at a corrected age of 12 months. Two radiologists visually assessed the degree of white matter injury. The radiomics analysis on white matter was performed using T1-weighted images (T1WI) and T2-weighted images (T2WI). A total of 1906 features were extracted from the images and the minimum redundancy maximum relevance algorithm was used to select features. A prediction model for the binary classification of the psychomotor developmental index was developed and eightfold cross-validation was performed. The diagnostic performance of the model was evaluated using the AUC with and without including significant clinical and DTI parameters. RESULTS A total of 46 preterm neonates (median gestational age, 29 weeks; 26 males) underwent brain MRI (median corrected gestational age, 37 weeks). Thirteen of 46 (28.3%) neonates showed poor psychomotor outcomes. There was one neonate among 46 with moderate to severe white matter injury on visual assessment. For the radiomics analysis, twenty features were selected for each analysis. The AUCs of prediction models based on T1WI, T2WI, and both T1WI and T2WI were 0.925, 0.834, and 0.902. Including gestational age or DTI parameters did not improve the prediction performance of T1WI. CONCLUSIONS A radiomics analysis of white matter using early T1WI or T2WI could predict poor psychomotor outcomes in preterm neonates. KEY POINTS • Radiomics analysis on T1-weighted images of preterm neonates showed the highest diagnostic performance (AUC, 0.925) for predicting poor psychomotor outcomes. • In spite of 45 of 46 neonates having no significant white matter injury on visual assessment, the radiomics analysis of early brain MRI showed good diagnostic performance (sensitivity, 84.6%; specificity, 78.8%) for predicting poor psychomotor outcomes. • Radiomics analysis on early brain MRI can help to predict poor neurodevelopmental outcomes in preterm neonates.
Collapse
Affiliation(s)
- Youwon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonho Nam
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, Republic of Korea
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Jang Hoon Lee
- Department of Pediatrics, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Da Eun Jung
- Department of Pediatrics, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Jiseon Lim
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyun Gi Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
55
|
Barkhuizen M, Abella R, Vles JSH, Zimmermann LJI, Gazzolo D, Gavilanes AWD. Antenatal and Perioperative Mechanisms of Global Neurological Injury in Congenital Heart Disease. Pediatr Cardiol 2021; 42:1-18. [PMID: 33373013 PMCID: PMC7864813 DOI: 10.1007/s00246-020-02440-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Congenital heart defects (CHD) is one of the most common types of birth defects. Thanks to advances in surgical techniques and intensive care, the majority of children with severe forms of CHD survive into adulthood. However, this increase in survival comes with a cost. CHD survivors have neurological functioning at the bottom of the normal range. A large spectrum of central nervous system dysmaturation leads to the deficits seen in critical CHD. The heart develops early during gestation, and CHD has a profound effect on fetal brain development for the remainder of gestation. Term infants with critical CHD are born with an immature brain, which is highly susceptible to hypoxic-ischemic injuries. Perioperative blood flow disturbances due to the CHD and the use of cardiopulmonary bypass or circulatory arrest during surgery cause additional neurological injuries. Innate patient factors, such as genetic syndromes and preterm birth, and postoperative complications play a larger role in neurological injury than perioperative factors. Strategies to reduce the disability burden in critical CHD survivors are urgently needed.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Raul Abella
- Department of Pediatric Cardiac Surgery, University of Barcelona, Vall d'Hebron, Spain
| | - J S Hans Vles
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Luc J I Zimmermann
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diego Gazzolo
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Fetal, Maternal and Neonatal Health, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio W D Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Guayaquil, Guayaquil, Ecuador.
- Department of Pediatrics, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
56
|
Jiang J, Lindner S, Di Costanzo-Mata A, Zhang C, Charbon E, Wolf M, Kalyanov A. In Phantom Validation of Time-Domain Near-Infrared Optical Tomography Pioneer for Imaging Brain Hypoxia and Hemorrhage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:341-346. [PMID: 33966240 DOI: 10.1007/978-3-030-48238-1_54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neonatal brain is a vulnerable organ, and lesions due to hemorrhage and/or ischemia occur frequently in preterm neonates. Even though neuroprotective therapies exist, there is no tool available to detect the ischemic lesions. To address this problem, we have recently designed and built the new time-domain near-infrared optical tomography (TD NIROT) system - Pioneer. Here we present the results of a phantom study of the system performance. We used silicone phantoms to mimic risky situations for brain lesions: hemorrhage and hypoxia. Employing Pioneer, we were able to reconstruct accurately both position and optical properties of these inhomogeneities.
Collapse
Affiliation(s)
- J Jiang
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - S Lindner
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Advanced Quantum Architecture (AQUA) laboratory, School of Engineering, EPFL Lausanne, Lausanne, Switzerland
| | - A Di Costanzo-Mata
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - C Zhang
- Applied Quantum Architectures, Delft University of Technology, Delft, the Netherlands
| | - E Charbon
- Advanced Quantum Architecture (AQUA) laboratory, School of Engineering, EPFL Lausanne, Lausanne, Switzerland
- Applied Quantum Architectures, Delft University of Technology, Delft, the Netherlands
| | - M Wolf
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - A Kalyanov
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
57
|
Duerden EG, Grunau RE, Chau V, Groenendaal F, Guo T, Chakravarty MM, Benders M, Wagenaar N, Eijsermans R, Koopman C, Synnes A, Vries LD, Miller SP. Association of early skin breaks and neonatal thalamic maturation: A modifiable risk? Neurology 2020; 95:e3420-e3427. [PMID: 33087497 DOI: 10.1212/wnl.0000000000010953] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To test the hypothesis that a strategy of prolonged arterial line (AL) and central venous line (CVL) use is associated with reduced neonatal invasive procedures and improved growth of the thalamus in extremely preterm neonates (<28 weeks' gestation). METHODS Two international cohorts of very preterm neonates (n = 143) with prolonged (≥14 days) or restricted (<14 days) use of AL/CVL were scanned serially with MRI. General linear models were used to determine the association between skin breaks and thalamic volumes, accounting for clinical confounders and site differences. Children were assessed at preschool age on standardized tests of motor and cognitive function. Outcome scores were assessed in relation to neonatal thalamic growth. RESULTS Prolonged AL/CVL use in neonates (n = 86) was associated with fewer skin breaks (median 34) during the hospital stay compared to restricted AL/CVL use (n = 57, median 91, 95% confidence interval [CI] 60.35-84.89). Neonates with prolonged AL/CVL use with fewer skin breaks had significantly larger thalamic volumes early in life compared to neonates with restricted line use (B = 121.8, p = 0.001, 95% CI 48.48-195.11). Neonatal thalamic growth predicted preschool-age cognitive (B = 0.001, 95% CI 0.0003-0.001, p = 0.002) and motor scores (B = 0.01, 95% CI 0.001-0.10, p = 0.02). Prolonged AL/CVL use was not associated with greater incidence of sepsis or multiple infections. CONCLUSIONS Prolonged AL/CVL use in preterm neonates may provide an unprecedented opportunity to reduce invasive procedures in preterm neonates. Pain reduction in very preterm neonates is associated with optimal thalamic growth and neurodevelopment.
Collapse
Affiliation(s)
- Emma G Duerden
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Ruth E Grunau
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Vann Chau
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Floris Groenendaal
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Ting Guo
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - M Mallar Chakravarty
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Manon Benders
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Nienke Wagenaar
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Rian Eijsermans
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Corine Koopman
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Anne Synnes
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Linda de Vries
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada
| | - Steven P Miller
- From the Department of Paediatrics (E.G.D., V.C., T.G., S.P.M.), the Hospital for Sick Children and the University of Toronto; Faculty of Education (E.G.D.), Western University, London; Department of Pediatrics (R.E.G., A.S.), University of British Columbia, Vancouver, Canada; Department of Neonatology (F.G., M.B., N.W., C.K., L.d.V.), Utrecht Brain Center (F.G., M.B., L.d.V.), and Child Development and Exercise Center (R.E.), University Medical Center Utrecht, Utrecht University, the Netherlands; Cerebral Imaging Centre (M.M.C.), Douglas Institute, Verdun; and Departments of Psychiatry (M.M.C.) and Biological and Biomedical Engineering (M.M.C.), McGill University, Montreal, Canada.
| |
Collapse
|
58
|
Diagnostic Specificity of Cerebral Magnetic Resonance Imaging for Punctate White Matter Lesion Assessment in a Preterm Sheep Fetus Model. Reprod Sci 2020; 28:1175-1184. [PMID: 33237519 DOI: 10.1007/s43032-020-00401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Recent studies, using magnetic resonance imaging (MRI) to assess white matter injury in preterm brains, increasingly recognize punctate white matter lesions (PWML) as the primary lesion type. There are some papers showing the relationship between the size and number of PWML and the prognosis of infants. However, the histopathological features are still unknown. In this study, we experimentally induced periventricular leukomalacia (PVL) in a sheep fetus model, aiming to find whether MRI can visualize necrotic foci (small incipient lesions of PVL) as PWML. Three antenatal insults were employed to induce PVL in preterm fetuses at gestational day 101-117: (i) hypoxia under intrauterine inflammation, (ii) restriction of artificial placental blood flow, and (iii) restriction of artificial placental blood flow after exposure to intrauterine inflammation. MRI was performed 3-5 days after the insults, and standard histological studies of the PVL validated its findings. Of the 89 necrotic foci detected in histological samples from nine fetuses with PVL, 78 were visualized as PWML. Four of the lesions detected as abnormal findings on MRI could not be histologically detected as corresponding abnormal findings. The diagnostic sensitivity and positive predictive values of histologic focal necrosis visualized as PWML were 0.92 and 0.95, respectively. The four lesions were excluded from these analyses. These data suggest that MRI can visualize PVL necrotic foci as PWML 3-5 days after the injury induction. PWML can spontaneously become obscure with time after birth, so their accurate diagnosis in the acute phase can prevent overlooking mild PVL.
Collapse
|
59
|
Chini M, Hanganu-Opatz IL. Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans. Trends Neurosci 2020; 44:227-240. [PMID: 33246578 DOI: 10.1016/j.tins.2020.10.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
The role of the prefrontal cortex (PFC) takes center stage among unanswered questions in modern neuroscience. The PFC has a Janus-faced nature: it enables sophisticated cognitive and social abilities that reach their maximum expression in humans, yet it underlies some of the devastating symptoms of psychiatric disorders. Accordingly, appropriate prefrontal development is crucial for many high-order cognitive abilities and dysregulation of this process has been linked to various neuropsychiatric diseases. Reviewing recent advances in the field, with a primary focus on rodents and humans, we highlight why, despite differences across species, a cross-species approach is a fruitful strategy for understanding prefrontal development. We briefly review the developmental contribution of molecules and extensively discuss how electrical activity controls the early maturation and wiring of prefrontal areas, as well as the emergence and refinement of input-output circuitry involved in cognitive processing. Finally, we highlight the mechanisms of developmental dysfunction and their relevance for psychiatric disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
60
|
Mechanical Ventilation Duration, Brainstem Development, and Neurodevelopment in Children Born Preterm: A Prospective Cohort Study. J Pediatr 2020; 226:87-95.e3. [PMID: 32454115 DOI: 10.1016/j.jpeds.2020.05.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To determine, in children born preterm, the association of mechanical ventilation duration with brainstem development, white matter maturation, and neurodevelopmental outcomes at preschool age. STUDY DESIGN This prospective cohort study included 144 neonates born at <30 weeks of gestation (75 male, mean gestational age 27.1 weeks, SD 1.6) with regional brainstem volumes automatically segmented on magnetic resonance imaging at term-equivalent age (TEA). The white matter maturation was assessed by diffusion tensor imaging and tract-based spatial statistics. Neurodevelopmental outcomes were assessed at 4.5 years of age using the Movement Assessment Battery for Children, 2nd Edition, and the Wechsler Primary and Preschool Scale of Intelligence, 4th Edition, full-scale IQ. The association between the duration of mechanical ventilation and brainstem development was validated in an independent cohort of children born very preterm. RESULTS Each additional day of mechanical ventilation predicted lower motor scores (0.5-point decrease in the Movement Assessment Battery for Children, 2nd Edition, score by day of mechanical ventilation, 95% CI -0.6 to -0.3, P < .0001). Prolonged exposure to mechanical ventilation was associated with smaller pons and medulla volumes at TEA in 2 independent cohorts, along with widespread abnormalities in white matter maturation. Pons and medulla volumes at TEA predicted motor outcomes at 4.5 years of age. CONCLUSIONS In neonates born very preterm, prolonged mechanical ventilation is associated with impaired brainstem development, abnormal white matter maturation, and lower motor scores at preschool age. Further research is needed to better understand the neural pathological mechanisms involved.
Collapse
|
61
|
Garfinkle J, Guo T, Synnes A, Chau V, Branson HM, Ufkes S, Tam EWY, Grunau RE, Miller SP. Location and Size of Preterm Cerebellar Hemorrhage and Childhood Development. Ann Neurol 2020; 88:1095-1108. [PMID: 32920831 DOI: 10.1002/ana.25899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine the association between cerebellar hemorrhage (CBH) size and location and preschool-age neurodevelopment in very preterm neonates. METHODS Preterm magnetic resonance images of 221 very preterm neonates (median gestational age = 27.9 weeks) were manually segmented for CBH quantification and location. Neurodevelopmental assessments at chronological age 4.5 years included motor (Movement Assessment Battery for Children, 2nd Edition [MABC-2]), visuomotor integration (Beery-Buktenica Developmental Test of Visual-Motor Integration, 6th Edition), cognitive (Wechsler Primary and Preschool Scale of Intelligence, 3rd Edition), and behavioral (Child Behavior Checklist) outcomes. Multivariable linear regression models examined the association between CBH size and 4.5-year outcomes accounting for sex, gestational age, and supratentorial injury. Probabilistic maps assessed CBH location and likelihood of a lesion to predict adverse outcome. RESULTS Thirty-six neonates had CBH: 14 (6%) with only punctate CBH and 22 (10%) with ≥1 larger CBH. CBH occurred mostly in the inferior aspect of the posterior lobes. CBH total volume was independently associated with MABC-2 motor scores at 4.5 years (β = -0.095, 95% confidence interval = -0.184 to -0.005), with a standardized β coefficient (-0.16) that was similar to that of white matter injury volume (standardized β = -0.22). CBH size was similarly associated with visuomotor integration and externalizing behavior but not cognition. Voxelwise odds ratio and lesion-symptom maps demonstrated that CBH extending more deeply into the cerebellum predicted adverse motor, visuomotor, and behavioral outcomes. INTERPRETATION CBH size and location on preterm magnetic resonance imaging were associated with reduced preschool motor and visuomotor function and more externalizing behavior independent of supratentorial brain injury in a dose-dependent fashion. The volumetric quantification and localization of CBH, even when punctate, may allow opportunity to improve motor and behavioral outcomes by providing targeted intervention. ANN NEUROL 2020;88:1095-1108.
Collapse
Affiliation(s)
- Jarred Garfinkle
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Ting Guo
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Anne Synnes
- Department of Paediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Vann Chau
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Helen M Branson
- Department of Radiology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Steven Ufkes
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Emily W Y Tam
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Ruth E Grunau
- Department of Paediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Steven P Miller
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
62
|
Gravelle MNK, Vandewouw MM, Young JM, Dunkley BT, Shroff MM, Taylor MJ. More than meets the eye: Longitudinal visual system neurodevelopment in very preterm children and anophthalmia. NEUROIMAGE-CLINICAL 2020; 28:102373. [PMID: 32798909 PMCID: PMC7451448 DOI: 10.1016/j.nicl.2020.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 10/25/2022]
Abstract
Anophthalmia, characterized by the absence of an eye(s), is a rare major birth defect with a relatively unexplored neuroanatomy. Longitudinal comparison of white matter development in an anophthalmic (AC) very preterm (VPT) child with both binocular VPT and full-term (FT) children provides unique insights into early neurodevelopment of the visual system. VPT-born neonates (<32wks gestational age), including the infant with unilateral anophthalmia, underwent neuroimaging every two years from birth until 8 years. DTI images (N = 168) of the optic radiation (OR) and a control track, the posterior limb of the internal capsule (PLIC), were analysed. The diameter of the optic nerves (ON) were analysed using T1-weighted images. Significant group differences in FA and AD were found bilaterally in the OR and PLIC. This extends the literature on altered white matter development in VPT children, being the first longitudinal study showing stable group differences across the 4, 6 and 8 year timepoints. AC showed greater deficits in FA and AD bilaterally, but recovered towards VPT group means from 4 to 8 years-of-age. Complete lack of binocular input would be responsible for these early deficits; compensatory mechanisms may facilitate structural improvement over time. AC's ON exhibited significant atrophy ipsilateral to the anophthalmic eye. Functionally, AC displayed normal visual acuity and form perception, but naso-temporal bias in motion perception. Following these groups and AC longitudinally enabled novel understanding of the joint influence of monocular vision and VPT birth on neurodevelopment.
Collapse
Affiliation(s)
- Madelaine N K Gravelle
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia M Young
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Manohar M Shroff
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
63
|
Janjic T, Pereverzyev S, Hammerl M, Neubauer V, Lerchner H, Wallner V, Steiger R, Kiechl-Kohlendorfer U, Zimmermann M, Buchheim A, Grams AE, Gizewski ER. Feed-forward neural networks using cerebral MR spectroscopy and DTI might predict neurodevelopmental outcome in preterm neonates. Eur Radiol 2020; 30:6441-6451. [PMID: 32683551 PMCID: PMC7599175 DOI: 10.1007/s00330-020-07053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022]
Abstract
Objectives We aimed to evaluate the ability of feed-forward neural networks (fNNs) to predict the neurodevelopmental outcome (NDO) of very preterm neonates (VPIs) at 12 months corrected age by using biomarkers of cerebral MR proton spectroscopy (1H-MRS) and diffusion tensor imaging (DTI) at term-equivalent age (TEA). Methods In this prospective study, 300 VPIs born before 32 gestational weeks received an MRI scan at TEA between September 2013 and December 2017. Due to missing or poor-quality spectroscopy data and missing neurodevelopmental tests, 173 VPIs were excluded. Data sets consisting of 103 and 115 VPIs were considered for prediction of motor and cognitive developmental delay, respectively. Five metabolite ratios and two DTI characteristics in six different areas of the brain were evaluated. A feature selection algorithm was developed for receiving a subset of characteristics prevalent for the VPIs with a developmental delay. Finally, the predictors were constructed employing multiple fNNs and fourfold cross-validation. Results By employing the constructed fNN predictors, we were able to predict cognitive delays of VPIs with 85.7% sensitivity, 100% specificity, 100% positive predictive value (PPV) and 99.1% negative predictive value (NPV). For the prediction of motor delay, we achieved a sensitivity of 76.9%, a specificity of 98.9%, a PPV of 90.9% and an NPV of 96.7%. Conclusion FNNs might be able to predict motor and cognitive development of VPIs at 12 months corrected age when employing biomarkers of cerebral 1H-MRS and DTI quantified at TEA. Key Points • A feed-forward neuronal network is a promising tool for outcome prediction in premature infants. • Cerebral proton magnetic resonance spectroscopy and diffusion tensor imaging can be used for the construction of early prognostic biomarkers. • Premature infants that would most benefit from early intervention services can be spotted at the time of optimal neuroplasticity. Electronic supplementary material The online version of this article (10.1007/s00330-020-07053-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Janjic
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria. .,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria.
| | - S Pereverzyev
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - M Hammerl
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - V Neubauer
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Lerchner
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - V Wallner
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - R Steiger
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - U Kiechl-Kohlendorfer
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Zimmermann
- Department of Paediatrics II, Neonatology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Buchheim
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - A E Grams
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - E R Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
64
|
Kim SY, Liu M, Hong SJ, Toga AW, Barkovich AJ, Xu D, Kim H. Disruption and Compensation of Sulcation-based Covariance Networks in Neonatal Brain Growth after Perinatal Injury. Cereb Cortex 2020; 30:6238-6253. [PMID: 32656563 DOI: 10.1093/cercor/bhaa181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal brain injuries in preterm neonates are associated with alterations in structural neurodevelopment, leading to impaired cognition, motor coordination, and behavior. However, it remains unknown how such injuries affect postnatal cortical folding and structural covariance networks, which indicate functional parcellation and reciprocal brain connectivity. Studying 229 magnetic resonance scans from 158 preterm neonates (n = 158, mean age = 28.2), we found that severe injuries including intraventricular hemorrhage, periventricular leukomalacia, and ventriculomegaly lead to significantly reduced cortical folding and increased covariance (hyper-covariance) in only the early (<31 weeks) but not middle (31-35 weeks) or late stage (>35 weeks) of the third trimester. The aberrant hyper-covariance may drive acceleration of cortical folding as a compensatory mechanism to "catch-up" with normal development. By 40 weeks, preterm neonates with/without severe brain injuries exhibited no difference in cortical folding and covariance compared with healthy term neonates. However, graph theory-based analysis showed that even after recovery, severely injured brains exhibit a more segregated, less integrated, and overall inefficient network system with reduced integration strength in the dorsal attention, frontoparietal, limbic, and visual network systems. Ultimately, severe perinatal injuries cause network-level deviations that persist until the late stage of the third trimester and may contribute to neurofunctional impairment.
Collapse
Affiliation(s)
- Sharon Y Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - A James Barkovich
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Hosung Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| |
Collapse
|
65
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|
66
|
Gano D, Cowan FM, de Vries LS. Cerebral palsy after very preterm birth - an imaging perspective. Semin Fetal Neonatal Med 2020; 25:101106. [PMID: 32317152 DOI: 10.1016/j.siny.2020.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neonatal brain imaging undoubtedly can provide the most accurate information from which to determine whether cerebral palsy is likely to affect an individual infant born preterm. The sensitivity and specificity of that information is different between cranial ultrasound and MRI, depending on what approaches and sequences are used and the timing of the examinations. In this chapter we highlight the changing incidence of different patterns of brain injury in the preterm newborn and present a comparison of cranial ultrasound and MRI for predicting cerebral palsy in preterm infants affected by the commoner intracranial pathologies.
Collapse
Affiliation(s)
- Dawn Gano
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Frances M Cowan
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
67
|
Saha S, Pagnozzi A, Bourgeat P, George JM, Bradford D, Colditz PB, Boyd RN, Rose SE, Fripp J, Pannek K. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Neuroimage 2020; 215:116807. [PMID: 32278897 DOI: 10.1016/j.neuroimage.2020.116807] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIMS Preterm birth imposes a high risk for developing neuromotor delay. Earlier prediction of adverse outcome in preterm infants is crucial for referral to earlier intervention. This study aimed to predict abnormal motor outcome at 2 years from early brain diffusion magnetic resonance imaging (MRI) acquired between 29 and 35 weeks postmenstrual age (PMA) using a deep learning convolutional neural network (CNN) model. METHODS Seventy-seven very preterm infants (born <31 weeks gestational age (GA)) in a prospective longitudinal cohort underwent diffusion MR imaging (3T Siemens Trio; 64 directions, b = 2000 s/mm2). Motor outcome at 2 years corrected age (CA) was measured by Neuro-Sensory Motor Developmental Assessment (NSMDA). Scores were dichotomised into normal (functional score: 0, normal; n = 48) and abnormal scores (functional score: 1-5, mild-profound; n = 29). MRIs were pre-processed to reduce artefacts, upsampled to 1.25 mm isotropic resolution and maps of fractional anisotropy (FA) were estimated. Patches extracted from each image were used as inputs to train a CNN, wherein each image patch predicted either normal or abnormal outcome. In a postprocessing step, an image was classified as predicting abnormal outcome if at least 27% (determined by a grid search to maximise the model performance) of its patches predicted abnormal outcome. Otherwise, it was considered as normal. Ten-fold cross-validation was used to estimate performance. Finally, heatmaps of model predictions for patches in abnormal scans were generated to explore the locations associated with abnormal outcome. RESULTS For the identification of infants with abnormal motor outcome based on the FA data from early MRI, we achieved mean sensitivity 70% (standard deviation SD 19%), mean specificity 74% (SD 39%), mean AUC (area under the receiver operating characteristic curve) 72% (SD 14%), mean F1 score of 68% (SD 13%) and mean accuracy 73% (SD 19%) on an unseen test data set. Patch-based prediction heatmaps showed that the patches around the motor cortex and somatosensory regions were most frequently identified by the model with high precision (74%) as a location associated with abnormal outcome. Part of the cerebellum, and occipital and frontal lobes were also highly associated with abnormal NSMDA/motor outcome. DISCUSSION/CONCLUSION This study established the potential of an early brain MRI-based deep learning CNN model to identify preterm infants at risk of a later motor impairment and to identify brain regions predictive of adverse outcome. Results suggest that predictions can be made from FA maps of diffusion MRIs well before term equivalent age (TEA) without any prior knowledge of which MRI features to extract and associated feature extraction steps. This method, therefore, is suitable for any case of brain condition/abnormality. Future studies should be conducted on a larger cohort to re-validate the robustness and effectiveness of these models.
Collapse
Affiliation(s)
- Susmita Saha
- Australian e-Health Research Centre, CSIRO, Brisbane, Australia.
| | - Alex Pagnozzi
- Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | | | - Joanne M George
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Paul B Colditz
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Stephen E Rose
- Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Jurgen Fripp
- Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Kerstin Pannek
- Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| |
Collapse
|
68
|
Zhao C, Liang Y, Chen T, Zhong Y, Li X, Wei J, Li C, Zhang X. Prediction of cognitive performance in old age from spatial probability maps of white matter lesions. Aging (Albany NY) 2020; 12:4822-4835. [PMID: 32191226 PMCID: PMC7138592 DOI: 10.18632/aging.102901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
The purposes of this study were to explore the association between cognitive performance and white matter lesions (WMLs), and to investigate whether it is possible to predict cognitive impairment using spatial maps of WMLs. These WML maps were produced for 263 elders from the OASIS-3 dataset, and a relevance vector regression (RVR) model was applied to predict neuropsychological performance based on the maps. The association between the spatial distribution of WMLs and cognitive function was examined using diffusion tensor imaging data. WML burden significantly associated with increasing age (r=0.318, p<0.001) and cognitive decline. Eight of 15 neuropsychological measures could be accurately predicted, and the mini-mental state examination (MMSE) test achieved the highest predictive accuracy (CORR=0.28, p<0.003). WMLs located in bilateral tapetum, posterior corona radiata, and thalamic radiation contributed the most prediction power. Diffusion indexes in these regions associated significantly with cognitive performance (axial diffusivity>radial diffusivity>mean diffusivity>fractional anisotropy). These results show that the combination of the extent and location of WMLs exhibit great potential to serve as a generalizable marker of multidomain neurocognitive decline in the aging population. The results may also shed light on the mechanism underlying white matter changes during the progression of cognitive decline and aging.
Collapse
Affiliation(s)
- Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yihua Zhong
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xianglong Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
69
|
Duerden EG, Thompson DK. Can you see what I see? Assessing brain maturation and injury in preterm and term neonates. Brain 2020; 143:383-386. [DOI: 10.1093/brain/awz421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This scientific commentary refers to ‘Modelling brain development to detect white matter injury in term and preterm born neonates’ by O’Muircheartaigh et al. (doi: 10.1093/brain/awz412).
Collapse
Affiliation(s)
- Emma G Duerden
- Applied Psychology, Faculty of Education, Western University, London, Canada
- Children’s Health Research Institute, London, Canada
| | - Deanne K Thompson
- Victorian Infant Brain Studies & Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Paediatrics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neurosciences and Mental Health, Melbourne, Australia
| |
Collapse
|
70
|
McPherson C, Miller SP, El-Dib M, Massaro AN, Inder TE. The influence of pain, agitation, and their management on the immature brain. Pediatr Res 2020; 88:168-175. [PMID: 31896130 PMCID: PMC7223850 DOI: 10.1038/s41390-019-0744-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Preterm infants are exposed to frequent painful procedures and agitating stimuli over the many weeks of their hospitalization in the neonatal intensive care unit (NICU). The adverse neurobiological impact of pain and stress in the preterm infant has been well documented, including neuroimaging and neurobehavioral outcomes. Although many tools have been validated to assess acute pain, few methods are available to assess chronic pain or agitation (a clinical manifestation of neonatal stress). Both nonpharmacologic and pharmacologic approaches are used to reduce the negative impact of pain and agitation in the preterm infant, with concerns emerging over the adverse effects of analgesia and sedatives. Considering benefits and risks of available treatments, units must develop a stepwise algorithm to prevent, assess, and treat pain. Nonpharmacologic interventions should be consistently utilized prior to mild to moderately painful procedures. Sucrose may be utilized judiciously as an adjunctive therapy for minor painful procedures. Rapidly acting opioids (fentanyl or remifentanil) form the backbone of analgesia for moderately painful procedures. Chronic sedation during invasive mechanical ventilation represents an ongoing challenge; appropriate containment and an optimal environment should be standard; when indicated, low-dose morphine infusion may be utilized cautiously and dexmedetomidine infusion may be considered as an emerging adjunct.
Collapse
Affiliation(s)
- Christopher McPherson
- 0000 0000 9953 7617grid.416775.6Department of Pharmacy, St. Louis Children’s Hospital, St. Louis, MO USA ,0000 0001 2355 7002grid.4367.6Department of Pediatrics, Washington University School of Medicine, St. Louis, MO USA
| | - Steven P. Miller
- 0000 0004 0473 9646grid.42327.30Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON Canada
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - An N. Massaro
- 0000 0004 1936 9510grid.253615.6Department of Pediatrics—Neonatology Division, The George Washington University School of Medicine and Children’s National Health System, Washington, DC USA
| | - Terrie E. Inder
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
71
|
Socioeconomic status and brain injury in children born preterm: modifying neurodevelopmental outcome. Pediatr Res 2020; 87:391-398. [PMID: 31666689 DOI: 10.1038/s41390-019-0646-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Improved intensive care therapies have increased the survival of children born preterm. Yet, many preterm children experience long-term neurodevelopmental sequelae. Indeed, preterm birth remains a leading cause of lifelong neurodevelopmental disability globally, posing significant challenges to the child, family, and society. Neurodevelopmental disability in children born preterm is traditionally linked to acquired brain injuries such as white matter injury and to impaired brain maturation resulting from neonatal illness such as chronic lung disease. Socioeconomic status (SES) has long been recognized to contribute to variation in outcome in children born preterm. Recent brain imaging data in normative term-born cohorts suggest that lower SES itself predicts alterations in brain development, including the growth of the cerebral cortex and subcortical structures. Recent evidence in children born preterm suggests that the response to early-life brain injuries is modified by the socioeconomic circumstances of children and families. Exciting new data points to the potential of more favorable SES circumstances to mitigate the impact of neonatal brain injury. This review addresses emerging evidence suggesting that SES modifies the relationship between early-life exposures, brain injury, and neurodevelopmental outcomes in children born preterm. Better understanding these relationships opens new avenues for research with the ultimate goal of promoting optimal outcomes for those children born preterm at highest risk of neurodevelopmental consequence.
Collapse
|
72
|
Pierre WC, Akakpo L, Londono I, Pouliot P, Chemtob S, Lesage F, Lodygensky GA. Assessing therapeutic response non-invasively in a neonatal rat model of acute inflammatory white matter injury using high-field MRI. Brain Behav Immun 2019; 81:348-360. [PMID: 31247289 DOI: 10.1016/j.bbi.2019.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/20/2019] [Accepted: 06/22/2019] [Indexed: 12/19/2022] Open
Abstract
Perinatal infection and inflammatory episodes in preterm infants are associated with diffuse white matter injury (WMI) and adverse neurological outcomes. Inflammation-induced WMI was previously shown to be linked with later hippocampal atrophy as well as learning and memory impairments in preterm infants. Early evaluation of injury load and therapeutic response with non-invasive tools such as multimodal magnetic resonance imaging (MRI) would greatly improve the search of new therapeutic approaches in preterm infants. Our aim was to evaluate the potential of multimodal MRI to detect the response of interleukin-1 receptor antagonist (IL-1Ra) treatment, known for its neuroprotective properties, during the acute phase of injury on a model of neonatal WMI. Rat pups at postnatal day 3 (P3) received intracerebral injection of lipopolysaccharide with systemic IL-1Ra therapy. 24 h later (P4), rats were imaged with multimodal MRI to assess microstructure by diffusion tensor imaging (DTI) and neurochemical profile of the hippocampus with 1H-magnetic resonance spectroscopy. Astrocyte and microglial activation, apoptosis and the mRNA expression of pro-inflammatory and necroptotic markers were assessed. During the acute phase of injury, neonatal LPS exposure altered the concentration of hippocampus metabolites related to neuronal integrity, neurotransmission and membrane integrity and induced diffusivity restriction. Just 24 h after initiation of therapy, early indication of IL-1Ra neuroprotective effect could be detected in vivo by non-invasive spectroscopy and DTI, and confirmed with immunohistochemical evaluation and mRNA expression of inflammatory markers and cell death. In conclusion, multimodal MRI, particularly DTI, can detect not only injury but also the acute therapeutic effect of IL-1Ra suggesting that MRI could be a useful non-invasive tool to follow, at early time points, the therapeutic response in preterm infants.
Collapse
Affiliation(s)
- Wyston C Pierre
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada
| | - Luis Akakpo
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; École Polytechnique de Montréal, Montreal, QC, Canada
| | - Irène Londono
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Gregory A Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada; Montreal Heart Institute, Montreal, QC, Canada.
| |
Collapse
|
73
|
Cayam-Rand D, Guo T, Grunau RE, Benavente-Fernández I, Synnes A, Chau V, Branson H, Latal B, McQuillen P, Miller SP. Predicting developmental outcomes in preterm infants: A simple white matter injury imaging rule. Neurology 2019; 93:e1231-e1240. [PMID: 31467250 PMCID: PMC7011867 DOI: 10.1212/wnl.0000000000008172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/03/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To develop a simple imaging rule to predict neurodevelopmental outcomes at 4.5 years in a cohort of preterm neonates with white matter injury (WMI) based on lesion location and examine whether clinical variables enhance prediction. METHODS Sixty-eight preterm neonates born 24-32 weeks' gestation (median 27.7 weeks) were diagnosed with WMI on early brain MRI scans (median 32.3 weeks). 3D T1-weighted images of 60 neonates with 4.5-year outcomes were reformatted and aligned to the posterior commissure-eye plane and WMI was classified by location: anterior or posterior-only to the midventricle line on the reformatted axial plane. Adverse outcomes at 4.5 years were defined as Wechsler Preschool and Primary Scale of Intelligence full-scale IQ <85, cerebral palsy, or Movement Assessment Battery for Children, second edition percentile <5. The prediction of adverse outcome by WMI location, intraventricular hemorrhage (IVH), bronchopulmonary dysplasia (BPD), and retinopathy of prematurity (ROP) was assessed using multivariable logistic regression. RESULTS Six children had adverse cognitive outcomes and 17 had adverse motor outcomes. WMI location predicted cognitive outcomes in 90% (area under receiver operating characteristic curve [AUC] 0.80) and motor outcomes in 85% (AUC 0.75). Adding IVH, BPD, and ROP to the model enhances the predictive strength for cognitive and motor outcomes (AUC 0.83 and 0.88, respectively). Rule performance was confirmed in an independent cohort of children with WMI. CONCLUSIONS WMI on early MRI can be classified by location to predict preschool age outcomes in children born preterm. The predictive value of this WMI classification is enhanced by considering clinical factors apparent by term-equivalent age.
Collapse
Affiliation(s)
- Dalit Cayam-Rand
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Ting Guo
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Ruth E Grunau
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Isabel Benavente-Fernández
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Anne Synnes
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Vann Chau
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Helen Branson
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Beatrice Latal
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Patrick McQuillen
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco
| | - Steven P Miller
- From the Departments of Paediatrics (Neurology) (D.C.-R., T.G., I.B.-F., V.C., S.P.M.) and Radiology (H.B.), The Hospital for Sick Children and the University of Toronto; BC Children's Hospital Research Institute (R.E.G., A.S.); Department of Pediatrics (Neonatology) (R.E.G., A.S.), University of British Columbia and BC Women's Hospital and Health Centre, Vancouver, Canada; Department of Pediatrics (Neonatology) (I.B.-F.), University Hospital Puerta del Mar, Cadiz, Spain; Department of Pediatrics (Child Development Center) (B.L.), University Children's Hospital Zurich, Switzerland; and Department of Pediatrics (P.M.), University of California, San Francisco.
| |
Collapse
|
74
|
Juhász C, Shevell M. When white matter lesions cross the (midventricle) line. Neurology 2019; 93:569-570. [DOI: 10.1212/wnl.0000000000008165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
75
|
Parodi A, Malova M, Cardiello V, Raffa S, Re M, Calevo MG, Severino M, Tortora D, Morana G, Rossi A, Ramenghi LA. Punctate white matter lesions of preterm infants: Risk factor analysis. Eur J Paediatr Neurol 2019; 23:733-739. [PMID: 31307922 DOI: 10.1016/j.ejpn.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
AIM Punctate white matter lesions (PWML) are frequently detected in preterm infants undergoing brain MRI at term equivalent age (TEA). The aims of this study were to assess prevalence of PWML and to identify risk factors for PWML in VLBW infants. METHODS Brain MRI scans obtained at TEA and clinical charts of a consecutive sample of very low birth weight (VLBW) infants admitted to Gaslini Children's Hospital NICU between 2012 and 2016 were retrospectively analyzed. MRI protocol included Susceptibility Weighted Imaging (SWI) sequence in order to identify hemosiderin depositions as a result of previous microbleeds. PWML were classified according to their number (≤6 lesions and >6 lesions) and signal characteristics (SWI+ lesions and SWI- lesions). Univariate and multivariable analysis were performed in order to identify risk factors for PWML (as a whole) and for each subgroup of PWML. RESULTS 321 VLBW infants were included. PWML were identified in 61 subjects (19%), 26 of whom (8% of the study population) had more than 6 lesions. Risk factors for PWML (as a whole) were higher birth weight (OR = 1.001; p = 0.04) and absent or incomplete antenatal steroid course (OR = 2.13; p = 0.02). Risk factors for >6 PWML were need for intubation (OR = 11.9; p = 0.003) and higher Apgar score at 5 min (OR = 1.8; p = 0.02). Presence of GMH-IVH was the only identified risk factor for SWI + lesions. CONCLUSIONS Our results confirm the high prevalence of PWML among VLBW infants. Differentiation between SWI+ and SWI- lesions is crucial as they have different risk factors and may likely represent two different entities.
Collapse
Affiliation(s)
- Alessandro Parodi
- Neonatal Intensive Care Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto G. Gaslini, Genoa, Italy.
| | | | - Sarah Raffa
- Neonatal Intensive Care Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Martina Re
- Neonatal Intensive Care Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Maria Grazia Calevo
- Epidemiology, Biostatistics and Committees Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | | | | | - Giovanni Morana
- Neuroradiology Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | | |
Collapse
|
76
|
Cormack BE, Harding JE, Miller SP, Bloomfield FH. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019; 11:E2029. [PMID: 31480225 PMCID: PMC6770288 DOI: 10.3390/nu11092029] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022] Open
Abstract
Extremely preterm babies are at increased risk of less than optimal neurodevelopment compared with their term-born counterparts. Optimising nutrition is a promising avenue to mitigate the adverse neurodevelopmental consequences of preterm birth. In this narrative review, we summarize current knowledge on how nutrition, and in particular, protein intake, affects neurodevelopment in extremely preterm babies. Observational studies consistently report that higher intravenous and enteral protein intakes are associated with improved growth and possibly neurodevelopment, but differences in methodologies and combinations of intravenous and enteral nutrition strategies make it difficult to determine the effects of each intervention. Unfortunately, there are few randomized controlled trials of nutrition in this population conducted to determine neurodevelopmental outcomes. Substantial variation in reporting of trials, both of nutritional intakes and of outcomes, limits conclusions from meta-analyses. Future studies to determine the effects of nutritional intakes in extremely preterm babies need to be adequately powered to assess neurodevelopmental outcomes separately in boys and girls, and designed to address the many potential confounders which may have clouded research findings to date. The development of minimal reporting sets and core outcome sets for nutrition research will aid future meta-analyses.
Collapse
Affiliation(s)
- Barbara E Cormack
- Starship Child Health, Auckland City Hospital, Auckland 1023, New Zealand
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Steven P Miller
- Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5S, Canada
| | - Frank H Bloomfield
- Starship Child Health, Auckland City Hospital, Auckland 1023, New Zealand.
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
77
|
Thomi G, Joerger-Messerli M, Haesler V, Muri L, Surbek D, Schoeberlein A. Intranasally Administered Exosomes from Umbilical Cord Stem Cells Have Preventive Neuroprotective Effects and Contribute to Functional Recovery after Perinatal Brain Injury. Cells 2019; 8:cells8080855. [PMID: 31398924 PMCID: PMC6721675 DOI: 10.3390/cells8080855] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Perinatal brain injury (PBI) in preterm birth is associated with substantial injury and dysmaturation of white and gray matter, and can lead to severe neurodevelopmental deficits. Mesenchymal stromal cells (MSC) have been suggested to have neuroprotective effects in perinatal brain injury, in part through the release of extracellular vesicles like exosomes. We aimed to evaluate the neuroprotective effects of intranasally administered MSC-derived exosomes and their potential to improve neurodevelopmental outcome after PBI. Exosomes were isolated from human Wharton's jelly MSC supernatant using ultracentrifugation. Two days old Wistar rat pups were subjected to PBI by a combination of inflammation and hypoxia-ischemia. Exosomes were intranasally administered after the induction of inflammation and prior to ischemia, which was followed by hypoxia. Infrared-labeled exosomes were intranasally administered to track their distribution with a LI-COR scanner. Acute oligodendrocyte- and neuron-specific cell death was analyzed 24 h after injury in animals with or without MSC exosome application using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and immunohistochemical counterstaining. Myelination, mature oligodendroglial and neuronal cell counts were assessed on postnatal day 11 using immunohistochemistry, Western blot or RT-PCR. Morris water maze assay was used to evaluate the effect of MSC exosomes on long-term neurodevelopmental outcome 4 weeks after injury. We found that intranasally administered exosomes reached the frontal part of the brain within 30 min after administration and distributed throughout the whole brain after 3 h. While PBI was not associated with oligodendrocyte-specific cell death, it induced significant neuron-specific cell death which was substantially reduced upon MSC exosome application prior to ischemia. MSC exosomes rescued normal myelination, mature oligodendroglial and neuronal cell counts which were impaired after PBI. Finally, the application of MSC exosomes significantly improved learning ability in animals with PBI. In conclusion, MSC exosomes represent a novel prevention strategy with substantial clinical potential as they can be administered intranasally, prevent gray and white matter alterations and improve long-term neurodevelopmental outcome after PBI.
Collapse
Affiliation(s)
- Gierin Thomi
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Marianne Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
78
|
Volpe JJ. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr Neurol 2019; 95:42-66. [PMID: 30975474 DOI: 10.1016/j.pediatrneurol.2019.02.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Prematurity, especially preterm birth (less than 32 weeks' gestation), is common and associated with high rates of both survival and neurodevelopmental disability, especially apparent in cognitive spheres. The neuropathological substrate of this disability is now recognized to be related to a variety of dysmaturational disturbances of the brain. These disturbances follow initial brain injury, particularly cerebral white matter injury, and involve many of the extraordinary array of developmental events active in cerebral white and gray matter structures during the premature period. This review delineates these developmental events and the dysmaturational disturbances that occur in premature infants. The cellular mechanisms involved in the genesis of the dysmaturation are emphasized, with particular focus on the preoligodendrocyte. A central role for the diffusely distributed activated microglia and reactive astrocytes in the dysmaturation is now apparent. As these dysmaturational cellular mechanisms appear to occur over a relatively long time window, interventions to prevent or ameliorate the dysmaturation, that is, neurorestorative interventions, seem possible. Such interventions include pharmacologic agents, especially erythropoietin, and particular attention has also been paid to such nutritional factors as quality and source of milk, breastfeeding, polyunsaturated fatty acids, iron, and zinc. Recent studies also suggest a potent role for interventions directed at various experiential factors in the neonatal period and infancy, i.e., provision of optimal auditory and visual exposures, minimization of pain and stress, and a variety of other means of environmental behavioral enrichment, in enhancing brain development.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
79
|
Chen Z, Xu N, Dai X, Zhao C, Wu X, Shankar S, Huang H, Wang Z. Interleukin-33 reduces neuronal damage and white matter injury via selective microglia M2 polarization after intracerebral hemorrhage in rats. Brain Res Bull 2019; 150:127-135. [PMID: 31129170 DOI: 10.1016/j.brainresbull.2019.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Interleukin-33 (IL-33) is closely related to the regulation of immunological cells, and its receptor ST2 is a member of the interleukin-1 (IL-1) receptor family. Inflammatory responses play critical roles in neuronal damage and white matter injury (WMI) post intracerebral hemorrhage (ICH). In this study, we tried to explore the role of IL-33 in neuronal damage and WMI after ICH and the underlying mechanisms. The in vivo ICH model was performed by autologous whole blood injection into the right basal ganglia in rats. Immunoblotting, immunofluorescence, brain water content measurement, FJB staining, and TUNEL staining were applied in this study. IL-33 expression was increased in whole brain tissues post-ICH, mainly rapidly increased in ipsilateral astrocyte and microglia, but stayed at a low level in neurons. Intracerebroventricular infusion of IL-33 after ICH attenuated short-term and long-term neurological deficits, WMI, neuronal degeneration, cell death and promoted the transformation of microglia phenotype from M1 to M2 in brain tissues after ICH. These results suggest that IL-33 reduces neuronal damage and WMI by promoting microglia M2 polarization after ICH, thereby improving the outcomes of neurological function.
Collapse
Affiliation(s)
- Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Na Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, 200032, China.
| | - Xuejiao Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, 410008, China.
| | - Chongshun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Sandhya Shankar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Huachen Huang
- Department of Neurology, First affiliate Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
80
|
Benavente-Fernández I, Synnes A, Grunau RE, Chau V, Ramraj C, Glass T, Cayam-Rand D, Siddiqi A, Miller SP. Association of Socioeconomic Status and Brain Injury With Neurodevelopmental Outcomes of Very Preterm Children. JAMA Netw Open 2019; 2:e192914. [PMID: 31050776 PMCID: PMC6503490 DOI: 10.1001/jamanetworkopen.2019.2914] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Studies of socioeconomic status and neurodevelopmental outcome in very preterm neonates have not sensitively accounted for brain injury. OBJECTIVE To determine the association of brain injury and maternal education with motor and cognitive outcomes at age 4.5 years in very preterm neonates. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study of preterm neonates (24-32 weeks' gestation) recruited August 16, 2006, to September 9, 2013, at British Columbia Women's Hospital in Vancouver, Canada. Analysis of 4.5-year outcome was performed in 2018. MAIN OUTCOMES AND MEASURES At age 4.5 years, full-scale IQ assessed using the Wechsler Primary and Preschool Scale of Intelligence, Fourth Edition, and motor outcome by the percentile score on the Movement Assessment Battery for Children, Second Edition. RESULTS Of 226 survivors, neurodevelopmental outcome was assessed in 170 (80 [47.1%] female). Based on the best model to assess full-scale IQ accounting for gestational age, standardized β coefficients demonstrated the effect size of maternal education (standardized β = 0.21) was similar to that of white matter injury volume (standardized β = 0.23) and intraventricular hemorrhage (standardized β = 0.23). The observed and predicted cognitive scores in preterm children born to mothers with postgraduate education did not differ in those with and without brain injury. The best-performing model to assess for motor outcome accounting for gestational age included being small for gestational age, severe intraventricular hemorrhage, white matter injury volume, and chronic lung disease. CONCLUSIONS AND RELEVANCE At preschool age, cognitive outcome was comparably associated with maternal education and neonatal brain injury. The association of brain injury with poorer cognition was attenuated in children born to mothers of higher education level, suggesting opportunities to promote optimal outcomes.
Collapse
Affiliation(s)
- Isabel Benavente-Fernández
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics (Neurology), University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics (Neonatology), University Hospital Puerta del Mar, Cadiz, Spain
| | - Anne Synnes
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ruth E. Grunau
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Vann Chau
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Chantel Ramraj
- Department of Pediatrics (Neonatology), University of British Columbia, British Columbia Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Torin Glass
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Dalit Cayam-Rand
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Arjumand Siddiqi
- Department of Pediatrics (Neonatology), University of British Columbia, British Columbia Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Steven P. Miller
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics (Neurology), University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics (Neonatology), University Hospital Puerta del Mar, Cadiz, Spain
| |
Collapse
|
81
|
Nguyen AL, Ding Y, Suffren S, Londono I, Luck D, Lodygensky GA. The brain's kryptonite: Overview of punctate white matter lesions in neonates. Int J Dev Neurosci 2019; 77:77-88. [DOI: 10.1016/j.ijdevneu.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Annie L.A. Nguyen
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Yang Ding
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Sabrina Suffren
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Irène Londono
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - David Luck
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- Department of Pharmacology and PhysiologyUniversity of MontrealMontrealH3T 1J4Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| |
Collapse
|
82
|
Wang M, Liu H, Liu C, Li X, Jin C, Sun Q, Liu Z, Zheng J, Yang J. Prediction of adverse motor outcome for neonates with punctate white matter lesions by MRI images using radiomics strategy: protocol for a prospective cohort multicentre study. BMJ Open 2019; 9:e023157. [PMID: 30948562 PMCID: PMC6500102 DOI: 10.1136/bmjopen-2018-023157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Punctate white matter lesions (PWML) are prevalent white matter disease in preterm neonates, and may cause motor disorders and even cerebral palsy. However, precise individual-based diagnosis of lesions that result in an adverse motor outcome remains unclear, and an effective method is urgently needed to guide clinical diagnosis and treatment. Advanced radiomics for multiple modalities data can provide a possible look for biomarkers and determine prognosis quantitatively. The study aims to develop and validate a model for prediction of adverse motor outcomes at a corrected age (CA) of 24 months in neonates with PWML. METHODS AND ANALYSIS A prospective cohort multicentre study will be conducted in 11 Chinese hospitals. A total of 394 neonates with PWML confirmed by MRI will undergo a clinical assessment (modified Neonatal Behavioural Assessment Scale). At a CA of 18 months, the motor function will be assessed by Bayley Scales of Infant and Toddler Development-III (Bayley-III). Mild-to-severe motor impairments will be confirmed using the Bayley-III and Gross Motor Function Classification System at a CA of 24 months. During the data collection, the perinatal and clinical information will also be recorded. According to the radiomics strategy, the extracted imaging features and clinical information will be combined for exploratory analysis. After using multiple-modelling methodology, the accuracy, sensitivity and specificity will be computed. Internal and external validations will be used to evaluate the performance of the radiomics model. ETHICS AND DISSEMINATION This study has been approved by the institutional review board of The First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2015LSK-172). All parents of eligible participants will be provided with a detailed explanation of the study and written consent will be obtained. The results of this study will be published in peer-reviewed journals and presented at local, national and international conferences. TRIAL REGISTRATION NUMBER NCT02637817; Pre-results.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heng Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Congcong Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xianjun Li
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Jin
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qinli Sun
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zheng
- Clinical Research Centre, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
83
|
Travis KE, Castro MRH, Berman S, Dodson CK, Mezer AA, Ben-Shachar M, Feldman HM. More than myelin: Probing white matter differences in prematurity with quantitative T1 and diffusion MRI. Neuroimage Clin 2019; 22:101756. [PMID: 30901711 PMCID: PMC6428958 DOI: 10.1016/j.nicl.2019.101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We combined diffusion MRI (dMRI) with quantitative T1 (qT1) relaxometry in a sample of school-aged children born preterm and full term to determine whether reduced fractional anisotropy (FA) within the corpus callosum of the preterm group could be explained by a reduction in myelin content, as indexed by R1 (1/T1) from qT1 scans. METHODS 8-year-old children born preterm (n = 29; GA 22-32 weeks) and full term (n = 24) underwent dMRI and qT1 scans. Four subdivisions of the corpus callosum were segmented in individual native space according to cortical projection zones (occipital, temporal, motor and anterior-frontal). Fractional anisotropy (FA) and R1 were quantified along the tract trajectory of each subdivision and compared across two birth groups. RESULTS Compared to controls, preterm children demonstrated significantly decreased FA in 3 of 4 analyzed corpus callosum subdivisions (temporal, motor, and anterior frontal segments) and decreased R1 in only 2 of 4 corpus callosum subdivisions (temporal and motor segments). FA and RD were significantly associated with R1 within temporal but not anterior frontal subdivisions of the corpus callosum in the term group; RD correlated with R1 in the anterior subdivision in the preterm group only. CONCLUSIONS Myelin content, as indexed by R1, drives some but not all of the differences in white matter between preterm and term born children. Other factors, such as axonal diameter and directional coherence, likely contributed to FA differences in the anterior frontal segment of the corpus callosum that were not well explained by R1.
Collapse
Affiliation(s)
- Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria R H Castro
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
84
|
Hayman M, van Wezel-Meijler G, van Straaten H, Brilstra E, Groenendaal F, de Vries LS. Punctate white-matter lesions in the full-term newborn: Underlying aetiology and outcome. Eur J Paediatr Neurol 2019; 23:280-287. [PMID: 30744982 DOI: 10.1016/j.ejpn.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Punctate white matter lesions (PWMLs) are small focal patches of increased signal intensity (SI) on T1- and decreased SI on T2-weighted magnetic resonance imaging (MRI). To date, there have been few reports of PWMLs in term born infants. OBJECTIVE To identify associated diagnoses and factors predictive of clinical outcome in (near) term infants with PWMLs. METHODS MRI studies and clinical records of (near) term infants, with PWMLs on MRI scans performed in two institutions in the first 28 postnatal days were reviewed. The PWMLs were classified according to their number, pattern and distribution. The medical records were examined to assess the associated diagnoses and determine the neurodevelopmental outcome at >12 months of age. Infants with congenital heart defect(s), those who had neonatal surgery, or those with perinatal arterial ischemic stroke were not eligible for the study. RESULTS Forty-two (near) term infants with PWMLs were included. The major clinical association was perinatal asphyxia, present in 19/42 (45%). Ten (24%) had a history of seizures unrelated to asphyxia or a genetic diagnosis. Eleven (26%) had pathological genetic mutations. Other diagnoses, without seizures were identified in 2 (5%). The lesion load of PWMLs was high (>6) in 30/42 (71%). Evidence of irreversible white matter injury was present in 5 infants who had follow-up MRI performed between 18 and 24 months of age, because of clinical concerns. Five infants died and 37 had follow-up at a median age of 24 months. Neurodevelopmental outcome was poorest amongst 6 infants (16%) whose PWMLs occurred in the setting of a genetic disorder. CONCLUSION PWMLs in (near) term infants represent white matter injury that may evolve into gliosis and/or white matter loss. Infants with PWMLs in the setting of a genetic disorder appeared at most risk of a poor outcome.
Collapse
Affiliation(s)
- Michael Hayman
- Department of Neurology, Royal Children's Hospital, Parkville, Australia; Department of Paediatric Neurology, Monash Children's Hospital, Clayton, Australia; University of Melbourne, Department of Paediatrics, Parkville, Australia; Monash University, Department of Paediatrics, Clayton, Australia; Murdoch Children's Research Institute, Parkville, Australia.
| | | | - Henrica van Straaten
- Department of Neonatology, Isala Women & Children's Hospital, Zwolle, the Netherlands
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
85
|
Northam GB, Morgan AT, Fitzsimmons S, Baldeweg T, Liégeois FJ. Corticobulbar Tract Injury, Oromotor Impairment and Language Plasticity in Adolescents Born Preterm. Front Hum Neurosci 2019; 13:45. [PMID: 30837853 PMCID: PMC6389783 DOI: 10.3389/fnhum.2019.00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Children born preterm are at risk of impairments in oromotor control, with implications for early feeding and speech development. In this study, we aimed to identify (a) neuroanatomical markers of persistent oromotor deficits using diffusion-weighted imaging (DWI) tractography and (b) evidence of compensatory neuroplasticity using functional MRI (fMRI) during a language production task. In a cross-sectional study of 36 adolescents born very preterm (<33 weeks' gestation) we identified persistent difficulties in oromotor control in 31% of cases, but no clinical diagnoses of speech-sound disorder (e.g., dysarthria, dyspraxia). We used DWI-tractography to examine the microstructure (fractional anisotropy, FA) of the corticospinal and corticobulbar tracts. Compared to the unimpaired group, the oromotor-impaired group showed (i) reduced FA within the dorsal portion of the left corticobulbar tract (containing fibres associated with movements of the lips, tongue, and larynx) and (ii) greater recruitment of right hemisphere language regions on fMRI. We conclude that, despite the development of apparently normal everyday speech, early injury to the corticobulbar tract leads to persistent subclinical problems with voluntary control of the face, lips, jaw, and tongue. Furthermore, we speculate that early speech problems may be ameliorated by cerebral plasticity - in particular, recruitment of right hemisphere language areas.
Collapse
Affiliation(s)
- Gemma B. Northam
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Sophie Fitzsimmons
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Torsten Baldeweg
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Frédérique J. Liégeois
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
86
|
Guo T, Chau V, Peyvandi S, Latal B, McQuillen PS, Knirsch W, Synnes A, Feldmann M, Naef N, Chakravarty MM, De Petrillo A, Duerden EG, Barkovich AJ, Miller SP. White matter injury in term neonates with congenital heart diseases: Topology & comparison with preterm newborns. Neuroimage 2019; 185:742-749. [PMID: 29890324 PMCID: PMC6289608 DOI: 10.1016/j.neuroimage.2018.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neonates with congenital heart disease (CHD) are at high risk of punctate white matter injury (WMI) and impaired brain development. We hypothesized that WMI in CHD neonates occurs in a characteristic distribution that shares topology with preterm WMI and that lower birth gestational age (GA) is associated with larger WMI volume. OBJECTIVE (1) To quantitatively assess the volume and location of WMI in CHD neonates across three centres. (2) To compare the volume and spatial distribution of WMI between term CHD neonates and preterm neonates using lesion mapping. METHODS In 216 term born CHD neonates from three prospective cohorts (mean birth GA: 39 weeks), WMI was identified in 86 neonates (UBC: 29; UCSF: 43; UCZ: 14) on pre- and/or post-operative T1 weighted MRI. WMI was manually segmented and volumes were calculated. A standard brain template was generated. Probabilistic WMI maps (total, pre- and post-operative) were developed in this common space. Using these maps, WMI in the term CHD neonates was compared with that in preterm neonates: 58 at early-in-life (mean postmenstrual age at scan 32.2 weeks); 41 at term-equivalent age (mean postmenstrual age at scan 40.1 weeks). RESULTS The total WMI volumes of CHD neonates across centres did not differ (p = 0.068): UBC (median = 84.6 mm3, IQR = 26-174.7 mm3); UCSF (median = 104 mm3, IQR = 44-243 mm3); UCZ (median = 121 mm3, IQR = 68-200.8 mm3). The spatial distribution of WMI in CHD neonates showed strong concordance across centres with predilection for anterior and posterior rather than central lesions. Predominance of anterior lesions was apparent on the post-operative WMI map relative to the pre-operative map. Lower GA at birth predicted an increasing volume of WMI across the full cohort (41.1 mm3 increase of WMI per week decrease in gestational age; 95% CI 11.5-70.8; p = 0.007), when accounting for centre and heart lesion. While WMI in term CHD and preterm neonates occurs most commonly in the intermediate zone/outer subventricular zone there is a paucity of central lesions in the CHD neonates relative to preterms. CONCLUSIONS WMI in term neonates with CHD occurs in a characteristic topology. The spatial distribution of WMI in term neonates with CHD reflects the expected maturation of pre-oligodendrocytes such that the central regions are less vulnerable than in the preterm neonates.
Collapse
Affiliation(s)
- Ting Guo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Shabnam Peyvandi
- Department of Pediatric Cardiology, Benioff Children's Hospital and University of California, San Francisco, CA, USA
| | - Beatrice Latal
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital and University of California, San Francisco, CA, USA
| | - Walter Knirsch
- Department of Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Maria Feldmann
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Nadja Naef
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Research Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Alessandra De Petrillo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Emma G Duerden
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - A James Barkovich
- Department of Radiology, Benioff Children's Hospital and University of California, San Francisco, CA, USA
| | - Steven P Miller
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
87
|
Martinez-Biarge M, Groenendaal F, Kersbergen KJ, Benders MJNL, Foti F, van Haastert IC, Cowan FM, de Vries LS. Neurodevelopmental Outcomes in Preterm Infants with White Matter Injury Using a New MRI Classification. Neonatology 2019; 116:227-235. [PMID: 31108490 DOI: 10.1159/000499346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate whether a new MRI scoring system for preterm non-haemorrhagic white matter injury (WMI), derived from the analysis of the natural evolution of WMI throughout the neonatal period until term-equivalent age, can be used for outcome prediction. METHODS Eighty-two infants <36 weeks gestation with WMI diagnosed from sequential cranial ultrasound and confirmed on neonatal MRI were retrospectively included. WMI was classified in four grades of severity. Neurodevelopmental data at a median age of 24 months were analysed. RESULTS In 74 surviving children WMI severity was strongly associated with the presence and severity of cerebral palsy (CP) and other neurodevelopmental impairments (Spearman's rank correlation 0.88, p < 0.001). Only 3 children with grade I WMI (9%) developed CP (all ambulant) and their developmental scores were not different to those from the controls, although they started walking significantly later (p = 0.036). Of the 6 children with grade II, 83% developed CP (mild in most), whereas 91% of the 34 children with grade III had CP (moderate-severe in 76%) and all had some degree of neurodevelopmental impairment. Three children with grade III WMI did not develop CP; their imaging showed, in contrast to children who developed CP, that the cysts did not affect the corticospinal tracts; also, myelin in the posterior limb of the internal capsule appeared normal in 2 children and suboptimal in 1. CONCLUSIONS This MRI scoring system for preterm WMI can be used to predict neurodevelopmental outcomes. Individualized assessment of the site of lesions and the progression of myelination improves prognostic accuracy.
Collapse
Affiliation(s)
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karina J Kersbergen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Francesca Foti
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ingrid C van Haastert
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frances M Cowan
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
88
|
Abstract
Despite the advances in neonatal intensive care, the preterm brain remains vulnerable to white matter injury (WMI) and disruption of normal brain development (i.e., dysmaturation). Compared to severe cystic WMI encountered in the past decades, contemporary cohorts of preterm neonates experience milder WMIs. More than destructive lesions, disruption of the normal developmental trajectory of cellular elements of the white and the gray matter occurs. In the acute phase, in response to hypoxia-ischemia and/or infection and inflammation, multifocal areas of necrosis within the periventricular white matter involve all cellular elements. Later, chronic WMI is characterized by diffuse WMI with aberrant regeneration of oligodendrocytes, which fail to mature to myelinating oligodendrocytes, leading to myelination disturbances. Complete neuronal degeneration classically accompanies necrotic white matter lesions, while altered neurogenesis, represented by a reduction of the dendritic arbor and synapse formation, is observed in response to diffuse WMI. Neuroimaging studies now provide more insight in assessing both injury and dysmaturation of both gray and white matter. Preterm brain injury remains an important cause of neurodevelopmental disabilities, which are still observed in up to 50% of the preterm survivors and take the form of a complex combination of motor, cognitive, and behavioral concerns.
Collapse
Affiliation(s)
- Juliane Schneider
- Department of Woman-Mother-Child, Clinic of Neonatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Steven P Miller
- Division of Neurology and Centre for Brain and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
89
|
Yap V, Perlman JM. Intraventricular Hemorrhage and White Matter Injury in the Preterm Infant. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
90
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
91
|
Zhu T, Yuan T, Yu H, Gu W, Chen X, Jiang P. The phosphodiesterase-4 inhibitor Rolipram promotes cognitive function recovery in prenatal Escherichia coli infected offspring. J Matern Fetal Neonatal Med 2018; 33:2166-2175. [PMID: 30373424 DOI: 10.1080/14767058.2018.1542682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective: Preterm infants are especially vulnerable to intrauterine infection-induced brain injury, which is closely relevant with cognitive deficits and cerebral palsy. Rolipram, a phosphodiesterase-4 inhibitor, can improve cognition in rodents. However, the underlying roles and mechanisms are not well investigated.Methods: In the present study, we used intrauterine Escherichia coli (E. coli) infected model. Escherichia coli was inoculated into pregnant rats' uterine cervix at embryonic day 15 (E15) while the control group was given normal saline. Rolipram was administered by intraperitoneal (i.p.) injection once daily from postnatal day (P) 1-7. Morris water maze test was used for cognitive behavior test. Hippocampal neural stem/precursor cells (NSPCs) proliferation and neuronal differentiation were studied by immunofluorescent staining. The expressions of p-CREB, p-Akt, TrkB and BDNF were estimated by western-blot analysis.Results: The data showed that Rolipram could ameliorate cognitive deficits and enhance NSPCs proliferation and neuronal differentiation in intrauterine infected offspring. Additionally, Rolipram could significantly increase p-CREB/CREB, p-Akt/Akt, TrkB and BDNF levels.Conclusions: These results suggested that Rolipram might play a neuroprotective role to promote cognitive function recovery after intrauterine infection. And hippocampal NSPCs proliferation and neuronal differentiation might be enhanced via CREB/Akt/BDNF signal transduction.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Yu
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizhong Gu
- Central Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Chen
- Central Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peifang Jiang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Departments of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
92
|
MRI at term equivalent in preterm infants: the wise choice. Pediatr Res 2018; 84:791-792. [PMID: 29980783 DOI: 10.1038/s41390-018-0068-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023]
|
93
|
White matter injury predicts disrupted functional connectivity and microstructure in very preterm born neonates. NEUROIMAGE-CLINICAL 2018; 21:101596. [PMID: 30458986 PMCID: PMC6411591 DOI: 10.1016/j.nicl.2018.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/28/2022]
Abstract
Objective To determine whether the spatial extent and location of early-identified punctate white matter injury (WMI) is associated with regionally-specific disruptions in thalamocortical-connectivity in very-preterm born neonates. Methods 37 very-preterm born neonates (median gestational age: 28.1 weeks; interquartile range [IQR]: 27–30) underwent early MRI (median age 32.9 weeks; IQR: 32–35), and WMI was identified in 13 (35%) neonates. Structural T1-weighted, resting-state functional Magnetic Resonance Imaging (rs-fMRI, n = 34) and Diffusion Tensor Imaging (DTI, n = 31) sequences were acquired using 3 T-MRI. A probabilistic map of WMI was developed for the 13 neonates demonstrating brain injury. A neonatal atlas was applied to the WMI maps, rs-fMRI and DTI analyses to extract volumetric, functional and microstructural data from regionally-specific brain areas. Associations of thalamocortical-network strength and alterations in fractional anisotropy (FA, a measure of white-matter microstructure) with WMI volume were assessed in general linear models, adjusting for age at scan and cerebral volumes. Results WMI volume in the superior (β = −0.007; p = .02) and posterior corona radiata (β = −0.01; p = .01), posterior thalamic radiations (β = −0.01; p = .005) and superior longitudinal fasciculus (β = −0.02; p = .001) was associated with reduced connectivity strength between thalamus and parietal resting-state networks. WMI volume in the left (β = −0.02; p = .02) and right superior corona radiata (β = −0.03; p = .008), left posterior corona radiata (β = −0.03; p = .01), corpus callosum (β = −0.11; p < .0001) and right superior longitudinal fasciculus (β = −0.02; p = .02) was associated with functional connectivity strength between thalamic and sensorimotor networks. Increased WMI volume was also associated with decreased FA values in the corpus callosum (β = −0.004, p = .015). Conclusions Regionally-specific alterations in early functional and structural network complexity resulting from WMI may underlie impaired outcomes. Lesions in white matter pathways predicted altered functional connectivity. White matter lesions predicted alterations in white matter microstructure. Findings of lesion location and size were regionally-specific. White matter lesion size and location may underlie later delays in development.
Collapse
|
94
|
Kim HG, Lee JH, Choi JW, Han M, Gho SM, Moon Y. Multidelay Arterial Spin-Labeling MRI in Neonates and Infants: Cerebral Perfusion Changes during Brain Maturation. AJNR Am J Neuroradiol 2018; 39:1912-1918. [PMID: 30213808 DOI: 10.3174/ajnr.a5774] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/08/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling with multiple postlabeling delays can correct transit times. We tried to evaluate CBF in neonates and infants using multidelay arterial spin-labeling. MATERIALS AND METHODS Multidelay arterial spin-labeling was applied to 13 preterm neonates (mean postmenstrual age, 34.9 weeks), 13 term-equivalent-age neonates (mean postmenstrual age, 39.2 weeks), and 6 infants (mean postmenstrual age, 57.8 weeks). Transit time-corrected CBF in the caudate, thalamus, frontal GM, occipital GM, frontal WM, and occipital WM was measured, and relative CBF compared with the whole-brain CBF was calculated. Inter- and intragroup comparisons were performed among the 3 age groups. A correlation and nonlinear regression analysis were performed between postmenstrual age and CBF. RESULTS Intergroup comparisons showed significantly higher whole-brain CBF in infants (38.3 mL/100 g/min) compared with preterm (15.5 mL/100 g/min) and term-equivalent-age (18.3 mL/100 g/min) neonates (P < .001). In the intragroup comparison, all 3 groups showed significantly higher relative CBF values in the occipital WM (63.6%-90.3%) compared with the frontal WM (46.3%-73.9%). In term-equivalent-age neonates, the occipital GM (120.8%) had significantly higher relative CBF values than the frontal GM (103.5%). There was a significant negative correlation between postmenstrual age and the relative CBF of the thalamus (r = - 0.449, P = .010). There were significant positive relationships between postmenstrual age and the relative CBF of the frontal WM (R 2 = 0.298, P = .001) and occipital WM (R 2 = 0.452, P < .001). CONCLUSIONS Multidelay arterial spin-labeling with transit time-corrected CBF showed developmental changes and regional differences of CBF in neonates and infants.
Collapse
Affiliation(s)
- H G Kim
- From the Departments of Radiology (H.G.K., J.W.C., M.H.)
| | | | - J W Choi
- From the Departments of Radiology (H.G.K., J.W.C., M.H.)
| | - M Han
- From the Departments of Radiology (H.G.K., J.W.C., M.H.)
| | - S-M Gho
- MR Clinical Research and Development (S.-M.G.), GE Healthcare Korea, Seoul, Korea
| | - Y Moon
- Office of Biostatistics (Y.M.), Institute of Medical Sciences, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| |
Collapse
|
95
|
Mukherjee S, Cheng I, Miller S, Guo T, Chau V, Basu A. A fast segmentation-free fully automated approach to white matter injury detection in preterm infants. Med Biol Eng Comput 2018; 57:71-87. [PMID: 29981051 DOI: 10.1007/s11517-018-1829-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/04/2018] [Indexed: 11/30/2022]
Abstract
White matter injury (WMI) is the most prevalent brain injury in the preterm neonate leading to developmental deficits. However, detecting WMI in magnetic resonance (MR) images of preterm neonate brains using traditional WM segmentation-based methods is difficult mainly due to lack of reliable preterm neonate brain atlases to guide segmentation. Hence, we propose a segmentation-free, fast, unsupervised, atlas-free WMI detection method. We detect the ventricles as blobs using a fast linear maximally stable extremal regions algorithm. A reference contour equidistant from the blobs and the brain-background boundary is used to identify tissue adjacent to the blobs. Assuming normal distribution of the gray-value intensity of this tissue, the outlier intensities in the entire brain region are identified as potential WMI candidates. Thereafter, false positives are discriminated using appropriate heuristics. Experiments using an expert-annotated dataset show that the proposed method runs 20 times faster than our earlier work which relied on time-consuming segmentation of the WM region, without compromising WMI detection accuracy. Graphical Abstract Key Steps of Segmentation-free WMI Detection.
Collapse
Affiliation(s)
- Subhayan Mukherjee
- Department of Computing Science, University of Alberta, 402 Athabasca Hall, Edmonton, Alberta, T6G 2H1, Canada
| | - Irene Cheng
- Department of Computing Science, University of Alberta, 402 Athabasca Hall, Edmonton, Alberta, T6G 2H1, Canada
| | - Steven Miller
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Ting Guo
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Vann Chau
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Anup Basu
- Department of Computing Science, University of Alberta, 402 Athabasca Hall, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
96
|
Tan AP, Svrckova P, Cowan F, Chong WK, Mankad K. Intracranial hemorrhage in neonates: A review of etiologies, patterns and predicted clinical outcomes. Eur J Paediatr Neurol 2018; 22:690-717. [PMID: 29731328 DOI: 10.1016/j.ejpn.2018.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 12/29/2022]
Abstract
Intracranial hemorrhage (ICH) in neonates often results in devastating neurodevelopmental outcomes as the neonatal period is a critical window for brain development. The neurodevelopmental outcomes in neonates with ICH are determined by the maturity of the brain, the location and extent of the hemorrhage, the specific underlying etiology and the presence of other concomitant disorders. Neonatal ICH may result from various inherited and acquired disorders. We classify the etiologies of neonatal ICH into eight main categories: (1) Hemorrhagic stroke including large focal hematoma, (2) Prematurity-related hemorrhage, (3) Bleeding diathesis, (4) Genetic causes, (5) Infection, (6) Trauma-related hemorrhage, (7) Tumor-related hemorrhage and (8) Vascular malformations. Illustrative cases showing various imaging patterns that can be helpful to predict clinical outcomes will be highlighted. Potential mimics of ICH in the neonatal period are also reviewed.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd 119228, Singapore.
| | - Patricia Svrckova
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London WC1N 3JH, UK.
| | - Frances Cowan
- Dept. of Neonatology, Chelsea and Westminster Hospital NHS Foundation Trust, Imperial College, London, SW10 9NH, UK.
| | - Wui Khean Chong
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London WC1N 3JH, UK.
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London WC1N 3JH, UK.
| |
Collapse
|
97
|
Enguix V, Ding Y, Lodygensky GA. Recent advances in preclinical and clinical multimodal MR in the newborn brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:149-154. [PMID: 29731237 DOI: 10.1016/j.jmr.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 05/20/2023]
Abstract
Aside from injury identification, MRI of the newborn brain has given us insight into cortical and white matter development, identified windows of vulnerabilities, enabled the introduction of therapeutic hypothermia which has become the standard of care in neonatal asphyxia, and is fostering leapfrogging discoveries in the field of neuro-genetics. This article reviews the main advances in recent years in newborn brain imaging both in preclinical and clinical research.
Collapse
Affiliation(s)
- Vicente Enguix
- Department of Pediatrics, University of Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Yang Ding
- Department of Pediatrics, University of Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Gregory A Lodygensky
- Department of Pediatrics, University of Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
98
|
D Chorna O, L Hamm E, Shrivastava H, Maitre NL. Feasibility of event-related potential (ERP) biomarker use to study effects of mother's voice exposure on speech sound differentiation of preterm infants. Dev Neuropsychol 2018; 43:123-134. [PMID: 29436854 DOI: 10.1080/87565641.2018.1433671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atypical maturation of auditory neural processing contributes to preterm-born infants' language delays. Event-related potential (ERP) measurement of speech-sound differentiation might fill a gap in treatment-response biomarkers to auditory interventions. We evaluated whether these markers could measure treatment effects in a quasi-randomized prospective study. Hospitalized preterm infants in passive or active, suck-contingent mother's voice exposure groups were not different at baseline. Post-intervention, the active group had greater increases in/du/-/gu/differentiation in left frontal and temporal regions. Infants with brain injury had lower baseline/ba/-/ga/and/du/-/gu/differentiation than those without. ERP provides valid discriminative, responsive, and predictive biomarkers of infant speech-sound differentiation.
Collapse
Affiliation(s)
- Olena D Chorna
- a Center for Perinatal Research and Department of Pediatrics at Nationwide Children's Hospital , Columbus , OH , USA
| | - Ellyn L Hamm
- a Center for Perinatal Research and Department of Pediatrics at Nationwide Children's Hospital , Columbus , OH , USA
| | - Hemang Shrivastava
- a Center for Perinatal Research and Department of Pediatrics at Nationwide Children's Hospital , Columbus , OH , USA
| | - Nathalie L Maitre
- a Center for Perinatal Research and Department of Pediatrics at Nationwide Children's Hospital , Columbus , OH , USA.,b Department of Hearing and Speech Sciences , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
99
|
Gray PH, Edwards DM, Hughes IP, Pritchard M. Social-emotional development in very preterm infants during early infancy. Early Hum Dev 2018; 121:44-48. [PMID: 29775884 DOI: 10.1016/j.earlhumdev.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Peter H Gray
- Growth and Development Unit, Mater Mothers' Hospital, South Brisbane, Queensland, Australia; Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia.
| | - Dawn M Edwards
- Growth and Development Unit, Mater Mothers' Hospital, South Brisbane, Queensland, Australia
| | - Ian P Hughes
- Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia.
| | - Margo Pritchard
- Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia; Australian Catholic University, Mater Health Services, South Brisbane, Queensland, Australia.
| |
Collapse
|
100
|
Bierstone D, Wagenaar N, Gano DL, Guo T, Georgio G, Groenendaal F, de Vries LS, Varghese J, Glass HC, Chung C, Terry J, Rijpert M, Grunau RE, Synnes A, Barkovich AJ, Ferriero DM, Benders M, Chau V, Miller SP. Association of Histologic Chorioamnionitis With Perinatal Brain Injury and Early Childhood Neurodevelopmental Outcomes Among Preterm Neonates. JAMA Pediatr 2018; 172:534-541. [PMID: 29610829 PMCID: PMC6137531 DOI: 10.1001/jamapediatrics.2018.0102] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Understanding the role of chorioamnionitis, a major factor leading to preterm birth, in the pathogenesis of neonatal brain injury and adverse neurodevelopmental outcomes may help in identifying potentially modifiable perinatal variables affecting brain health and outcomes among children born preterm. OBJECTIVE To evaluate whether histologic chorioamnionitis among neonates born very preterm is associated with intraventricular hemorrhage (IVH) and punctate white matter injury (WMI) or with adverse neurodevelopmental outcomes during early childhood. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study conducted across 3 academic centers (from April 2006 to September 2013 in Canada, from March 2007 to March 2013 in the Netherlands, and from January 2004 to August 2011 in the United States). Children who were born preterm (24-32 weeks' gestation) and who had undergone a placental pathologic evaluation, magnetic resonance imaging as soon as clinically stable, and Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) assessments between 18 and 24 months' corrected age (CA) were included. Magnetic resonance imaging scans were assessed for grade of IVH and volume of punctate WMI. Data analysis occurred between December 2016 and January 2018. Final multivariable analyses examining the association of chorioamnionitis with motor and cognitive outcomes accounted for academic center and perinatal and postnatal factors. MAIN OUTCOMES AND MEASURES Punctate WMI volume and IVH detected on neonatal magnetic resonance imaging scans; motor and cognitive outcomes defined using Bayley-III assessments conducted among these children between 18 and 24 months' CA. RESULTS Of 350 neonates (182 male) in the final cohort, 145 (41.4%) had histologic chorioamnionitis. Gestational age was significantly lower among those with chorioamnionitis (median, 26.4 weeks; interquartile range [IQR], 25.6-27.7 weeks) than among those without chorioamnionitis (median, 28.0 weeks; IQR, 27.0-29.7 weeks). Chorioamnionitis was not associated with IVH or WMI, nor was it associated with worse motor outcomes in univariable or multivariable analyses (adjusted Bayley-III motor score, -2.2; 95% CI, -5.6 to 1.3). Cognitive scores were marginally yet statistically significantly lower among children with chorioamnionitis (median, 105; IQR, 95-110) than among those without chorioamnionitis (median, 105; IQR, 100-115) in the univariable model. This difference was attenuated in the multivariable model (adjusted Bayley-III cognitive score, -3.0; 95% CI, -6.4 to 0.4). CONCLUSIONS AND RELEVANCE Histologic chorioamnionitis was not associated with IVH or WMI near birth or with worse cognitive or motor outcomes from 18 to 24 months' CA after accounting for perinatal factors. Postnatal factors attenuated the association between chorioamnionitis and neurodevelopmental outcomes, highlighting the importance of preventing postnatal illness, such as infection, to promote optimal outcomes among children born preterm.
Collapse
Affiliation(s)
- Daniel Bierstone
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada,Department of Paediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Nienke Wagenaar
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dawn L. Gano
- Department of Pediatrics, UCSF (University of California, San Francisco) Benioff Children’s Hospital, San Francisco,Department of Neurology, UCSF Benioff Children’s Hospital, San Francisco
| | - Ting Guo
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Gregory Georgio
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada,Brain, Behaviour, and Development, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linda S. de Vries
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jojy Varghese
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Hannah C. Glass
- Department of Pediatrics, UCSF (University of California, San Francisco) Benioff Children’s Hospital, San Francisco,Department of Neurology, UCSF Benioff Children’s Hospital, San Francisco,Department of Epidemiology and Biostatistics, UCSF Benioff Children’s Hospital, San Francisco
| | - Catherine Chung
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jefferson Terry
- Department of Anatomical Pathology, BC Women’s and Children’s Hospital and Health Centre, Vancouver, British Columbia, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vanouver, British Columbia, Canada
| | - Maarten Rijpert
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ruth E. Grunau
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada,Brain, Behaviour, and Development, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada,Brain, Behaviour, and Development, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - A. James Barkovich
- Department of Radiology, UCSF Benioff Children’s Hospital, San Francisco
| | - Donna M. Ferriero
- Department of Pediatrics, UCSF (University of California, San Francisco) Benioff Children’s Hospital, San Francisco,Department of Neurology, UCSF Benioff Children’s Hospital, San Francisco
| | - Manon Benders
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Vann Chau
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Steven P. Miller
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada,Brain, Behaviour, and Development, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|