51
|
Plourde V, Rohr CS, Virani S, Bray S, Yeates KO, Brooks BL. Default mode network functional connectivity after multiple concussions in children and adolescents. Arch Clin Neuropsychol 2019. [DOI: 10.1093/arclin/acz073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The default mode network (DMN), a set of brain regions, has been shown to be affected post-concussion.
Objective
This cross-sectional study aims to elucidate if children and adolescents with multiple concussions demonstrate long-term alterations in DMN functional connectivity (FC).
Method
Participants (N = 57, 27 girls and 30 boys; 8-19 years old, M age = 14.7, SD = 2.8) were divided into three groups (orthopedic injury [OI] n = 20; one concussion n = 16; multiple concussions n = 21, M = 3.2 concussions, SD = 1.7) and seen on average 31.6 months post-injury (range 4.3-130.7 months; SD = 19.4). They underwent a resting-state functional magnetic resonance imaging scan. Parents completed the ADHD rating scale-5 for children and adolescents. Children and parents completed the post-concussion symptom inventory (PCSI).
Results
Anterior and posterior DMN components were extracted from the fMRI data for each participant using FSL’s MELODIC and dual regression. We tested for pairwise group differences within each DMN component in FSL’s Randomize (5000 permutations) using threshold-free cluster enhancement to estimate cluster activation, controlling for age, sex, and symptoms of inattention. FC of the anterior DMN was significantly reduced in the group with multiple concussions compared to the two other groups, whereas there were no significant group differences on FC of the posterior DMN. There were no significant associations between DMN FC and PCSI scores.
Conclusions
These results suggest reduced FC in the anterior DMN in youth with multiple concussions, but no linear association with post-concussive symptoms.
Collapse
Affiliation(s)
- Vickie Plourde
- School of Psychology, Université de Moncton, Moncton, Canada; Faculty Saint-Jean, University of Alberta, Edmonton, Canada
| | - Christiane S Rohr
- Department of Radiology, University of Calgary; Child and Adolescent Imaging Research Program, University of Calgary; Alberta Children’s Hospital Research Institute, University of Calgary; Hotchkiss Brain Institute, Calgary, Canada
| | - Shane Virani
- Alberta Children’s Hospital Research Institute, University of Calgary; Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary; Child and Adolescent Imaging Research Program, University of Calgary; Alberta Children’s Hospital Research Institute, University of Calgary; Hotchkiss Brain Institute, Calgary, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary; Alberta Children’s Hospital Research Institute, University of Calgary; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Brian L Brooks
- Neurosciences Program, Alberta Children’s Hospital; Alberta Children’s Hospital Research Institute, University of Calgary; Hotchkiss Brain Institute, University of Calgary; Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary, Calgary, Canada
| |
Collapse
|
52
|
Hristopulos DT, Babul A, Babul S, Brucar LR, Virji-Babul N. Disrupted Information Flow in Resting-State in Adolescents With Sports Related Concussion. Front Hum Neurosci 2019; 13:419. [PMID: 31920584 PMCID: PMC6920175 DOI: 10.3389/fnhum.2019.00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
Children and youths are at a greater risk of concussions than adults, and once injured, take longer to recover. A key feature of concussion is an increase in functional connectivity, yet it remains unclear how changes in functional connectivity relate to the patterns of information flow within resting state networks following concussion and how these relate to brain function. We applied a data-driven measure of directed effective brain connectivity to compare the patterns of information flow in healthy adolescents and adolescents with subacute concussion during the resting state condition. Data from 32 healthy adolescents (mean age =16 years) and 21 concussed adolescents (mean age = 15 years) within 1 week of injury were included in the study. Five minutes of resting state data EEG were collected while participants sat quietly with their eyes closed. We applied the information flow rate to measure the transfer of information between the EEG time series of each individual at different source locations, and therefore between different brain regions. Based on the ensemble means of the magnitude of normalized information flow rate, our analysis shows that the dominant nexus of information flow in healthy adolescents is primarily left lateralized and anterior-centric, characterized by strong bidirectional information exchange between the frontal regions, and between the frontal and the central/temporal regions. In contrast, adolescents with concussion show distinct differences in information flow marked by a more left-right symmetrical, albeit still primarily anterior-centric, pattern of connections, diminished activity along the central-parietal midline axis, and the emergence of inter-hemispheric connections between the left and right frontal and the left and right temporal regions of the brain. We also find that the statistical distribution of the normalized information flow rates in each group (control and concussed) is significantly different. This paper is the first to describe the characteristics of the source space information flow and the effective connectivity patterns between brain regions in healthy adolescents in juxtaposition with the altered spatial pattern of information flow in adolescents with concussion, statistically quantifying the differences in the distribution of the information flow rate between the two populations. We hypothesize that the observed changes in information flow in the concussed group indicate functional reorganization of resting state networks in response to brain injury.
Collapse
Affiliation(s)
- Dionissios T Hristopulos
- Telecommunication Systems Research Institute, Technical University of Crete, Chania, Greece.,School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - Arif Babul
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Shazia'Ayn Babul
- Rockefeller College, Princeton University, Princeton, NJ, United States
| | - Leyla R Brucar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
53
|
Seo CH, Park CH, Jung MH, Baek S, Song J, Cha E, Ohn SH. Increased white matter diffusivity associated with phantom limb pain. Korean J Pain 2019; 32:271-279. [PMID: 31569919 PMCID: PMC6813898 DOI: 10.3344/kjp.2019.32.4.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background We utilized diffusion tensor imaging (DTI) to evaluate the cerebral white matter changes that are associated with phantom limb pain in patients with unilateral arm amputation. It was anticipated that this would complement previous research in which we had shown that changes in cerebral blood volume were associated with the cerebral pain network. Methods Ten patients with phantom limb pain due to unilateral arm amputation and sixteen healthy age-matched controls were enrolled. The intensity of phantom limb pain was measured by the visual analogue scale (VAS) and depressive mood was assessed by the Hamilton depression rating scale. Diffusion tensor-derived parameters, including fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD), were computed from the DTI. Results Compared with controls, the cases had alterations in the cerebral white matter as a consequence of phantom limb pain, manifesting a higher AD of white matter in both hemispheres symmetrically after adjusting for individual depressive moods. In addition, there were associations between the RD of white matter and VAS scores primarily in the hemispheres related to the missing hand and in the corpus callosum. Conclusions The phantom limb pain after unilateral arm amputation induced plasticity in the white matter. We conclude that loss of white matter integrity, particularly in the hemisphere connected with the missing hand, is significantly correlated with phantom limb pain.
Collapse
Affiliation(s)
- Cheong Hoon Seo
- Department of Physical Medicine and Rehabilitation, Hallym University Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chang-Hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Myung Hun Jung
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Seungki Baek
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Jimin Song
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Eunsil Cha
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
54
|
Meier TB, Giraldo-Chica M, España LY, Mayer AR, Harezlak J, Nencka AS, Wang Y, Koch KM, Wu YC, Saykin AJ, Giza CC, Goldman J, DiFiori JP, Guskiewicz KM, Mihalik JP, Brooks A, Broglio SP, McAllister T, McCrea MA. Resting-State fMRI Metrics in Acute Sport-Related Concussion and Their Association with Clinical Recovery: A Study from the NCAA-DOD CARE Consortium. J Neurotrauma 2019; 37:152-162. [PMID: 31407610 DOI: 10.1089/neu.2019.6471] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There has been a recent call for longitudinal cohort studies to track the physiological recovery of sport-related concussion (SRC) and its relationship with clinical recovery. Resting-state functional magnetic resonance imaging (rs-fMRI) has shown potential for detecting subtle changes in brain function after SRC. We investigated the effects of SRC on rs-fMRI metrics assessing local connectivity (regional homogeneity; REHO), global connectivity (average nodal strength), and the relative amplitude of slow oscillations of rs-fMRI (fractional amplitude of low-frequency fluctuations; fALFF). Athletes diagnosed with SRC (n = 92) completed visits with neuroimaging at 24-48 h post-injury (24 h), after clearance to begin the return-to-play (RTP) progression (asymptomatic), and 7 days following unrestricted RTP (post-RTP). Non-injured athletes (n = 82) completed visits yoked to the schedule of matched injured athletes and served as controls. Concussed athletes had elevated symptoms, worse neurocognitive performance, greater balance deficits, and elevated psychological symptoms at the 24-h visit relative to controls. These deficits were largely recovered by the asymptomatic visit. Concussed athletes still reported elevated psychological symptoms at the asymptomatic visit relative to controls. Concussed athletes also had elevated REHO in the right middle and superior frontal gyri at the 24-h visit that returned to normal levels by the asymptomatic visit. Additionally, REHO in these regions at 24 h predicted psychological symptoms at the asymptomatic visit in concussed athletes. Current results suggest that SRC is associated with an acute alteration in local connectivity that follows a similar time course as clinical recovery. Our results do not indicate strong evidence that concussion-related alterations in rs-fMRI persist beyond clinical recovery.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher C Giza
- Departments of Pediatrics and Neurosurgery, University of California Los Angeles, Los Angeles, California
| | - Joshua Goldman
- Departments of Family Medicine and Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California.,Center for Sports Medicine, Orthopaedic Institute for Children, Los Angeles, California
| | - John P DiFiori
- Hospital for Special Surgery, Primary Sports Medicine Service, New York, New York
| | - Kevin M Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina
| | - Jason P Mihalik
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina
| | - Alison Brooks
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Steven P Broglio
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
55
|
Ashina H, Porreca F, Anderson T, Amin FM, Ashina M, Schytz HW, Dodick DW. Post-traumatic headache: epidemiology and pathophysiological insights. Nat Rev Neurol 2019; 15:607-617. [DOI: 10.1038/s41582-019-0243-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 01/01/2023]
|
56
|
Jang I, Chun IY, Brosch JR, Bari S, Zou Y, Cummiskey BR, Lee TA, Lycke RJ, Poole VN, Shenk TE, Svaldi DO, Tamer GG, Dydak U, Leverenz LJ, Nauman EA, Talavage TM. Every hit matters: White matter diffusivity changes in high school football athletes are correlated with repetitive head acceleration event exposure. NEUROIMAGE-CLINICAL 2019; 24:101930. [PMID: 31630026 PMCID: PMC6807364 DOI: 10.1016/j.nicl.2019.101930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 11/29/2022]
Abstract
Recent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury—reduced fractional anisotropy (FA) and increased mean diffusivity (MD). Brains of high school athletes (N = 61) participating in American football exhibited greater spatial extents (or volumes) experiencing substantial changes (increases and decreases) in both FA and MD than brains of peers who do not participate in collision-based sports (N = 15). Further, the spatial extents of the football athlete brain exhibiting traditional diffusion-based markers of neural injury were found to be significantly correlated with the cumulative exposure to HAEs having peak translational acceleration exceeding 20 g. This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction. Brain volumes evidencing injury are larger in football athletes than controls. Spatial extent of decreased FA correlates with head acceleration event exposure. Spatial extent of increased MD correlates with head acceleration event exposure.
Collapse
Affiliation(s)
- Ikbeom Jang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America.
| | - Il Yong Chun
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Jared R Brosch
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sumra Bari
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Yukai Zou
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Brian R Cummiskey
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Taylor A Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Victoria N Poole
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Trey E Shenk
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Diana O Svaldi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Gregory G Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Larry J Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Thomas M Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
57
|
Meyer EJ, Stout JN, Chung AW, Grant PE, Mannix R, Gagoski B. Longitudinal Changes in Magnetic Resonance Spectroscopy in Pediatric Concussion: A Pilot Study. Front Neurol 2019; 10:556. [PMID: 31231298 PMCID: PMC6566128 DOI: 10.3389/fneur.2019.00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Nearly 20% of US adolescents report at least one lifetime concussion. Pathophysiologic models suggest that traumatic biomechanical forces caused by rotational deceleration lead to shear stress, which triggers a neurometabolic cascade beginning with excitotoxicity and leading to significant energy demands and a period of metabolic crisis for the injured brain. Proton magnetic resonance spectroscopy (1H MRS) offers a means for non-invasive measurement of neurometabolic changes after concussion. Objective: Describe longitudinal changes in metabolites measured in vivo in the brains of adolescent patients with concussion. Methods: We prospectively recruited 9 patients ages 11 to 20 who presented to a pediatric Emergency Department within 24 h of concussion. Patients underwent MRI scanning within 72 h (acute, n = 8), 2 weeks (subacute, n = 7), and at approximately 1 year (chronic, n = 7). Healthy, age and sex-matched controls were recruited and scanned once (n = 9). 1H MRS was used to measure N-acetyl-aspartate, choline, creatine, glutamate + glutamine, and myo-inositol concentrations in six regions of interest: left and right frontal white matter, posterior white matter and thalamus. Results: There was a significant increase in total thalamus glutamate+glutamine/choline at the subacute (p = 0.010) and chronic (p = 0.010) time points, and a significant decrease in total white matter myo-inositol/choline (p = 0.030) at the chronic time point as compared to controls. Conclusion: There are no differences in 1H MRS measurements in the acute concussive period; however, changes in glutamate+glutamine and myo-inositol concentrations detectable by 1H MRS may develop beyond the acute period.
Collapse
Affiliation(s)
- Erin J Meyer
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey N Stout
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ai Wern Chung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Department of Emergency Medicine, Harvard Medical School, Boston, MA, United States
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
58
|
Satarasinghe P, Hamilton DK, Buchanan RJ, Koltz MT. Unifying Pathophysiological Explanations for Sports-Related Concussion and Concussion Protocol Management: Literature Review. J Exp Neurosci 2019; 13:1179069518824125. [PMID: 30675103 PMCID: PMC6330734 DOI: 10.1177/1179069518824125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
Objective There is a plethora of theories about the pathophysiology behind a sport-related concussion. In this review of the literature, the authors evaluated studies on the pathophysiology of sport-related concussion and professional athlete return-to-play guidelines. The goal of this article is to summarize the most common hypotheses for sport-related concussion, evaluate if there are common underlying mechanisms, and determine if correlations are seen between published mechanisms and the most current return-to-play recommendations. Methods Two authors selected papers from the past 5 years for literature review involving discussion of sport-related concussion and pathophysiology, pathology, or physiology of concussion using mutually agreed-upon search criteria. After the articles were filtered based on search criteria, pathophysiological explanations for concussion were organized into tables. Following analysis of pathophysiology, concussion protocols and return-to-play guidelines were obtained via a Google search for the major professional sports leagues and synthesized into a summary table. Results Out of 1112 initially identified publications, 53 met our criteria for qualitative analysis. The 53 studies revealed 5 primary neuropathological explanations for sport-related concussion, regardless of the many theories talked about in the different papers. These 5 explanations, in order of predominance in the articles analyzed, were (1) tauopathy, (2) white matter changes, (3) neural connectivity alterations, (4) reduction in cerebral perfusion, and (5) gray matter atrophy. Pathology may be sport specific: white matter changes are seen in 47% of football reports, tauopathy is seen in 50% of hockey reports, and soccer reports 50% tauopathy as well as 50% neural connectivity alterations. Analysis of the return-to-play guidelines across professional sports indicated commonalities in concussion management despite individual policies. Conclusions Current evidence on pathophysiology for sport-related concussion does not yet support one unifying mechanism, but published hypotheses may potentially be simplified into 5 primary groups. The unification of the complex, likely multifactorial mechanisms for sport-related concussion to a few common explanations, combined with unique findings within individual sports presented in this report, may help filter and link concussion pathophysiology in sport. By doing so, the authors hope that this review will help guide future concussion research, treatment, and management.
Collapse
Affiliation(s)
- Praveen Satarasinghe
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - D Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert J Buchanan
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
- Michael T Koltz, Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
59
|
Smith AM, Alford PA, Aubry M, Benson B, Black A, Brooks A, Burke C, D’Arcy R, Dodick D, Eaves M, Eickhoff C, Erredge K, Farrell K, Finnoff J, Fraser DD, Giza C, Greenwald RM, Hanzel M, Hoshizaki B, Huston J, Jorgenson J, Joyner M, Krause D, LaVoi N, Leaf M, Leddy J, Leopold J, Margarucci K, Margulies S, Mihalik J, Munce T, Oeur A, Podein S, Prideaux C, Roberts WO, Shen F, Soma D, Tabrum M, Stuart MB, Wethe J, Whitehead JR, Wiese-Bjornstal D, Stuart MJ. Proceedings from the Ice Hockey Summit III: Action on Concussion. EXERCISE MEDICINE 2019. [DOI: 10.26644/em.2019.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
60
|
Mac Donald CL, Barber J, Wright J, Coppel D, De Lacy N, Ottinger S, Peck S, Panks C, Sun S, Zalewski K, Temkin N. Longitudinal Clinical and Neuroimaging Evaluation of Symptomatic Concussion in 10- to 14-Year-Old Youth Athletes. J Neurotrauma 2019; 36:264-274. [DOI: 10.1089/neu.2018.5629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Christine L. Mac Donald
- Department of Neurological Surgery, University of Washington, Seattle, Washington
- Harborview Injury Prevention and Research Center, Seattle, Washington
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jason Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington
| | - David Coppel
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Nina De Lacy
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Steve Ottinger
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Suzanne Peck
- Seattle Children's Research Institute, Seattle, Washington
| | - Chris Panks
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Samantha Sun
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Kody Zalewski
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| |
Collapse
|
61
|
Smith AM, Alford PA, Aubry M, Benson B, Black A, Brooks A, Burke C, D'Arcy R, Dodick D, Eaves M, Eickhoff C, Erredge K, Farrell K, Finnoff J, Fraser DD, Giza C, Greenwald RM, Hoshizaki B, Huston J, Jorgensen J, Joyner M, Krause D, LaVoi N, Leaf M, Leddy J, Margarucci K, Margulies S, Mihalik J, Munce T, Oeur A, Prideaux C, Roberts WO, Shen F, Soma D, Tabrum M, Stuart MB, Wethe J, Whitehead JR, Wiese-Bjornstal D, Stuart MJ. Proceedings from the Ice Hockey Summit III: Action on Concussion. Curr Sports Med Rep 2019; 18:23-34. [PMID: 30624332 DOI: 10.1249/jsr.0000000000000557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Ice Hockey Summit III provided updated scientific evidence on concussions in hockey to inform these five objectives: 1) describe sport-related concussion (SRC) epidemiology, 2) classify prevention strategies, 3) define objective, diagnostic tests, 4) identify treatment, and 5) integrate science and clinical care into prioritized action plans and policy. Our action plan evolved from 40 scientific presentations. The 155 attendees (physicians, athletic trainers, physical therapists, nurses, neuropsychologists, scientists, engineers, coaches, and officials) voted to prioritize these action items in the final Summit session. 1) Establish a national and international hockey data base for SRC at all levels, 2) eliminate body checking in Bantam youth hockey games, 3) expand a behavior modification program (Fair Play) to all youth hockey levels, 4) enforce game ejection penalties for fighting in Junior A and professional hockey leagues, 5) establish objective tests to diagnose concussion at point of care (POC), and 6) mandate baseline testing to improve concussion diagnosis for all age groups. Expedient implementation of the Summit III prioritized action items is necessary to reduce the risk, severity, and consequences of concussion in the sport of ice hockey.
Collapse
Affiliation(s)
- Aynsley M Smith
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Patrick A Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Mark Aubry
- Sports Medicine, Ottawa Sports Medicine Center, Ottawa, ON, Canada
| | - Brian Benson
- Faculty of Kinesiology, Department of Clinical Neurosciences, Department of Family Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda Black
- Sport Injury Prevention Research Centre and the Integrated Concussion Research Program at the University of Calgary, Calgary, AB, Canada
| | - Alison Brooks
- Department of Orthopedics and Rehabilitation, University of Wisconsin - Madison, Madison, WI
| | - Charles Burke
- Department of Orthopedics, Burke & Bradley Orthopedics, UPMC St. Margaret, Pittsburgh, PA
| | - Ryan D'Arcy
- School of Computing Science, School of Engineering Science, Simon Frasier University, Surrey, BC, Canada
| | - David Dodick
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | - Chad Eickhoff
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Kristen Erredge
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Kyle Farrell
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Jonathon Finnoff
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Douglas D Fraser
- Department of Pediatrics, Department of Physiology/Pharmacology and Clinical Neurosciences, University of Western Ontario, London, ON, Canada
| | - Christopher Giza
- Department of Pediatrics, University of California-Los Angeles, Los Angeles, CA
| | - Richard M Greenwald
- Simbex, Lebanon, NH.,Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Blaine Hoshizaki
- Neurotrauma Impact Science Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Janelle Jorgensen
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Michael Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - David Krause
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - Nicole LaVoi
- School of Kinesiology, University of Minnesota, Minneapolis, MN
| | | | - John Leddy
- Department of Orthopedics, Jacobs School of Medicine and Biomedical Science, University of Buffalo, Buffalo, NY
| | | | - Susan Margulies
- Wallace Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA.,Georgia Institute of Technology, Atlanta, GA
| | - Jason Mihalik
- Department of Exercise and Sports Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Thayne Munce
- Sanford Sports Science Institution, Sanford Medical South Dakota, Sioux Falls, SD
| | - Anna Oeur
- Wallace Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA
| | - Cara Prideaux
- Sports Medicine, Department of Physical Medicine Rehabilitation, Mayo Clinic, Rochester, MN
| | - William O Roberts
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN
| | - Francis Shen
- University of Minnesota Law School, Minneapolis, MN
| | - David Soma
- Department of Pediatric and Adolescent Medicine, Sports Medicine, Mayo Clinic, Rochester, MN
| | | | - Michael B Stuart
- Department of Orthopedic Surgery, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Jennifer Wethe
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | | | | | - Michael J Stuart
- Department of Orthopedic Surgery, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| |
Collapse
|
62
|
Manning KY, Llera A, Dekaban GA, Bartha R, Barreira C, Brown A, Fischer L, Jevremovic T, Blackney K, Doherty TJ, Fraser DD, Holmes J, Beckmann CF, Menon RS. Linked MRI signatures of the brain's acute and persistent response to concussion in female varsity rugby players. Neuroimage Clin 2018; 21:101627. [PMID: 30528959 PMCID: PMC6411783 DOI: 10.1016/j.nicl.2018.101627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022]
Abstract
Acute brain changes are expected after concussion, yet there is growing evidence of persistent abnormalities well beyond clinical recovery and clearance to return to play. Multiparametric MRI is a powerful approach to non-invasively study structure-function relationships in the brain, however it remains challenging to interpret the complex and heterogeneous cascade of brain changes that manifest after concussion. Emerging conjunctive, data-driven analysis approaches like linked independent component analysis can integrate structural and functional imaging data to produce linked components that describe the shared inter-subject variance across images. These linked components not only offer the potential of a more comprehensive understanding of the underlying neurobiology of concussion, but can also provide reliable information at the level of an individual athlete. In this study, we analyzed resting-state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) within a cohort of female varsity rugby players (n = 52) through the in- and off-season, including concussed athletes (n = 21) who were studied longitudinally at three days, three months and six months after a diagnosed concussion. Linked components representing co-varying white matter microstructure and functional network connectivity characterized (a) the brain's acute response to concussion and (b) persistent alterations beyond clinical recovery. Furthermore, we demonstrate that these long-term brain changes related to specific aspects of a concussion history and allowed us to monitor individual athletes before and longitudinally after a diagnosed concussion.
Collapse
Affiliation(s)
- Kathryn Y Manning
- Medical Biophysics, Western University, London, ON, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, ON, Canada.
| | - Alberto Llera
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands.
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada; Microbiology and Immunology, Western University, London, ON, Canada.
| | - Robert Bartha
- Medical Biophysics, Western University, London, ON, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, ON, Canada.
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada.
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada; Anatomy and Cell Biology, Western University, London, ON, Canada.
| | - Lisa Fischer
- Primary Care Sport Medicine, Fowler Kennedy Sport Medicine, London, ON, Canada.
| | - Tatiana Jevremovic
- Primary Care Sport Medicine, Fowler Kennedy Sport Medicine, London, ON, Canada.
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada; Microbiology and Immunology, Western University, London, ON, Canada.
| | - Timothy J Doherty
- Physical Medicine and Rehabilitation, Western University, London, ON, Canada.
| | - Douglas D Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, London, ON, Canada.
| | - Jeff Holmes
- Occupational Therapy, Western University, London, ON, Canada.
| | - Christian F Beckmann
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands; Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, Netherlands; Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, United Kingdom.
| | - Ravi S Menon
- Medical Biophysics, Western University, London, ON, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, ON, Canada.
| |
Collapse
|
63
|
Kaushal M, España LY, Nencka AS, Wang Y, Nelson LD, McCrea MA, Meier TB. Resting-state functional connectivity after concussion is associated with clinical recovery. Hum Brain Mapp 2018; 40:1211-1220. [PMID: 30451340 DOI: 10.1002/hbm.24440] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
There has been a recent call for longitudinal imaging studies to better characterize the time course of physiological recovery following sport-related concussion (SRC) and its relationship with clinical recovery. To address this, we evaluated changes to resting-state functional connectivity (rs-FC) of the whole-brain network following SRC and explored associations between rs-FC and measures of clinical outcome. High school and collegiate football athletes were enrolled during preseason. Athletes that suffered SRC (N = 62) were assessed across the acute (within 48 hr) and sub-acute (days 8, 15, and 45) phases. Matched football athletes without concussion served as controls (N = 60) and participated in similar visits. Multi-band resting-state fMRI was used to assess whole-brain rs-FC at each visit using network-based statistic and average nodal strength from regions of interest defined using a common whole-brain parcellation. Concussed athletes had elevated symptoms, psychological distress, and oculomotor, balance, and memory deficits at 48 hr postconcussion relative to controls, with diminished yet significant elevations in symptoms and psychological distress at 8 days. Both rs-FC analyses showed that concussed athletes had a global increase in connectivity at 8 days postconcussion relative to controls, with no differences at the 48-hr, 15-day, or 45-day visits. Further analysis revealed the group effect at the 8-day visit was driven by the large minority of concussed athletes still symptomatic at their visit; asymptomatic concussed athletes did not differ from controls. Findings from this large-scale, prospective study suggest whole-brain rs-FC alterations following SRC are delayed in onset but associated with the presence of self-reported symptoms.
Collapse
Affiliation(s)
- Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
64
|
McAbee GN. Are We Permitting Pediatric Athletes With Sports-Related Concussion to Return to Play Too Soon After Concussion? J Child Neurol 2018; 33:759-761. [PMID: 30070160 DOI: 10.1177/0883073818790169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current guidelines permitting return to play for athletes who have sustained a concussion rely on resolution of cognitive and physical symptoms. Evolving evidence suggest that vascular, radiologic and cerebral metabolic abnormalities persist in some athletes beyond the period of clinical recovery. This commentary addresses these issues and raises a question as to whether physicians are permitting pediatric athletes with concussion to return to play too soon after concussion.
Collapse
Affiliation(s)
- Gary N McAbee
- 1 Division of Child Neurology, Maimonides Children's Hospital of Brooklyn, Brooklyn, NY, USA
| |
Collapse
|
65
|
Filley CM, Kelly JP. White Matter and Cognition in Traumatic Brain Injury. J Alzheimers Dis 2018; 65:345-362. [DOI: 10.3233/jad-180287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christopher M. Filley
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| | - James P. Kelly
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
66
|
Mayer AR, Kaushal M, Dodd AB, Hanlon FM, Shaff NA, Mannix R, Master CL, Leddy JJ, Stephenson D, Wertz CJ, Suelzer EM, Arbogast KB, Meier TB. Advanced biomarkers of pediatric mild traumatic brain injury: Progress and perils. Neurosci Biobehav Rev 2018; 94:149-165. [PMID: 30098989 DOI: 10.1016/j.neubiorev.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
There is growing public concern about neurodegenerative changes (e.g., Chronic Traumatic Encephalopathy) that may occur chronically following clinically apparent and clinically silent (i.e., sub-concussive blows) pediatric mild traumatic brain injury (pmTBI). However, there are currently no biomarkers that clinicians can use to objectively diagnose patients or predict those who may struggle to recover. Non-invasive neuroimaging, electrophysiological and neuromodulation biomarkers have promise for providing evidence of the so-called "invisible wounds" of pmTBI. Our systematic review, however, belies that notion, identifying a relative paucity of high-quality, clinically impactful, diagnostic or prognostic biomarker studies in the sub-acute injury phase (36 studies on unique samples in 28 years), with the majority focusing on adolescent pmTBI. Ultimately, well-powered longitudinal studies with appropriate control groups, as well as standardized and clearly-defined inclusion criteria (time post-injury, injury severity and past history) are needed to truly understand the complex pathophysiology that is hypothesized (i.e., still needs to be determined) to exist during the acute and sub-acute stages of pmTBI and may underlie post-concussive symptoms.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM, 87106, United States; Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States; Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States; Psychology Department, University of New Mexico, Albuquerque, NM, 87131, United States.
| | - Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM, 87106, United States
| | - Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM, 87106, United States
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM, 87106, United States
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Christina L Master
- Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, PA, 19104, United States; Division of Orthopedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - John J Leddy
- UBMD Department of Orthopaedics and Sports Medicine, University at Buffalo, Buffalo, NY, 14214, United States
| | - David Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM, 87106, United States
| | - Christopher J Wertz
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM, 87106, United States
| | - Elizabeth M Suelzer
- Medical College of Wisconsin Libraries, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, PA, 19104, United States
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| |
Collapse
|
67
|
Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology 2018; 90:1039. [DOI: 10.1212/wnl.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
68
|
Kamins J, Charles A. Posttraumatic Headache: Basic Mechanisms and Therapeutic Targets. Headache 2018; 58:811-826. [PMID: 29757458 DOI: 10.1111/head.13312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joshua Kamins
- UCLA Goldberg Migraine Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
- Tisch Brainsport Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - Andrew Charles
- UCLA Goldberg Migraine Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| |
Collapse
|
69
|
Pan SN, Lyu XH, Liu Q, Guo QY. Pay Attention to the Imaging Study of Sport Injury and Illness in Winter Olympics Sports. Chin Med J (Engl) 2018; 131:1013-1015. [PMID: 29692370 PMCID: PMC5937306 DOI: 10.4103/0366-6999.230722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shi-Nong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiao-Hong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Qiang Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qi-Yong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
70
|
Schranz AL, Manning KY, Dekaban GA, Fischer L, Jevremovic T, Blackney K, Barreira C, Doherty TJ, Fraser DD, Brown A, Holmes J, Menon RS, Bartha R. Reduced brain glutamine in female varsity rugby athletes after concussion and in non-concussed athletes after a season of play. Hum Brain Mapp 2018; 39:1489-1499. [PMID: 29271016 PMCID: PMC6866259 DOI: 10.1002/hbm.23919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 12/04/2017] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to use non-invasive proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) to monitor changes in prefrontal white matter metabolite levels and tissue microstructure in female rugby players with and without concussion (ages 18-23, n = 64). Evaluations including clinical tests and 3 T MRI were performed at the beginning of a season (in-season) and followed up at the end of the season (off-season). Concussed athletes were additionally evaluated 24-72 hr (n = 14), three months (n = 11), and six months (n = 8) post-concussion. Reduced glutamine at 24-72 hr and three months post-concussion, and reduced glutamine/creatine at three months post-concussion were observed. In non-concussed athletes (n = 46) both glutamine and glutamine/creatine were lower in the off-season compared to in-season. Within the MRS voxel, an increase in fractional anisotropy (FA) and decrease in radial diffusivity (RD) were also observed in the non-concussed athletes, and correlated with changes in glutamine and glutamine/creatine. Decreases in glutamine and glutamine/creatine suggest reduced oxidative metabolism. Changes in FA and RD may indicate neuroinflammation or re-myelination. The observed changes did not correlate with clinical test scores suggesting these imaging metrics may be more sensitive to brain injury and could aid in assessing recovery of brain injury from concussion.
Collapse
Affiliation(s)
- Amy L. Schranz
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Kathryn Y. Manning
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Lisa Fischer
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Tatiana Jevremovic
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
| | - Timothy J. Doherty
- Department of Physical Medicine and RehabilitationThe University of Western Ontario, Schulich School of Medicine and Dentistry, Parkwood Institute, 550 Wellington Road, Hobbins BuildingLondonOntarioN6C 0A7Canada
| | - Douglas D. Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, Children's Hospital, 800 Commissioners Road EastLondonOntarioN6A 5W9Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Anatomy and Cell BiologyThe University of Western Ontario, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Jeff Holmes
- School of Occupational TherapyThe University of Western Ontario, 1201 Western Road, Elborn CollegeLondonOntarioN6A 1H1Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Robert Bartha
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| |
Collapse
|
71
|
Najem D, Rennie K, Ribecco-Lutkiewicz M, Ly D, Haukenfrers J, Liu Q, Nzau M, Fraser DD, Bani-Yaghoub M. Traumatic brain injury: classification, models, and markers. Biochem Cell Biol 2018; 96:391-406. [PMID: 29370536 DOI: 10.1139/bcb-2016-0160] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide. Due to its high incidence rate and often long-term sequelae, TBI contributes significantly to increasing costs of health care expenditures annually. Unfortunately, advances in the field have been stifled by patient and injury heterogeneity that pose a major challenge in TBI prevention, diagnosis, and treatment. In this review, we briefly discuss the causes of TBI, followed by its prevalence, classification, and pathophysiology. The current imaging detection methods and animal models used to study brain injury are examined. We discuss the potential use of molecular markers in detecting and monitoring the progression of TBI, with particular emphasis on microRNAs as a novel class of molecular modulators of injury and its repair in the neural tissue.
Collapse
Affiliation(s)
- Dema Najem
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Kerry Rennie
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Maria Ribecco-Lutkiewicz
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Dao Ly
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Julie Haukenfrers
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Qing Liu
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Munyao Nzau
- c Paediatric Neurosurgery, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Douglas D Fraser
- d Children's Health Research Institute, London, ON N6C 2V5, Canada.,e Departments of Pediatrics and Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
| | - Mahmud Bani-Yaghoub
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,f Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
72
|
Abstract
Computed tomography (CT) and magnetic resonance imaging (MRI) have revolutionized the assessment of traumatic brain injury (TBI) by permitting rapid detection and localization of acute intracranial injuries. In concussion, the most common presentation of sports-related head trauma, CT and MRI are unrevealing. This normal appearance of the brain on standard neuroimaging, however, belies the structural and functional pathology that underpins concussion-related symptoms and dysfunction. Advances in neuroimaging have expanded our ability to gain insight into this microstructural and functional brain pathology. This chapter will present both conventional and more advanced imaging approaches (e.g., diffusion tensor imaging, magnetization transfer imaging, magnetic resonance spectroscopy, functional MRI, arterial spin labeling, magnetoencephalography) to the assessment of TBI in sports and discuss some of the current and potential future roles of brain imaging in the assessment of injured athletes.
Collapse
|