51
|
Khan RB, Patay Z, Klimo P, Huang J, Kumar R, Boop FA, Raches D, Conklin HM, Sharma R, Simmons A, Sadighi ZS, Onar-Thomas A, Gajjar A, Robinson GW. Clinical features, neurologic recovery, and risk factors of postoperative posterior fossa syndrome and delayed recovery: a prospective study. Neuro Oncol 2021; 23:1586-1596. [PMID: 33823018 DOI: 10.1093/neuonc/noab030] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Posterior fossa syndrome (PFS) is a known consequence of medulloblastoma resection. Our aim was to clinically define PFS, its evolution over time, and ascertain risk factors for its development and poor recovery. METHODS Children with medulloblastoma treated at St Jude Children's Research Hospital from 6/2013 to 7/2019 received standardized neurological examinations, before and periodically after radiation therapy. Most (98.3%) were enrolled on the ongoing multi-institutional protocol (SJMB12; NCT01878617). RESULTS Sixty (34%) of 178 evaluated children had PFS. Forty (23%) had complete mutism (PFS1) and 20 (11%) had diminished speech (PFS2). All children with PFS had severe ataxia and 42.5% of PFS1 had movement disorders. By multivariable analysis, younger age (P = .0005) and surgery in a low-volume surgery center (P = .0146) increased PFS risk, while Sonic Hedgehog tumors had reduced risk (P = .0025). Speech and gait returned in PFS1/PFS2 children at a median of 2.3/0.7 and 2.1/1.5 months, respectively, however, 12 (44.4%) of 27 PFS1 children with 12 months of follow-up were nonambulatory at 1 year. Movement disorder (P = .037) and high ataxia score (P < .0001) were associated with delayed speech recovery. Older age (P = .0147) and high ataxia score (P < .0001) were associated with delayed gait return. Symptoms improved in all children but no child with PFS had normal neurologic examination at a median of 23 months after surgery. CONCLUSIONS Categorizing PFS into types 1 and 2 has prognostic relevance. Almost half of the children with PFS1 with 12-month follow-up were nonambulatory. Surgical experience was a major modifiable contributor to the development of PFS.
Collapse
Affiliation(s)
- Raja B Khan
- Division of Neurology, Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zoltan Patay
- Department of Radiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul Klimo
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee, Memphis, Tennessee, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rahul Kumar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Frederick A Boop
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee, Memphis, Tennessee, USA
| | - Darcy Raches
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richa Sharma
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrea Simmons
- Division of Neurology, Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zsila S Sadighi
- Department of Oncology, MD Anderson Center, Houston, Texas, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
52
|
Maas RPPWM, Killaars S, van de Warrenburg BPC, Schutter DJLG. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol 2021; 268:3456-3466. [PMID: 33743045 PMCID: PMC8357713 DOI: 10.1007/s00415-021-10516-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Background The cerebellar cognitive affective syndrome scale (CCAS-S) was recently developed to detect specific neuropsychological deficits in patients with cerebellar diseases in an expedited manner. Objectives To evaluate the discriminative ability of the CCAS-S in an etiologically homogeneous cohort of spinocerebellar ataxia type 3 (SCA3) patients and to examine relationships between cognitive deficits and motor symptom severity. Methods The CCAS-S was administered to twenty mildly to moderately affected SCA3 patients and eighteen healthy controls matched for age, sex, and educational level. Disease severity was measured by the Scale for the Assessment and Rating of Ataxia (SARA), Inventory of Non-Ataxia Signs (INAS), 8 m walk test, nine-hole peg test (9HPT), and Patient Health Questionnaire-9 (PHQ-9). Results SCA3 patients had a lower total CCAS-S score (p < 0.001) and higher number of failed tests (p = 0.006) than healthy controls. Patients displayed impairments in semantic fluency, phonemic fluency, category switching, cube drawing, and affect regulation. Total CCAS-S score showed high discriminative ability (area under the curve [AUC]: 0.96) and was associated with disease duration, SARA score, walking speed, and dominant hand 9HPT performance. No correlations were observed with INAS count, repeat length, and PHQ-9 score. Discriminative capacity of the number of failed tests was moderate (AUC: 0.76). Conclusion Essentially all SCA3 patients exhibited some form of cognitive impairment. The CCAS-S differentiates SCA3 patients from healthy controls, detects neuropsychological deficits early in the disease course, and correlates with relevant ataxia severity measures.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Sven Killaars
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
53
|
A Paravermal Trans-Cerebellar Approach to the Posterior Fossa Tumor Causes Hypertrophic Olivary Degeneration by Dentate Nucleus Injury. Cancers (Basel) 2021; 13:cancers13020258. [PMID: 33445527 PMCID: PMC7826586 DOI: 10.3390/cancers13020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Posterior fossa tumor surgery is challenging due to the proximity and exposure of cerebellar structures. A favorable operative approach is unknown. Following lesions to the dentato–rubro–olivary-pathway, a neurodegenerative disease called hypertrophic olivary degeneration (HOD) can occur. This study for the first time demonstrates that paravermal trans-cerebellar approaches are associated with a significantly higher likelihood of HOD on MRI when compared to other approaches. This finding can well be attributed to dentate nucleus (DN) injury. Furthermore, cerebellar mutism syndrome (CMS) was discussed in the literature to be correlated with HOD due to a functional overlap of pathways involved. We found no such correlation in this study, but HOD was shown to be a reliable indicator for surgical disruption of efferent cerebellar pathways involving the DN. Henceforth, neurosurgeons should consider more midline or lateral approaches in posterior fossa surgery to spare the DN whenever feasible, and focus on cerebellar functional anatomy in their preoperative planning. Abstract Background: In brain tumor surgery, injury to cerebellar connectivity pathways can induce a neurodegenerative disease called hypertrophic olivary degeneration (HOD), along with a disabling clinical syndrome. In children, cerebellar mutism syndrome (CMS) is another consequence of damage to cerebello–thalamo–cortical networks. The goal of this study was to compare paravermal trans-cerebellar to other more midline or lateral operative approaches in their risk of causing HOD on MR-imaging and CMS. Methods: We scanned our neurosurgical database for patients with surgical removal of pilocytic astrocytoma, ependymoma and medulloblastoma in the posterior fossa. Fifty patients with a mean age of 22.7 (±16.9) years were identified and analyzed. Results: HOD occurred in n = 10/50 (20%) patients within four months (median), always associated with contralateral dentate nucleus (DN)-lesions (p < 0.001). Patients with paravermal trans-cerebellar approach significantly more often developed HOD (7/11; 63.6%) when compared to other approaches (3/39; 7.7%; p < 0.001). Injury to the DN occurred more frequently after a paravermal approach (8/11 vs. 13/39 patients; p < 0.05). CMS was described for n = 12/50 patients (24%). Data indicated no correlation of radiological HOD and CMS development. Conclusions: A paravermal trans-cerebellar approach more likely causes HOD due to DN-injury when compared to more midline or lateral approaches. HOD is a radiological indicator for surgical disruption of cerebellar pathways involving the DN. Neurosurgeons should consider trajectories and approaches in the planning of posterior fossa surgery that spare the DN, whenever feasible.
Collapse
|
54
|
Schmahmann JD. Emotional disorders and the cerebellum: Neurobiological substrates, neuropsychiatry, and therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:109-154. [PMID: 34389114 DOI: 10.1016/b978-0-12-822290-4.00016-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative, and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher-order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies have demonstrated the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of cerebellar incorporation into circuits that subserve cognition and emotion mandates a deeper understanding of the cerebellum by practitioners in behavioral neurology and neuropsychiatry because it impacts the understanding and diagnosis of disorders of emotion and intellect and has potential for novel cerebellar-based approaches to therapy.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
55
|
Philippi CL, Bruss J, Boes AD, Albazron FM, Streese CD, Ciaramelli E, Rudrauf D, Tranel D. Lesion network mapping demonstrates that mind-wandering is associated with the default mode network. J Neurosci Res 2021; 99:361-373. [PMID: 32594566 PMCID: PMC7704688 DOI: 10.1002/jnr.24648] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023]
Abstract
Functional neuroimaging research has consistently associated brain structures within the default mode network (DMN) and frontoparietal network (FPN) with mind-wandering. Targeted lesion research has documented impairments in mind-wandering after damage to the medial prefrontal cortex (mPFC) and hippocampal regions associated with the DMN. However, no lesion studies to date have applied lesion network mapping to identify common networks associated with deficits in mind-wandering. In lesion network mapping, resting-state functional connectivity data from healthy participants are used to infer which brain regions are functionally connected to each lesion location from a sample with brain injury. In the current study, we conducted a lesion network mapping analysis to test the hypothesis that lesions affecting the DMN and FPN would be associated with diminished mind-wandering. We assessed mind-wandering frequency on the Imaginal Processes Inventory (IPI) in participants with brain injury (n = 29) and healthy comparison participants without brain injury (n = 19). Lesion network mapping analyses showed the strongest association of reduced mind-wandering with the left inferior parietal lobule within the DMN. In addition, traditional lesion symptom mapping results revealed that reduced mind-wandering was associated with lesions of the dorsal, ventral, and anterior sectors of mPFC, parietal lobule, and inferior frontal gyrus in the DMN (p < 0.05 uncorrected). These findings provide novel lesion support for the role of the DMN in mind-wandering and contribute to a burgeoning literature on the neural correlates of spontaneous cognition.
Collapse
Affiliation(s)
- Carissa L. Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Joel Bruss
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Aaron D. Boes
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Fatimah M. Albazron
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Elisa Ciaramelli
- Department of Psychology and Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - David Rudrauf
- Faculty of Psychology and Education Sciences, University of Geneva, Geneva, Switzerland
| | - Daniel Tranel
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
56
|
Grosse F, Rueckriegel SM, Thomale UW, Hernáiz Driever P. Mapping of long-term cognitive and motor deficits in pediatric cerebellar brain tumor survivors into a cerebellar white matter atlas. Childs Nerv Syst 2021; 37:2787-2797. [PMID: 34355257 PMCID: PMC8423645 DOI: 10.1007/s00381-021-05244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Diaschisis of cerebrocerebellar loops contributes to cognitive and motor deficits in pediatric cerebellar brain tumor survivors. We used a cerebellar white matter atlas and hypothesized that lesion symptom mapping may reveal the critical lesions of cerebellar tracts. METHODS We examined 31 long-term survivors of pediatric posterior fossa tumors (13 pilocytic astrocytoma, 18 medulloblastoma). Patients underwent neuronal imaging, examination for ataxia, fine motor and cognitive function, planning abilities, and executive function. Individual consolidated cerebellar lesions were drawn manually onto patients' individual MRI and normalized into Montreal Neurologic Institute (MNI) space for further analysis with voxel-based lesion symptom mapping. RESULTS Lesion symptom mapping linked deficits of motor function to the superior cerebellar peduncle (SCP), deep cerebellar nuclei (interposed nucleus (IN), fastigial nucleus (FN), ventromedial dentate nucleus (DN)), and inferior vermis (VIIIa, VIIIb, IX, X). Statistical maps of deficits of intelligence and executive function mapped with minor variations to the same cerebellar structures. CONCLUSION We identified lesions to the SCP next to deep cerebellar nuclei as critical for limiting both motor and cognitive function in pediatric cerebellar tumor survivors. Future strategies safeguarding motor and cognitive function will have to identify patients preoperatively at risk for damage to these critical structures and adapt multimodal therapeutic options accordingly.
Collapse
Affiliation(s)
- Frederik Grosse
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | | | - Ulrich-Wilhelm Thomale
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Neurosurgery, Berlin, Germany
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Berlin, Germany.
| |
Collapse
|
57
|
Perioperative Assessment of Cerebellar Masses and the Potential for Cerebellar Cognitive Affective Syndrome. World Neurosurg 2020; 144:222-230. [PMID: 32949806 DOI: 10.1016/j.wneu.2020.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022]
Abstract
The cerebellum was long perceived to be a region of limited importance with primary functions in the regulation of motor control. A degree of its functional topography in motor modulation has been traditionally appreciated. However, an evolving body of evidence supports its role in a range of cognitive processes, including executive decision making, language, emotional processing, and working memory. To this end, numerous studies of cerebellar stroke syndromes as well as investigations with functional magnetic resonance imaging and diffusion tensor imaging have given clinicians a better model of the functional topography within the cerebellum and the essential lanes of communication with the cerebrum. With this deeper understanding, neurosurgeons should integrate these domains into the perioperative evaluation and postoperative rehabilitation of patients with cerebellar tumors. This review aims to discuss these understandings and identify valuable tools for implementation into clinical practice.
Collapse
|
58
|
Hwang K, Bruss J, Tranel D, Boes AD. Network Localization of Executive Function Deficits in Patients with Focal Thalamic Lesions. J Cogn Neurosci 2020; 32:2303-2319. [PMID: 32902335 DOI: 10.1162/jocn_a_01628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.
Collapse
Affiliation(s)
- Kai Hwang
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Joel Bruss
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Daniel Tranel
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Aaron D Boes
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| |
Collapse
|
59
|
Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 2020; 9:e58613. [PMID: 32639229 PMCID: PMC7438114 DOI: 10.7554/elife.58613] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebellar vermis, long associated with axial motor control, has been implicated in a surprising range of neuropsychiatric disorders and cognitive and affective functions. Remarkably little is known, however, about the specific cell types and neural circuits responsible for these diverse functions. Here, using single-cell gene expression profiling and anatomical circuit analyses of vermis output neurons in the mouse fastigial (medial cerebellar) nucleus, we identify five major classes of glutamatergic projection neurons distinguished by gene expression, morphology, distribution, and input-output connectivity. Each fastigial cell type is connected with a specific set of Purkinje cells and inferior olive neurons and in turn innervates a distinct collection of downstream targets. Transsynaptic tracing indicates extensive disynaptic links with cognitive, affective, and motor forebrain circuits. These results indicate that diverse cerebellar vermis functions could be mediated by modular synaptic connections of distinct fastigial cell types with posturomotor, oromotor, positional-autonomic, orienting, and vigilance circuits.
Collapse
Affiliation(s)
- Hirofumi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Takashi Kodama
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Sascha du Lac
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neurology, Johns Hopkins Medical InstituteBaltimoreUnited States
| |
Collapse
|
60
|
Helgers SOA, Al Krinawe Y, Alam M, Krauss JK, Schwabe K, Hermann EJ, Al-Afif S. Lesion of the Fastigial Nucleus in Juvenile Rats Deteriorates Rat Behavior in Adulthood, Accompanied by Altered Neuronal Activity in the Medial Prefrontal Cortex. Neuroscience 2020; 442:29-40. [PMID: 32621846 DOI: 10.1016/j.neuroscience.2020.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
The cerebellar cognitive affective syndrome may result from various cerebellar injuries. Although it is not exactly known which anatomical structures are involved, the fastigial nucleus has been thought to play a pivotal role according to recent studies. Here we investigate whether bilateral fastigial nucleus lesions in juvenile rats affect cognitive-associative and limbic related functions in adulthood. Furthermore, potential effects on the neuronal activity in the medial prefrontal cortex (mPFC) and local field coherence with the sensorimotor cortex (SMCtx) were evaluated. The fastigial nucleus was lesioned bilaterally by thermocoagulation via stereotaxically inserted electrodes in 23-day old male Sprague Dawley rats. Naïve and sham-lesioned rats (electrodes inserted above the nucleus and no electrical current applied) served as controls. As adults, all groups were tested for cognitive-associative function, social behavior, and anxiety. Thereafter, electrophysiological recordings were obtained under urethane anesthesia. Finally, lesions and recording sites were histologically verified. Spatial learning in a radial maze test and learning in an operant learning paradigm was disturbed in rats with fastigial lesions. Furthermore, in the elevated plus maze anxiety was enhanced, whereas social behavior was not affected. Electrophysiological recordings showed enhanced local field coherence between mPFC and SMCtx across all frequency bands. Impaired cognitive and affective functions together with enhanced coherence between mPFC and SMCtx after bilateral fastigial nucleus lesions indicate that the fastigial nucleus contribute to the development of the cerebellar cognitive affective syndrome and associated motor behavior.
Collapse
Affiliation(s)
- Simeon O A Helgers
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany; DFG Cluster of Excellence, Hearing4all, Germany
| | - Yazeed Al Krinawe
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany; DFG Cluster of Excellence, Hearing4all, Germany
| | - Elvis J Hermann
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Shadi Al-Afif
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany.
| |
Collapse
|
61
|
Schmahmann JD. Neuroanatomy of pediatric postoperative cerebellar cognitive affective syndrome and mutism. Neurology 2019; 93:693-694. [PMID: 31527286 DOI: 10.1212/wnl.0000000000008311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeremy D Schmahmann
- From the Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|