51
|
Wang X, Lyu J, Meng Z, Wu X, Chen W, Wang G, Niu Q, Li X, Bian Y, Han D, Guo W, Yang S, Bian X, Lan Y, Wang L, Duan Q, Zhang T, Duan C, Tian C, Chen L, Lou X. Small vessel disease burden predicts functional outcomes in patients with acute ischemic stroke using machine learning. CNS Neurosci Ther 2023; 29:1024-1033. [PMID: 36650639 PMCID: PMC10018092 DOI: 10.1111/cns.14071] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Our purpose is to assess the role of cerebral small vessel disease (SVD) in prediction models in patients with different subtypes of acute ischemic stroke (AIS). METHODS We enrolled 398 small-vessel occlusion (SVO) and 175 large artery atherosclerosis (LAA) AIS patients. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days. MRI was performed to assess white matter hyperintensity (WMH), perivascular space (PVS), lacune, and cerebral microbleed (CMB). Logistic regression (LR) and machine learning (ML) were used to develop predictive models to assess the influences of SVD on the prognosis. RESULTS In the feature evaluation of SVO-AIS for different outcomes, the modified total SVD score (Gain: 0.38, 0.28) has the maximum weight, and periventricular WMH (Gain: 0.07, 0.09) was more important than deep WMH (Gain: 0.01, 0.01) in prognosis. In SVO-AIS, SVD performed better than regular clinical data, which is the opposite of LAA-AIS. Among all models, eXtreme gradient boosting (XGBoost) method with optimal index (OI) has the best performance to predict excellent outcome in SVO-AIS. [0.91 (0.84-0.97)]. CONCLUSIONS Our results revealed that different SVD markers had distinct prognostic weights in AIS patients, and SVD burden alone may accurately predict the SVO-AIS patients' prognosis.
Collapse
Affiliation(s)
- Xueyang Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jinhao Lyu
- Medical School of Chinese PLA, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Zhihua Meng
- Department of Radiology, Yuebei People's Hospital, Guangdong, China
| | - Xiaoyan Wu
- Department of Radiology, Anshan Changda Hospital, Liaoning, China
| | - Wen Chen
- Department of Radiology, Shiyan Taihe Hospital, Hubei, China
| | - Guohua Wang
- Department of Radiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Qingliang Niu
- Department of Radiology, WeiFang Traditional Chinese Hospital, Shandong, China
| | - Xin Li
- Department of Radiology, The Second Hospital of Jilin university, Jilin, China
| | - Yitong Bian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Dan Han
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Weiting Guo
- Department of Radiology, Shanxi Provincial People's Hospital, Shanxi, China
| | - Shuai Yang
- Department of Radiology, Xiangya Hospital Central South University, Hunan, China
| | - Xiangbing Bian
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yina Lan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Liuxian Wang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Qi Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Tingyang Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Chenglin Tian
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ling Chen
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Medical School of Chinese PLA, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
52
|
Wang L, Lin H, Zhao Z, Chen L, Wu L, Liu T, Li J, Huang CC, Peng Y, Lo CYZ, Gao X. Sex disparity of cerebral white matter hyperintensity in the hypertensive elderly: The Shanghai Changfeng study. Hum Brain Mapp 2023; 44:2099-2108. [PMID: 36583389 PMCID: PMC9980881 DOI: 10.1002/hbm.26196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
White matter hyperintensity (WMH) is associated with vascular hemodynamic alterations and reflects white matter injury. To date, the sex difference of tract-specific WMH and the relationship between high blood pressure (BP) and tract-specific WMH remain unclear. We recruited 515 subjects from the Shanghai Changfeng study (range 53-89 years, mean age 67.33 years). Systolic and diastolic blood pressure (SBP and DBP) were collected and used to calculate pulse pressure (PP). Magnetic resonance T1 and T2 FLAIR images were acquired to measure WMH and calculate WMH index. The ANCOVA test was performed to test the difference between sexes, and the linear regression model was used to examine the associations between BP and WMH index. Men showed higher WMH index than women in all white matter tracts (p < .001, respectively) except for the bilateral superior longitudinal fasciculus (SLF) and its left temporal part (tSLF). High SBP and PP was associated with a lower WMH index on the left corticospinal tract (CST), SLF, tSLF and right cingulum in hippocampus (p ≤ .001, respectively) in women, while high DBP was associated with a higher WMH index on the bilateral CST (left p < .001; right p = .001), left inferior longitudinal fasciculus (p < .001) and inferior fronto-occipital fasciculus (p = .002) in men. Men tend to have more WMH compared to women. A high SBP/PP relates to a lower WMH burden in women. This suggests that women could benefit from higher blood pressure in older age.
Collapse
Affiliation(s)
- Liangqi Wang
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Zehua Zhao
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Ting Liu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chu-Chung Huang
- School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Yifeng Peng
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
53
|
Okar SV, Hu F, Shinohara RT, Beck ES, Reich DS, Ineichen BV. The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis. Front Neurosci 2023; 17:1038011. [PMID: 37065926 PMCID: PMC10098201 DOI: 10.3389/fnins.2023.1038011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
ObjectivesPerivascular spaces have been involved in neuroinflammatory and neurodegenerative diseases. Upon a certain size, these spaces can become visible on magnetic resonance imaging (MRI), referred to as enlarged perivascular spaces (EPVS) or MRI-visible perivascular spaces (MVPVS). However, the lack of systematic evidence on etiology and temporal dynamics of MVPVS hampers their diagnostic utility as MRI biomarker. Thus, the goal of this systematic review was to summarize potential etiologies and evolution of MVPVS.MethodsIn a comprehensive literature search, out of 1,488 unique publications, 140 records assessing etiopathogenesis and dynamics of MVPVS were eligible for a qualitative summary. 6 records were included in a meta-analysis to assess the association between MVPVS and brain atrophy.ResultsFour overarching and partly overlapping etiologies of MVPVS have been proposed: (1) Impairment of interstitial fluid circulation, (2) Spiral elongation of arteries, (3) Brain atrophy and/or perivascular myelin loss, and (4) Immune cell accumulation in the perivascular space. The meta-analysis in patients with neuroinflammatory diseases did not support an association between MVPVS and brain volume measures [R: −0.15 (95%-CI −0.40–0.11)]. Based on few and mostly small studies in tumefactive MVPVS and in vascular and neuroinflammatory diseases, temporal evolution of MVPVS is slow.ConclusionCollectively, this study provides high-grade evidence for MVPVS etiopathogenesis and temporal dynamics. Although several potential etiologies for MVPVS emergence have been proposed, they are only partially supported by data. Advanced MRI methods should be employed to further dissect etiopathogenesis and evolution of MVPVS. This can benefit their implementation as an imaging biomarker.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=346564, identifier CRD42022346564.
Collapse
Affiliation(s)
- Serhat V. Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin V. Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- *Correspondence: Benjamin V. Ineichen, , ; orcid.org/0000-0003-1362-4819
| |
Collapse
|
54
|
Wang C, Reid G, Mackay CE, Hayes G, Bulte DP, Suri S. A Systematic Review of the Association Between Dementia Risk Factors and Cerebrovascular Reactivity. Neurosci Biobehav Rev 2023; 148:105140. [PMID: 36944391 DOI: 10.1016/j.neubiorev.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain- behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia.
Collapse
Affiliation(s)
- Congxiyu Wang
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Graham Reid
- Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Genevieve Hayes
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Daniel P Bulte
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| |
Collapse
|
55
|
Abstract
Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia. We describe diagnostic challenges, particularly in the context of mixed pathologies and the absence of highly effective biomarkers for CSVD-related dementia. We review evidence regarding CSVD as a risk factor for developing neurodegenerative disease and potential mechanisms by which CSVD leads to progressive brain injury. Finally, we summarize recent studies on the effects of major classes of cardiovascular medicines relevant to CSVD-related cognitive impairment. Although many key questions remain, the increased attention to CSVD has resulted in a sharper vision for what will be needed to meet the upcoming challenges imposed by this disease.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Neurology Service, VA Bronx Healthcare System, Bronx, NY
| | - Michael M. Wang
- Departments of Neurology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | | |
Collapse
|
56
|
Reiländer A, Pilatus U, Schüre JR, Shrestha M, Deichmann R, Nöth U, Hattingen E, Gracien RM, Wagner M, Seiler A. Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100162. [PMID: 36851996 PMCID: PMC9957754 DOI: 10.1016/j.cccb.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). MATERIALS AND METHODS 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 ' = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. RESULTS Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). CONCLUSIONS This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.
Collapse
Key Words
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- CMRO2, Cerebral metabolic rate of oxygen
- Cellular energy metabolism
- DTI, diffusion tensor imaging
- GE, gradient echo
- Hb, hemoglobin
- ICA, internal carotid artery
- MR spectroscopy
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- MRSI, magnetic resonance spectroscopic imaging
- Microstructural impairment
- NAWM, normal-appearing white matter
- OEF, oxygen extraction fraction
- Oxygen extraction fraction
- PI, Pulsatility index
- RF, radio frequency
- SVD, cerebral small vessel disease
- Small vessel disease
- TR, repetition time
- WM, white matter
- WMH, white matter hyperintensities
- pHi, intracellular pH
- quantitative MRI
Collapse
Affiliation(s)
- Annemarie Reiländer
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Jan-Rüdiger Schüre
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Manoj Shrestha
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| |
Collapse
|
57
|
Sleight E, Stringer MS, Mitchell I, Murphy M, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular reactivity measurements using 3T BOLD MRI and a fixed inhaled CO 2 gas challenge: Repeatability and impact of processing strategy. Front Physiol 2023; 14:1070233. [PMID: 36814481 PMCID: PMC9939770 DOI: 10.3389/fphys.2023.1070233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Cerebrovascular reactivity (CVR) measurements using blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) are commonly used to assess the health of cerebral blood vessels, including in patients with cerebrovascular diseases; however, evidence and consensus regarding reliability and optimal processing are lacking. We aimed to assess the repeatability, accuracy and precision of voxel- and region-based CVR measurements at 3 T using a fixed inhaled (FI) CO2 stimulus in a healthy cohort. Methods: We simulated the effect of noise, delay constraints and voxel- versus region-based analysis on CVR parameters. Results were verified in 15 healthy volunteers (28.1±5.5 years, female: 53%) with a test-retest MRI experiment consisting of two CVR scans. CVR magnitude and delay in grey matter (GM) and white matter were computed for both analyses assuming a linear relationship between the BOLD signal and time-shifted end-tidal CO2 (EtCO2) profile. Results: Test-retest repeatability was high [mean (95% CI) inter-scan difference: -0.01 (-0.03, -0.00) %/mmHg for GM CVR magnitude; -0.3 (-1.2,0.6) s for GM CVR delay], but we detected a small systematic reduction in CVR magnitude at scan 2 versus scan 1, accompanied by a greater EtCO2 change [±1.0 (0.4,1.5) mmHg] and lower heart rate [-5.5 (-8.6,-2.4] bpm]. CVR magnitude estimates were higher for voxel- versus region-based analysis [difference in GM: ±0.02 (0.01,0.03) %/mmHg]. Findings were supported by simulation results, predicting a positive bias for voxel-based CVR estimates dependent on temporal contrast-to-noise ratio and delay fitting constraints and an underestimation for region-based CVR estimates. Discussion: BOLD CVR measurements using FI stimulus have good within-day repeatability in healthy volunteers. However, measurements may be influenced by physiological effects and the analysis protocol. Voxel-based analyses should be undertaken with care due to potential for systematic bias; region-based analyses are more reliable in such cases.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Isla Mitchell
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Madeleine Murphy
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom,Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom,Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Michael J. Thrippleton,
| |
Collapse
|
58
|
Wiseman SJ, Zhang JF, Gray C, Hamid C, Valdés Hernández MDC, Ballerini L, Thrippleton MJ, Manning C, Stringer M, Sleight E, Muñoz Maniega S, Morgan A, Cheng Y, Arteaga C, Jaime Garcia D, Clancy U, Doubal FN, Dhillon B, MacGillivray T, Wu YC, Wardlaw JM. Retinal capillary microvessel morphology changes are associated with vascular damage and dysfunction in cerebral small vessel disease. J Cereb Blood Flow Metab 2023; 43:231-240. [PMID: 36300327 PMCID: PMC9903216 DOI: 10.1177/0271678x221135658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023]
Abstract
Cerebral small vessel disease (SVD) is a cause of stroke and dementia. Retinal capillary microvessels revealed by optical coherence tomography angiography (OCTA) are developmentally related to brain microvessels. We quantified retinal vessel density (VD) and branching complexity, investigating relationships with SVD lesions, white matter integrity on diffusion tensor imaging (DTI) and cerebrovascular reactivity (CVR) to CO2 in patients with minor stroke. We enrolled 123 patients (mean age 68.1 ± SD 9.9 years), 115 contributed retinal data. Right (R) and left (L) eyes are reported. After adjusting for age, eye disease, diabetes, blood pressure and image quality, lower VD remained associated with higher mean diffusivity (MD) (standardized β; R -0.16 [95%CI -0.32 to -0.01]) and lower CVR (L 0.17 [0.03 to 0.31] and R 0.19 [0.02 to 0.36]) in normal appearing white matter (NAWM). Sparser branching remained associated with sub-visible white matter damage shown by higher MD (R -0.24 [-0.08 to -0.40]), lower fractional anisotropy (FA) (L 0.17 [0.01 to 0.33]), and lower CVR (R 0.20 [0.02 to 0.38]) in NAWM. OCTA-derived metrics provide evidence of microvessel abnormalities that may underpin SVD lesions in the brain.
Collapse
Affiliation(s)
- Stewart J Wiseman
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| | - Jun-Fang Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai, China
| | - Calum Gray
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| | - Charlene Hamid
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| | - Maria del C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| | - Cameron Manning
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| | - Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
| | | | - Alasdair Morgan
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Yajun Cheng
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- Department of Neurology, West China Hospital, Sichuan
University, Chengdu, China
| | - Carmen Arteaga
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Dany Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Una Clancy
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- NHS Lothian Princess Alexandra Eye Pavilion, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai, China
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh,
Edinburgh, UK
- Edinburgh Imaging Facilities, Edinburgh Imaging, University of
Edinburgh, UK
| |
Collapse
|
59
|
van Dinther M, Bennett J, Thornton GD, Voorter PH, Ezponda Casajús A, Hughes A, Captur G, Holtackers RJ, Staals J, Backes WH, Bastarika G, Jones EA, González A, van Oostenbrugge RJ, Treibel TA. Evaluation of Microvascular Rarefaction in Vascular Cognitive Impairment and Heart Failure (CRUCIAL): Study Protocol for an Observational Study. Cerebrovasc Dis Extra 2023; 13:18-32. [PMID: 36646051 PMCID: PMC9939919 DOI: 10.1159/000529067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Microvascular rarefaction, the functional reduction in perfused microvessels and structural reduction of microvascular density, seems to be an important mechanism in the pathophysiology of small blood vessel-related disorders including vascular cognitive impairment (VCI) due to cerebral small vessel disease and heart failure with preserved ejection fraction (HFpEF). Both diseases share common risk factors including hypertension, diabetes mellitus, obesity, and ageing; in turn, these comorbidities are associated with microvascular rarefaction. Our consortium aims to investigate novel non-invasive tools to quantify microvascular health and rarefaction in both organs, as well as surrogate biomarkers for cerebral and/or cardiac rarefaction (via sublingual capillary health, vascular density of the retina, and RNA content of circulating extracellular vesicles), and to determine whether microvascular density relates to disease severity. METHODS The clinical research program of CRUCIAL consists of four observational cohort studies. We aim to recruit 75 VCI patients, 60 HFpEF patients, 60 patients with severe aortic stenosis (AS) undergoing surgical aortic valve replacement as a pressure overload HFpEF model, and 200 elderly participants with mixed comorbidities to serve as controls. Data collected will include medical history, physical examination, cognitive testing, advanced brain and cardiac MRI, ECG, echocardiography, sublingual capillary health, optical coherence tomography angiography (OCTa), extracellular vesicles RNA analysis, and myocardial remodelling-related serum biomarkers. The AS cohort undergoing surgery will also have myocardial biopsy for histological microvascular assessment. DISCUSSION CRUCIAL will examine the pathophysiological role of microvascular rarefaction in VCI and HFpEF using advanced brain and cardiac MRI techniques. Furthermore, we will investigate surrogate biomarkers for non-invasive, faster, easier, and cheaper assessment of microvascular density since these are more likely to be disseminated into widespread clinical practice. If microvascular rarefaction is an early marker of developing small vessel diseases, then measuring rarefaction may allow preclinical diagnosis, with implications for screening, risk stratification, and prevention. Further knowledge of the relevance of microvascular rarefaction and its underlying mechanisms may provide new avenues for research and therapeutic targets.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jonathan Bennett
- Institute of Cardiovascular Science, University College London, London, UK
| | - George D. Thornton
- Institute of Cardiovascular Science, University College London, London, UK
| | - Paulien H.M. Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Alun Hughes
- Institute of Cardiovascular Science, University College London, London, UK
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London, UK
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Robert J. Holtackers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - CRUCIAL Consortium Clinical Members
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Walter H. Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gorka Bastarika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Arantxa González
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Robert J. van Oostenbrugge
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | | |
Collapse
|
60
|
Fu X, Zhang W, Li X, Liu H, Zhang Y, Gao Q. Critical closing pressure as a new hemodynamic marker of cerebral small vessel diseases burden. Front Neurol 2023; 14:1091075. [PMID: 37025201 PMCID: PMC10071665 DOI: 10.3389/fneur.2023.1091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To investigate cerebrovascular hemodynamics, including critical closing pressure (CrCP) and pulsatility index (PI), and their independent relationship with cerebral small vessel disease (CSVD) burden in patients with small-vessel occlusion (SVO). Methods We recruited consecutive patients with SVO of acute cerebral infarction who underwent brain magnetic resonance imaging (MRI), transcranial Doppler (TCD) and CrCP during admission. Cerebrovascular hemodynamics were assessed using TCD. We used the CSVD score to rate the total MRI burden of CSVD. Multiple regression analysis was used to determine parameters related to CSVD burden or CrCP. Results Ninety-seven of 120 patients (mean age, 64.51 ± 9.99 years; 76% male) completed the full evaluations in this study. We observed that CrCP was an independent determinant of CSVD burden in four models [odds ratio, 1.41; 95% confidence interval (CI), 1.17-1.71; P < 0.001] and correlated with CSVD burden [β (95% CI): 0.05 (0.04-0.06); P < 0.001]. In ROC analysis, CrCP was considered as a predictor of CSVD burden, and AUC was 86.2% (95% CI, 78.6-93.9%; P < 0.001). Multiple linear regression analysis showed that CrCP was significantly correlated with age [β (95% CI): 0.27 (0.06 to 0.47); P = 0.012], BMI [β (95% CI): 0.61 (0.00-1.22)] and systolic BP [β (95% CI): 0.16 (0.09-0.23); P < 0.001]. Conclusions CrCP representing cerebrovascular tension is an independent determinant and predictor of CSVD burden. It was significantly correlated with age, BMI and systolic blood pressure. These results provide new insights in the mechanism of CSVD development.
Collapse
Affiliation(s)
- Xian Fu
- Department of Neurology, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
- Xian Fu
| | - Weijin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianliang Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongying Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingchun Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qingchun Gao
| |
Collapse
|
61
|
Abstract
Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia. This review summarizes recent developments in advanced neuroimaging of cSVD with a focus on clinical and research applications. In the first section, we highlight how advanced structural imaging techniques, including diffusion magnetic resonance imaging (MRI), enable improved detection of tissue damage, including characterization of tissue appearing normal on conventional MRI. These techniques enable progression to be monitored and may be useful as surrogate endpoint in clinical trials. Quantitative MRI, including iron and myelin imaging, provides insights into tissue composition on the molecular level. In the second section, we cover how advanced MRI techniques can demonstrate functional or dynamic abnormalities of the blood vessels, which could be targeted in mechanistic research and early-stage intervention trials. Such techniques include the use of dynamic contrast enhanced MRI to measure blood-brain barrier permeability, and MRI methods to assess cerebrovascular reactivity. In the third section, we discuss how the increased spatial resolution provided by ultrahigh field MRI at 7 T allows imaging of perforating arteries, and flow velocity and pulsatility within them. The advanced MRI techniques we describe are providing novel pathophysiological insights in cSVD and allow improved quantification of disease burden and progression. They have application in clinical trials, both in assessing novel therapeutic mechanisms, and as a sensitive endpoint to assess efficacy of interventions on parenchymal tissue damage. We also discuss challenges of these advanced techniques and suggest future directions for research.
Collapse
Affiliation(s)
- Hilde van den Brink
- Department of Neurology and
Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University,
Utrecht, The Netherlands
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, UK
Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG)
and qbig, Department of Biomedical Engineering, University of Basel, Basel,
Switzerland,Marco Duering, Medical Image Analysis
Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of
Basel, Marktgasse 8, Basel, CH-4051, Switzerland.
; @MarcoDuering
| |
Collapse
|
62
|
Lun T, Wang D, Li L, Zhou J, Zhao Y, Chen Y, Yin X, Ou S, Yu J, Song R. Low-dissipation optimization of the prefrontal cortex in the -12° head-down tilt position: A functional near-infrared spectroscopy study. Front Psychol 2022; 13:1051256. [PMID: 36619014 PMCID: PMC9815614 DOI: 10.3389/fpsyg.2022.1051256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Our present study set out to investigate the instant state of the prefrontal cortex (PFC) in healthy subjects before and after placement in the -12°head-down tilt (HDT) position in order to explore the mechanism behind the low-dissipation optimization state of the PFC. METHODS 40 young, right-handed healthy subjects (male: female = 20: 20) were enrolled in this study. Three resting state positions, 0°initial position, -12°HDT position, and 0°rest position were sequentially tested, each for 10 minutes. A continuous-wave functional near-infrared spectroscopy (fNIRS) instrument was used to assess the resting state hemodynamic data of the PFC. After preprocessing the hemodynamics data, we evaluated changes in resting-state functional connectivity (rsFC) level and beta values of PFC. The subjective visual analogue scale (VAS) was applied before and after the experiment. The presence of sleep changes or adverse reactions were also recorded. RESULTS Pairwise comparisons of the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (HbR), and hemoglobin (HbT) revealed significant differences in the aforementioned positions. Specifically, the average rsFC of PFC showed a gradual increase throughout the whole process. In addition, based on graph theory, the topological properties of brain network, such as small-world network and nodal degree centrality were analyzed. The results show that global efficiency and small-world sigma (σ) value were differences between 0°initial and 0°rest. DISCUSSION In this study, placement in the -12°HDT had a significant effect on PFC function, mainly manifested as self-inhibition, decreased concentration of HbO in the PFC, and improved rsFC, which may provide ideas to the understanding and explanation of neurological diseases.
Collapse
Affiliation(s)
- Tingting Lun
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dexin Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- College of TCM health care, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Junliang Zhou
- Department of Traditional Chinese Medicine, Nanhai District Maternal and Child Health Hospital, Foshan, China
| | - Yunxuan Zhao
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuecai Chen
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuntao Yin
- Department of Radiology, Guangzhou women and children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanxing Ou
- Department of Radiology, Southern Theater Command Hospital of PLA, Guangzhou, China
| | - Jin Yu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
63
|
Yan H, Chen H, Liu Y, Zhang Q, Guo Y, Fu Y, Ren H, Wang H, Wang C, Ge Y. Assessment of cognitive impairment after acute cerebral infarction with T1 relaxation time measured by MP2RAGE sequence and cerebral hemodynamic by transcranial Doppler. Front Neurol 2022; 13:1056423. [PMID: 36561306 PMCID: PMC9763460 DOI: 10.3389/fneur.2022.1056423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to investigate early brain microstructural changes discovered using magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) sequence and cerebral hemodynamic using TCD for cognitive impairment after acute cerebral infarction. Methods We enrolled 43 patients with acute cerebral infarction and 21 healthy people in the study, who were subjected to cognitive assessments, the MP2RAGE sequence, and a cerebral hemodynamic examination. A total of 26 brain regions of interest were investigated. Furthermore, we used cerebral hemodynamics to explain brain microstructural changes, which helped us better understand the pathophysiology of cognitive impairment after acute cerebral infarction and guide treatment. Results T1 relaxation times in the left frontal lobe, right frontal lobe, right temporal lobe, left precuneus, left thalamus, right hippocampus, right head of caudate nucleus, and splenium of corpus callosum were substantially different across the three groups, which were significantly correlated with neuropsychological test scores. CI group patients had significantly lower cerebral blood flow velocity than those in the N-CI and Normal groups. The receiver operating curve analysis revealed that most T1 relaxation times had high sensitivity and specificity, especially on the right temporal lobe and right frontal lobe. There was a potential correlation between T1 relaxation times and MMSE scores through TCD parameters. Conclusion The MP2RAGE sequence can detect alterations in whole brain microstructure in patients with cognitive impairment after acute cerebral infarction. Brain microstructural changes could influence cognitive function through cerebral hemodynamics. T1 relaxation times on the right temporal lobe and the right frontal lobe are expected to be a prospective biomarker of cognitive impairment after acute cerebral infarction.
Collapse
Affiliation(s)
- Hongting Yan
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Honghai Chen
- The Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanzhi Liu
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiannan Zhang
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunchu Guo
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu Fu
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongling Ren
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hairong Wang
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chun Wang
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yusong Ge
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
64
|
Kapoor A, Yew B, Jang JY, Dutt S, Li Y, Alitin JPM, Gaubert A, Ho JK, Blanken AE, Sible IJ, Marshall A, Shao X, Mather M, Wang DJJ, Nation DA. Older adults with perivascular spaces exhibit cerebrovascular reactivity deficits. Neuroimage 2022; 264:119746. [PMID: 36370956 PMCID: PMC10033456 DOI: 10.1016/j.neuroimage.2022.119746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perivascular spaces on brain magnetic resonance imaging (MRI) may indicate poor fluid drainage in the brain and have been associated with numerous neurological conditions. Cerebrovascular reactivity (CVR) is a marker of cerebrovascular function and represents the ability of cerebral blood vessels to regulate cerebral blood flow in response to vasodilatory or vasoconstrictive stimuli. We aimed to examine whether pathological widening of the perivascular space in older adults may be associated with deficits in CVR. METHODS Independently living older adults free of dementia or clinical stroke were recruited from the community and underwent brain MRI. Pseudo-continuous arterial spin labeling MRI quantified whole brain cerebral perfusion at rest and during CVR to hypercapnia and hypocapnia induced by visually guided breathing exercises. Perivascular spaces were visually scored using existing scales. RESULTS Thirty-seven independently living older adults (mean age = 66.3 years; SD = 6.8; age range 55-84 years; 29.7% male) were included in the current analysis. Multiple linear regression analysis revealed a significant negative association between burden of perivascular spaces and global CVR to hypercapnia (B = -2.0, 95% CI (-3.6, -0.4), p = .015), adjusting for age and sex. Perivascular spaces were not related to CVR to hypocapnia. DISCUSSION Perivascular spaces are associated with deficits in cerebrovascular vasodilatory response, but not vasoconstrictive response. Enlargement of perivascular spaces could contribute to, or be influenced by, deficits in CVR. Additional longitudinal studies are warranted to improve our understanding of the relationship between cerebrovascular function and perivascular space enlargement.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - John Paul M Alitin
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Anna E Blanken
- San Francisco Veterans Affairs Health Care System & Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Xingfeng Shao
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Mara Mather
- Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
65
|
Cerebral blood flow and cardiovascular risk effects on resting brain regional homogeneity. Neuroimage 2022; 262:119555. [PMID: 35963506 PMCID: PMC10044499 DOI: 10.1016/j.neuroimage.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.
Collapse
|
66
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
67
|
Zhang Y, Zhang R, Wang S, Hong H, Jiaerken Y, Li K, Zeng Q, Luo X, Yu X, Zhang M, Huang P. Reduced coupling between the global blood-oxygen-level-dependent signal and cerebrospinal fluid inflow is associated with the severity of small vessel disease. Neuroimage Clin 2022; 36:103229. [PMID: 36252555 PMCID: PMC9668594 DOI: 10.1016/j.nicl.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Small vessel disease (SVD) is highly prevalent in the elderly and associated with an increased risk of dementia and stroke. SVD may have disturbed cerebrospinal fluid (CSF) flow, which can compromise waste clearance and accelerate disease progression. METHODS We retrospectively included 146 SVD patients from a prospectively collected dataset, with one- or two-year follow-up data in 61 patients. The coupling strength between the global blood-oxygen-level-dependent (gBOLD) signal and CSF inflow was used to reflect CSF dynamics. We performed regression analyses to investigate the association between the gBOLD-CSF coupling index and the severity of SVD and vascular risk factors. Longitudinal analysis was carried out to investigate causal relationships. RESULTS Patients with severe SVD had significantly decreased gBOLD-CSF coupling (β = -0.180, p = 0.032). Dilation of perivascular spaces in the basal ganglia area (β = -0.172, p = 0.033) and diabetes (β = -0.204, p = 0.014) were associated with reduced gBOLD-CSF coupling. In longitudinal analyses, diabetes was associated with faster decline in gBOLD-CSF coupling (β = 0.20, p = 0.039), while perivascular space (PVS) dilation in the centrum semiovale showed a opposite relationship (β = -0.20, p = 0.041). The gBOLD-CSF coupling could not predict SVD progression. CONCLUSION Altered CSF flow is associated with the severity of SVD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China; Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| |
Collapse
|
68
|
Barisano G, Lynch KM, Sibilia F, Lan H, Shih NC, Sepehrband F, Choupan J. Imaging perivascular space structure and function using brain MRI. Neuroimage 2022; 257:119329. [PMID: 35609770 PMCID: PMC9233116 DOI: 10.1016/j.neuroimage.2022.119329] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
In this article, we provide an overview of current neuroimaging methods for studying perivascular spaces (PVS) in humans using brain MRI. In recent years, an increasing number of studies highlighted the role of PVS in cerebrospinal/interstial fluid circulation and clearance of cerebral waste products and their association with neurological diseases. Novel strategies and techniques have been introduced to improve the quantification of PVS and to investigate their function and morphological features in physiological and pathological conditions. After a brief introduction on the anatomy and physiology of PVS, we examine the latest technological developments to quantitatively analyze the structure and function of PVS in humans with MRI. We describe the applications, advantages, and limitations of these methods, providing guidance and suggestions on the acquisition protocols and analysis techniques that can be applied to study PVS in vivo. Finally, we review the human neuroimaging studies on PVS across the normative lifespan and in the context of neurological disorders.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| | - Kirsten M Lynch
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Haoyu Lan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Nien-Chu Shih
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| |
Collapse
|
69
|
Huang K, Liu J, Yun W, Cao Y, Zhang M. The role of asymmetrical prominent veins sign in early neurological deterioration of acute ischemic stroke patients. Front Neurol 2022; 13:860824. [PMID: 36046632 PMCID: PMC9420992 DOI: 10.3389/fneur.2022.860824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background and purpose Asymmetrical prominent veins sign (APVS) often appears on susceptibility-weighted angiography (SWAN) images in patients with acute stroke. Early neurological deterioration (END) is highly correlated with survival prognosis in patients with ischemic stroke. This study sought to explore the relationship between APVS and END in patients with acute stroke. Methods The subjects retrospectively enrolled in this study were patients with acute ischemic stroke in the middle cerebral artery supply area. All patients underwent head MRI, including the SWAN sequence, within 7 days of stroke symptom onset. END was defined as clinical deterioration or recurrence within 72 h after ischemic stroke. The volume of infarction on diffusion-weighted imaging was measured. Univariate and multivariate analyses were used to analyze the relationship between APVS and END. Spearman correlation between APVS grades and infarct volume, white matter hyperintensity (WMH) volume, and offending vessel were also analyzed. Results A total of 157 patients with middle cerebral artery infarct between September 2018 and April 2020 were included in the study. APVS appeared on MRI in 84 of 157 patients, and 34 of 157 patients were diagnosed with END. In patients with END, the proportion of severe APVS was higher than in patients without END (P = 0.001, x2 = 14.659). Patients with END were older and had a larger volume of infarct and WMH than patients without END (all P < 0.05). After adjustments were made for related risk factors of END, the severity of APVS was still related to END (OR = 2.56, 95% CI, 1.38–4.75; P for trend = 0.003). Spearman correlation showed that APVS grades were positively related to infarct volume (r = 0.289, P < 0.001) and 3-month modified Rankin Scale score (r = 0.203, P = 0.011) and negatively related to offending vessels (r = −0.170, P = 0.034). Conclusion APVS may be an important predictor of END in patients with acute ischemic stroke.
Collapse
Affiliation(s)
| | - Jianfang Liu
- Department of Neurology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenwei Yun
- Department of Neurology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yin Cao
- Department of Neurology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
- Yin Cao
| | - Min Zhang
- Department of Neurology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
- *Correspondence: Min Zhang
| |
Collapse
|
70
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
71
|
Uniken Venema SM, Dankbaar JW, van der Lugt A, Dippel DWJ, van der Worp HB. Cerebral Collateral Circulation in the Era of Reperfusion Therapies for Acute Ischemic Stroke. Stroke 2022; 53:3222-3234. [PMID: 35938420 DOI: 10.1161/strokeaha.121.037869] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical outcomes of patients with acute ischemic stroke depend in part on the extent of their collateral circulation. A good collateral circulation has also been associated with greater benefit of intravenous thrombolysis and endovascular treatment. Treatment decisions for these reperfusion therapies are increasingly guided by a combination of clinical and imaging parameters, particularly in later time windows. Computed tomography and magnetic resonance imaging enable a rapid assessment of both the collateral extent and cerebral perfusion. Yet, the role of the collateral circulation in clinical decision-making is currently limited and may be underappreciated due to the use of rather coarse and rater-dependent grading methods. In this review, we discuss determinants of the collateral circulation in patients with acute ischemic stroke, report on commonly used and emerging neuroimaging techniques for assessing the collateral circulation, and discuss the therapeutic and prognostic implications of the collateral circulation in relation to reperfusion therapies for acute ischemic stroke.
Collapse
Affiliation(s)
- Simone M Uniken Venema
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, the Netherlands. (S.M.U.V., H.B.v.d.W.)
| | - Jan Willem Dankbaar
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands. (J.W.D.)
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center Rotterdam, the Netherlands. (A.v.d.L.)
| | - Diederik W J Dippel
- Department of Neurology, Erasmus Medical Center Rotterdam, the Netherlands. (D.W.J.D.)
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, the Netherlands. (S.M.U.V., H.B.v.d.W.)
| |
Collapse
|
72
|
Paschoal AM, Secchinatto KF, da Silva PHR, Zotin MCZ, Dos Santos AC, Viswanathan A, Pontes-Neto OM, Leoni RF. Contrast-agent-free state-of-the-art MRI on cerebral small vessel disease-part 1. ASL, IVIM, and CVR. NMR IN BIOMEDICINE 2022; 35:e4742. [PMID: 35429194 DOI: 10.1002/nbm.4742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Cerebral small vessel disease (cSVD), a common cause of stroke and dementia, is traditionally considered the small vessel equivalent of large artery occlusion or rupture that leads to cortical and subcortical brain damage. Microvessel endothelial dysfunction can also contribute to it. Brain imaging, including MRI, is useful to show the presence of lesions of several types, although the association between conventional MRI measures and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast-agent-free, state-of-the-art MRI techniques such as arterial spin labeling (ASL), diffusion tensor imaging, functional MRI, and intravoxel incoherent motion (IVIM) applied to cSVD in the existing literature. We performed a review following the PICO Worksheet and Search Strategy, including original papers in English, published between 2000 and 2022. For each MRI method, we extracted information about their contributions, in addition to those established with traditional MRI methods and related information about the origins, pathology, markers, and clinical outcomes in cSVD. This paper presents the first part of the review, which includes 37 studies focusing on ASL, IVIM, and cerebrovascular reactivity (CVR) measures. In general, they have shown that, in addition to white matter hyperintensities, alterations in other neuroimaging parameters such as blood flow and CVR also indicate the presence of cSVD. Such quantitative parameters were also related to cSVD risk factors. Therefore, they are promising, noninvasive tools to explore questions that have not yet been clarified about this clinical condition. However, protocol standardization is essential to increase their clinical use.
Collapse
Affiliation(s)
- André Monteiro Paschoal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Maria Clara Zanon Zotin
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Octavio M Pontes-Neto
- Department of Neurosciences and Behavioral Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Ferranti Leoni
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
73
|
da Silva PHR, Paschoal AM, Secchinatto KF, Zotin MCZ, Dos Santos AC, Viswanathan A, Pontes-Neto OM, Leoni RF. Contrast agent-free state-of-the-art magnetic resonance imaging on cerebral small vessel disease - Part 2: Diffusion tensor imaging and functional magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4743. [PMID: 35429070 DOI: 10.1002/nbm.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Cerebral small vessel disease (cSVD) has been widely studied using conventional magnetic resonance imaging (MRI) methods, although the association between MRI findings and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast agent-free, state-of-the-art MRI techniques, particularly diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), to understand brain damage and structural and functional connectivity impairment related to cSVD. We performed a review following the PICOS worksheet and Search Strategy, including 152 original papers in English, published from 2000 to 2022. For each MRI method, we extracted information about their contributions regarding the origins, pathology, markers, and clinical outcomes in cSVD. In general, DTI studies have shown that changes in mean, radial, and axial diffusivity measures are related to the presence of cSVD. In addition to the classical deficit in executive functions and processing speed, fMRI studies indicate connectivity dysfunctions in other domains, such as sensorimotor, memory, and attention. Neuroimaging metrics have been correlated with the diagnosis, prognosis, and rehabilitation of patients with cSVD. In short, the application of contrast agent-free, state-of-the-art MRI techniques has provided a complete picture of cSVD markers and tools to explore questions that have not yet been clarified about this clinical condition. Longitudinal studies are desirable to look for causal relationships between image biomarkers and clinical outcomes.
Collapse
Affiliation(s)
| | - André Monteiro Paschoal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Clara Zanon Zotin
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anand Viswanathan
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Octavio M Pontes-Neto
- Department of Neurosciences and Behavioral Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Ferranti Leoni
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
74
|
Zhang R, Huang P, Wang S, Jiaerken Y, Hong H, Zhang Y, Yu X, Lou M, Zhang M. Decreased Cerebral Blood Flow and Delayed Arterial Transit Are Independently Associated With White Matter Hyperintensity. Front Aging Neurosci 2022; 14:762745. [PMID: 35711906 PMCID: PMC9197206 DOI: 10.3389/fnagi.2022.762745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
AimWhite matter hyperintensities (WMH) and lacunes were important features of cerebral small vessel disease (CSVD), which contributes to 25% of ischemic strokes and 45% of dementias. Currently, the underlying mechanisms of WMH and lacunes are not clear, and the role of hemodynamic changes is not fully investigated. In this study, we aimed to measure the cerebral blood flow (CBF) and arterial transit in CSVD patients and to investigate their association with WMH and lacunes.MethodsWe retrospectively analyzed the prospectively collected database of CSVD patients. Ninety-two CSVD patients with complete imaging data were included. We used arterial spin labeling (ASL) with post-labeling delay time (PLD) of 1,525 ms and 2,025 ms to measure CBF respectively, and the difference between CBFPLD1.5 and CBFPLD2.0 was recorded as δCBF. We performed regression analysis to understand the contribution of CBF, δCBF to CSVD imaging markers.ResultsWe found that CBF derived from both PLDs was associated with WMH volume and the presence of lacune. CBFPLD1.5 was significantly lower than CBFPLD2.0 in CSVD patients, and δCBF was correlated with WMH volume but not the presence of lacune. Furthermore, CBFPLD2.0 and δCBF were both associated with WMH in multiple regression analyses, suggesting an independent effect of delayed arterial transit. On an exploratory basis, we also investigated the relationship between venous disruption on δCBF, and we found that δCBF correlated with deep medullary veins score.ConclusionBoth CBF and arterial transit were associated with WMH. ASL with multiple PLDs could provide additional hemodynamic information to CSVD-related studies.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Hui Hong
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- *Correspondence: Minming Zhang
| |
Collapse
|
75
|
The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules 2022; 12:biom12060748. [PMID: 35740873 PMCID: PMC9221030 DOI: 10.3390/biom12060748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
There is a growing prevalence of vascular cognitive impairment (VCI) worldwide, and most research has suggested that cerebral small vessel disease (CSVD) is the main contributor to VCI. Several potential physiopathologic mechanisms have been proven to be involved in the process of CSVD, such as blood-brain barrier damage, small vessels stiffening, venous collagenosis, cerebral blood flow reduction, white matter rarefaction, chronic ischaemia, neuroinflammation, myelin damage, and subsequent neurodegeneration. However, there still is a limited overall understanding of the sequence and the relative importance of these mechanisms. The glymphatic system (GS) and meningeal lymphatic vessels (mLVs) are the analogs of the lymphatic system in the central nervous system (CNS). As such, these systems play critical roles in regulating cerebrospinal fluid (CSF) and interstitial fluid (ISF) transport, waste clearance, and, potentially, neuroinflammation. Accumulating evidence has suggested that the glymphatic and meningeal lymphatic vessels played vital roles in animal models of CSVD and patients with CSVD. Given the complexity of CSVD, it was significant to understand the underlying interaction between glymphatic and meningeal lymphatic transport with CSVD. Here, we provide a novel framework based on new advances in main four aspects, including vascular risk factors, potential mechanisms, clinical subtypes, and cognition, which aims to explain how the glymphatic system and meningeal lymphatic vessels contribute to the progression of CSVD and proposes a comprehensive insight into the novel therapeutic strategy of CSVD.
Collapse
|
76
|
Yu L, Hu X, Li H, Zhao Y. Perivascular Spaces, Glymphatic System and MR. Front Neurol 2022; 13:844938. [PMID: 35592469 PMCID: PMC9110928 DOI: 10.3389/fneur.2022.844938] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
The importance of the perivascular space (PVS) as one of the imaging markers of cerebral small vessel disease (CSVD) has been widely appreciated by the neuroradiologists. The PVS surrounds the small blood vessels in the brain and has a signal consistent with the cerebrospinal fluid (CSF) on MR. In a variety of physio-pathological statuses, the PVS may expand. The discovery of the cerebral glymphatic system has provided a revolutionary perspective to elucidate its pathophysiological mechanisms. Research on the function and pathogenesis of this system has become a prevalent topic among neuroradiologists. It is now believed that this system carries out the similar functions as the lymphatic system in other parts of the body and plays an important role in the removal of metabolic waste and the maintenance of homeostatic fluid circulation in the brain. In this article, we will briefly describe the composition of the cerebral glymphatic system, the influencing factors, the MR manifestations of the PVS and the related imaging technological advances. The aim of this research is to provide a reference for future clinical studies of the PVS and glymphatic system.
Collapse
Affiliation(s)
- Linya Yu
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haitao Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Haitao Li
| | - Yilei Zhao
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yilei Zhao
| |
Collapse
|
77
|
Mahammedi A, Wang LL, Williamson BJ, Khatri P, Kissela B, Sawyer RP, Shatz R, Khandwala V, Vagal A. Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know. AJNR Am J Neuroradiol 2022; 43:650-660. [PMID: 34620594 PMCID: PMC9089248 DOI: 10.3174/ajnr.a7302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 11/07/2022]
Abstract
Small vessel disease, a disorder of cerebral microvessels, is an expanding epidemic and a common cause of stroke and dementia. Despite being almost ubiquitous in brain imaging, the clinicoradiologic association of small vessel disease is weak, and the underlying pathogenesis is poorly understood. The STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria have standardized the nomenclature. These include white matter hyperintensities of presumed vascular origin, recent small subcortical infarcts, lacunes of presumed vascular origin, prominent perivascular spaces, cerebral microbleeds, superficial siderosis, cortical microinfarcts, and brain atrophy. Recently, the rigid categories among cognitive impairment, vascular dementia, stroke, and small vessel disease have become outdated, with a greater emphasis on brain health. Conventional and advanced small vessel disease imaging markers allow a comprehensive assessment of global brain heath. In this review, we discuss the pathophysiology of small vessel disease neuroimaging nomenclature by means of the STRIVE criteria, clinical implications, the role of advanced imaging, and future directions.
Collapse
Affiliation(s)
- A Mahammedi
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - L L Wang
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - B J Williamson
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - P Khatri
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - B Kissela
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - R P Sawyer
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - R Shatz
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - V Khandwala
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - A Vagal
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| |
Collapse
|
78
|
Abstract
Despite advances in acute management and prevention of cerebrovascular disease, stroke and vascular cognitive impairment together remain the world's leading cause of death and neurological disability. Hypertension and its consequences are associated with over 50% of ischemic and 70% of hemorrhagic strokes but despite good control of blood pressure (BP), there remains a 10% risk of recurrent cerebrovascular events, and there is no proven strategy to prevent vascular cognitive impairment. Hypertension evolves over the lifespan, from predominant sympathetically driven hypertension with elevated mean BP in early and mid-life to a late-life phenotype of increasing systolic and falling diastolic pressures, associated with increased arterial stiffness and aortic pulsatility. This pattern may partially explain both the increasing incidence of stroke in younger adults as well as late-onset, chronic cerebrovascular injury associated with concurrent systolic hypertension and historic mid-life diastolic hypertension. With increasing arterial stiffness and autonomic dysfunction, BP variability increases, independently predicting the risk of ischemic and intracerebral hemorrhage, and is potentially modifiable beyond control of mean BP. However, the interaction between hypertension and control of cerebral blood flow remains poorly understood. Cerebral small vessel disease is associated with increased pulsatility in large cerebral vessels and reduced reactivity to carbon dioxide, both of which are being targeted in early phase clinical trials. Cerebral arterial pulsatility is mainly dependent upon increased transmission of aortic pulsatility via stiff vessels to the brain, while cerebrovascular reactivity reflects endothelial dysfunction. In contrast, although cerebral autoregulation is critical to adapt cerebral tone to BP fluctuations to maintain cerebral blood flow, its role as a modifiable risk factor for cerebrovascular disease is uncertain. New insights into hypertension-associated cerebrovascular pathophysiology may provide key targets to prevent chronic cerebrovascular disease, acute events, and vascular cognitive impairment.
Collapse
Affiliation(s)
- Alastair J S Webb
- Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| |
Collapse
|
79
|
Zhao Y, Dang L, Tian X, Yang M, Lv M, Sun Q, Du Y. Association Between Intracranial Pulsatility and White Matter Hyperintensities in Asymptomatic Intracranial Arterial Stenosis: A Population-Based Study in Shandong, China. J Stroke Cerebrovasc Dis 2022; 31:106406. [PMID: 35248835 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The effects of increased intracranial pulsatility on the severity of white matter hyperintensities (WMH) in participants with asymptomatic intracranial arterial stenosis (aICAS) remain uncertain. We aimed to investigate whether an increased pulsatility index (PI) is associated with WMH volume (WMHV) in individuals with aICAS. MATERIALS AND METHODS All participants were recruited from the Kongcun Town aICAS Study, including a total of 103 participants with aICAS and 98 healthy controls (age- and sex-matched). PI was assessed using transcranial Doppler ultrasound. The WMHV was calculated through the lesion segmentation tool system for the Statistical Parametric Mapping package based on magnetic resonance imaging. The association between PI and lnWMHV was analyzed by linear regression models adjusting for demographics, lifestyle, and vascular risk factors. RESULTS The lnWMHV and PI between the aICAS and control groups showed no significant differences (P = 0.171 and 0.287, respectively). In a multivariable model, age ≥ 60 years and male sex (P = 0.000 and 0.006, respectively) were significant predictors of lnWMHV in the aICAS group. In sex-stratified analyses, there was a significant association between PI and lnWMHV in males with aICAS (P = 0.038). CONCLUSIONS This study suggest there might be a likely association between increased intracranial pulsatility and WMH burden in males with aICAS.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Dang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xue Tian
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Meilan Yang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Lv
- Department of Clinical Epidemiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
80
|
Jin L, Liu Y, Huang Q. Research progress in atrial fibrillation with cerebral small vessel disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:258-264. [PMID: 35545417 PMCID: PMC10930520 DOI: 10.11817/j.issn.1672-7347.2022.210540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/15/2023]
Abstract
Non-valvular atrial fibrillation is a common arrhythmia and a major risk factor for cardioembolic stroke. Small cerebral vascular disease is a syndrome of clinical, cognitive, imaging, and pathological manifestations caused by intracranial small vascular lesions. The imaging findings on cranial magnetic resonance usually shows recent subcortical small infarction, vascularised lacunae, white matter hypersignal, perivascular space enlargement, cerebral microhemorrhage, and brain atrophy. It is a major cause of neurological loss and cognitive function decline in the elderly. Current studies suggest that atrial fibrillation may increase the imaging load of cerebral small vessel disease through a series of mechanisms such as microembolization, hypoperfusion, inflammation, endothelial dysfunction, and lymphoid system dysfunction. The imaging of cerebral small vessel disease with atrial fibrillation has a potential relationship with cognitive function decline and is related to the occurrence and prognosis of stroke, even more has a potential role in suggesting the etiology and secondary prevention strategies of ischemic stroke.
Collapse
Affiliation(s)
- Ling Jin
- Department of Neurology, First People's Hospital of Changde City, Changde Hunan 415003.
| | - Yunhai Liu
- Hunan Cerebrovascular Disease Clinical Medical Research Center, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qing Huang
- Hunan Cerebrovascular Disease Clinical Medical Research Center, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
81
|
Wardlaw JM, Benveniste H, Williams A. Cerebral Vascular Dysfunctions Detected in Human Small Vessel Disease and Implications for Preclinical Studies. Annu Rev Physiol 2022; 84:409-434. [PMID: 34699267 DOI: 10.1146/annurev-physiol-060821-014521] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell-cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences; UK Dementia Research Institute; and Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom;
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
82
|
Rudilosso S, Rodríguez-Vázquez A, Urra X, Arboix A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int J Mol Sci 2022; 23:1497. [PMID: 35163423 PMCID: PMC8835925 DOI: 10.3390/ijms23031497] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Lacunar infarcts represent one of the most frequent subtypes of ischemic strokes and may represent the first recognizable manifestation of a progressive disease of the small perforating arteries, capillaries, and venules of the brain, defined as cerebral small vessel disease. The pathophysiological mechanisms leading to a perforating artery occlusion are multiple and still not completely defined, due to spatial resolution issues in neuroimaging, sparsity of pathological studies, and lack of valid experimental models. Recent advances in the endovascular treatment of large vessel occlusion may have diverted attention from the management of patients with small vessel occlusions, often excluded from clinical trials of acute therapy and secondary prevention. However, patients with a lacunar stroke benefit from early diagnosis, reperfusion therapy, and secondary prevention measures. In addition, there are new developments in the knowledge of this entity that suggest potential benefits of thrombolysis in an extended time window in selected patients, as well as novel therapeutic approaches targeting different pathophysiological mechanisms involved in small vessel disease. This review offers a comprehensive update in lacunar stroke pathophysiology and clinical perspective for managing lacunar strokes, in light of the latest insights from imaging and translational studies.
Collapse
Affiliation(s)
- Salvatore Rudilosso
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Alejandro Rodríguez-Vázquez
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Xabier Urra
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Adrià Arboix
- Cerebrovascular Division, Department of Neurology, Hospital Universitari del Sagrat Cor, Universitat de Barcelona, 08034 Barcelona, Spain
| |
Collapse
|
83
|
Wang X, Cui L, Ji X. Cognitive impairment caused by hypoxia: from clinical evidences to molecular mechanisms. Metab Brain Dis 2022; 37:51-66. [PMID: 34618295 DOI: 10.1007/s11011-021-00796-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a state of reduced oxygen supply and excessive oxygen consumption. According to the duration of hypoxic period, it can be classified as acute and chronic hypoxia. Both acute and chronic hypoxia could induce abundant neurological deficits. Although there have been significant advances in the pathophysiological injuries, few studies have focused on the cognitive dysfunction. In this review, we focused on the clinical evidences and molecular mechanisms of cognitive impairment under acute and chronic hypoxia. Hypoxia can impair several cognitive domains such as attention, learning and memory, procession speed and executive function, which are similar in acute and chronic hypoxia. The severity of cognitive deficit correlates with the duration and degree of hypoxia. Recovery can be achieved after acute hypoxia, while sequelae or even dementia can be observed after chronic hypoxia, perhaps due to the different molecular mechanisms. Cardiopulmonary compensatory response, glycolysis, oxidative stress, calcium overload, adenosine, mitochondrial disruption, inflammation and excitotoxicity contribute to the molecular mechanisms of cognitive deficit after acute hypoxia. During the chronic stage of hypoxia, different adaptive responses, impaired neurovascular coupling, apoptosis, transcription factors-mediated inflammation, as well as Aβ accumulation and tau phosphorylation account for the neurocognitive deficit. Moreover, brain structural changes with hippocampus and cortex atrophy, ventricle enlargement, senile plaque and neurofibrillary tangle deposition can be observed under chronic hypoxia rather than acute hypoxia.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, No 45, Changchun Street, Beijing, 100053, Xicheng District, China.
| |
Collapse
|
84
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
85
|
Powers W, An H, Oakes J, Eron J, Robertson K, Sen S. Autoregulation of White Matter Cerebral Blood Flow to Arterial Pressure Changes in Normal Subjects. JOURNAL OF NEUROLOGICAL DISORDERS & STROKE 2021; 8:1187. [PMID: 36108300 PMCID: PMC9447844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endothelial dysfunction causing impaired cerebrovascular vasodilatory capacity in response to reduced blood pressure has been proposed as a mechanism of white matter (WM) disease development. This study investigated autoregulation of CBF to blood pressure reduction in WM and gray matter (GM) in normal subjects recruited as controls for a study of cerebrovascular function in human immunodeficiency virus positive subjects. They underwent baseline CBF and oxygen extraction fraction measurement by MRI before and after mean arterial pressure (MAP) reduction. Autoregulatory Index (AI) was computed as CBF AI = -%CBF change/% MAP change. Thirty of 44 subjects achieved target MAP reduction. MAP was reduced -13.65 ± 2.35 (range 10 to 20) %. WM AI of -0.61 ± 1.23 was significantly more negative than GM AI of 0.02 ± 0.44 (paired t test, p= 0.016). WM CBF fell (paired Wilcoxon, p= 0.03) whereas GM CBF did not change (paired Wilcoxon, p=0.92). WM AI was different from 0 (p=0.011, one-sample t-test vs 0), whereas GM AI was not (p=0.913, one-sample t-test vs 0). These data demonstrate that maintenance of CBF to 10-20% reductions in MAP is less effective in WM than in GM. This may put WM at higher risk for ischemic damage.
Collapse
Affiliation(s)
- William Powers
- Department of Neurology, University of North Carolina, USA
| | - Hongyu An
- Department of Radiology, Washington University, USA
| | - Jonathan Oakes
- Department of Medicine, University of North Carolina, USA
| | - Joseph Eron
- Department of Medicine, University of North Carolina, USA
| | | | - Souvik Sen
- Department of Neurology, University of South Carolina, USA
| |
Collapse
|
86
|
Blair GW, Janssen E, Stringer MS, Thrippleton MJ, Chappell F, Shi Y, Hamilton I, Flaherty K, Appleton JP, Doubal FN, Bath PM, Wardlaw JM. Effects of Cilostazol and Isosorbide Mononitrate on Cerebral Hemodynamics in the LACI-1 Randomized Controlled Trial. Stroke 2021; 53:29-33. [PMID: 34847709 PMCID: PMC8700302 DOI: 10.1161/strokeaha.121.034866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is available in the text. Cerebral small vessel disease—a major cause of stroke and dementia—is associated with cerebrovascular dysfunction. We investigated whether short-term isosorbide mononitrate (ISMN) and cilostazol, alone or in combination, improved magnetic resonance imaging–measured cerebrovascular function in patients with lacunar ischemic stroke.
Collapse
Affiliation(s)
- Gordon W Blair
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Esther Janssen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands (E.J.)
| | - Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Michael J Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Francesca Chappell
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Yulu Shi
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Iona Hamilton
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Katie Flaherty
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, United Kingdom (K.F., J.P.A., P.M.B.)
| | - Jason P Appleton
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, United Kingdom (K.F., J.P.A., P.M.B.).,Stroke, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Mindelsohn Way, United Kingdom (J.P.A.)
| | - Fergus N Doubal
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, United Kingdom (K.F., J.P.A., P.M.B.).,Stroke, Queen's Medical Centre Campus, Nottingham University Hospitals NHS Trust, United Kingdom (P.M.B.)
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Institute Centre at the University of Edinburgh, United Kingdom (G.W.B., M.S.S., M.J.T., F.C., Y.S., I.H., F.N.D., J.M.W.)
| |
Collapse
|
87
|
Wang XY, Lyu JH, Zhang SH, Duan CH, Duan Q, Ma XX, Zhang TY, Zhang J, Tian CL, Lou X. Severity of Intracranial Large Artery Disease Correlates With Cerebral Small Vessel Disease. J Magn Reson Imaging 2021; 56:264-272. [PMID: 34797007 DOI: 10.1002/jmri.28004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Small vessel disease (SVD) shares common vascular risk factors with large artery disease (LAD). However, little is known about the relationship between intracranial artery stenosis and SVD burden. PURPOSE To investigate whether SVD burden correlates with severity of intracranial LAD. STUDY TYPE Retrospective. POPULATION Five hundred and sixteen patients with LAD of arterial circulation were enrolled from one hospital, including 384 males (59 ± 11 years) and 132 females (60 ± 12 years). FIELD STRENGTH/SEQUENCE 3 T. T1 -weighted fast spin echo (T1 W FSE), T2 W FSE, T2 fluid attenuated inversion recovery, diffusion-weighted imaging, susceptibility-weight imaging, and time-of-flight magnetic resonance angiography. ASSESSMENT The LAD was divided into mild stenosis (<30%), moderate stenosis (30%-69%), and severe stenosis (≥70%). The Standard for Reporting Vascular Changes on Neuroimaging criteria was used to rate the SVD burden according to the level of white matter hyperintensity (WMH), perivascular space (PVS), cerebral microbleed (CMB), and lacunes. STATISTICAL TESTS Lilliefors test, ANOVA, chi-squared test, Mann-Whitney U test, Wilcoxon signed rank test, Bonferroni test, Spearman's correlation, logistic regression, and Cohen's kappa test. RESULTS The grade scores for centrum semiovale PVS (CS-PVS) were positively correlated with the degree of stenosis (R = 0.413), whereas the presence of severe basal ganglia PVS (BG-PVS) was associated with CMB (R = 0.508), lacunes (R = 0.365), and severe WMH (R = 0.478). In multivariate analysis, severe CS-PVS (adjusted odds ratio [aOR], 3.1; 95% confidence interval [CI], 1.9-4.8) and lacunes (aOR, 2.1; 95% CI, 1.3-3.4) were associated with severe stenosis of LAD. In addition, CS-PVS was related to severe stenosis in a dose-dependent manner: when CS-PVS score was 3 and 4, the aORs of severe stenosis were 1.9 and 7.7, respectively. DATA CONCLUSION The severity of LAD in anterior circulation is associated with SVD burden, which suggests that different SVD burden may be used for risk stratification in LAD. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xue-Yang Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jin-Hao Lyu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | | | - Cao-Hui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Qi Duan
- Medical School of Chinese PLA, Beijing, China
| | - Xiao-Xiao Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Ting-Yang Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Cheng-Lin Tian
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
88
|
Cao J, Yao D, Li R, Guo X, Hao J, Xie M, Li J, Pan D, Luo X, Yu Z, Wang M, Wang W. Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurosci Bull 2021; 38:181-199. [PMID: 34704235 PMCID: PMC8821764 DOI: 10.1007/s12264-021-00772-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/04/2021] [Indexed: 02/03/2023] Open
Abstract
The glymphatic system plays a pivotal role in maintaining cerebral homeostasis. Chronic cerebral hypoperfusion, arising from small vessel disease or carotid stenosis, results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction. However, whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown. Here, we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis. We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glymphatic system function. The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization. Treatment of digoxin rescued changes in glymphatic transport, white matter structure, and cognitive function. Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury. Our research yields new insight into the relationship between hemodynamics, glymphatic transport, white matter injury, and cognitive changes after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Rong Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xuequn Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Respiratory Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
89
|
Carotid revascularization and cognitive impairment: the neglected role of cerebral small vessel disease. Neurol Sci 2021; 43:139-152. [PMID: 34596778 DOI: 10.1007/s10072-021-05629-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Carotid atherosclerosis is a pathological process that leads to narrowing of the vessel lumen and a consequent risk of stroke. Revascularization procedures such as carotid endarterectomy (CEA) and carotid stenting aim to reduce occurrence of stroke in selected patients. Due to the proven benefit and low intraoperative risk, CEA is currently the preferred choice in candidates for carotid revascularization. However, the risk of cognitive impairment subsequent to CEA has not been fully elucidated and is unclear whether certain conditions, such as frailty, may increase this risk. There is consistent evidence that shows that frail patients have higher risk of cognitive impairment after surgical procedure. Moreover, brain pre-existing conditions may play a role in cognitive impairment after CEA. Cerebral small vessel disease (SVD) is a pathology that involves microcirculation and is detectable with computed tomography or magnetic resonance. SVD shares common vascular risk factors with carotid atherosclerosis, is a major contributor to vascular cognitive impairment and vascular dementia, and has been proposed as a marker of brain frailty. In this review, we discuss the current evidence about the link between carotid revascularization and cognitive impairment and advance the hypothesis that SVD may play a relevant role in development of cognitive impairment after carotid revascularization.
Collapse
|
90
|
Derraz I, Abdelrady M, Gaillard N, Ahmed R, Cagnazzo F, Dargazanli C, Lefevre PH, Corti L, Riquelme C, Mourand I, Gascou G, Bonafe A, Arquizan C, Costalat V. White Matter Hyperintensity Burden and Collateral Circulation in Large Vessel Occlusion Stroke. Stroke 2021; 52:3848-3854. [PMID: 34517773 DOI: 10.1161/strokeaha.120.031736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE White matter hyperintensity (WMH), a marker of chronic cerebral small vessel disease, might impact the recruitment of leptomeningeal collaterals. We aimed to assess whether the WMH burden is associated with collateral circulation in patients treated by endovascular thrombectomy for anterior circulation acute ischemic stroke. METHODS Consecutive acute ischemic stroke due to anterior circulation large vessel occlusion and treated with endovascular thrombectomy from January 2015 to December 2017 were included. WMH volumes (periventricular, deep, and total) were assessed by a semiautomated volumetric analysis on fluid-attenuated inversion recovery-magnetic resonance imaging. Collateral status was graded on baseline catheter angiography using the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology grading system (good when ≥3). We investigated associations of WMH burden with collateral status. RESULTS A total of 302 patients were included (mean age, 69.1±19.4 years; women, 55.6%). Poor collaterals were observed in 49.3% of patients. Median total WMH volume was 3.76 cm3 (interquartile range, 1.09-11.81 cm3). The regression analyses showed no apparent relationship between WMH burden and the collateral status measured at baseline angiography (adjusted odds ratio, 0.987 [95% CI, 0.971-1.003]; P=0.12). CONCLUSIONS WMH burden exhibits no overt association with collaterals in large vessel occlusive stroke.
Collapse
Affiliation(s)
- Imad Derraz
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Mohamed Abdelrady
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Gaillard
- Department of Neurology (N.G., L.C., I.M., C.A.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Raed Ahmed
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Federico Cagnazzo
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Cyril Dargazanli
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Pierre-Henri Lefevre
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Lucas Corti
- Department of Neurology (N.G., L.C., I.M., C.A.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Carlos Riquelme
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Isabelle Mourand
- Department of Neurology (N.G., L.C., I.M., C.A.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Gregory Gascou
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Alain Bonafe
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Caroline Arquizan
- Department of Neurology (N.G., L.C., I.M., C.A.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Vincent Costalat
- Department of Neuroradiology (I.D., M.A., R.A., F.C., C.D., P.-H.L., C.R., G.G., A.B., V.C.), Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
91
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
92
|
Lee BC, Tsai HH, Huang APH, Lo YL, Tsai LK, Chen YF, Wu WC. Arterial Spin Labeling Imaging Assessment of Cerebrovascular Reactivity in Hypertensive Small Vessel Disease. Front Neurol 2021; 12:640069. [PMID: 34276531 PMCID: PMC8278327 DOI: 10.3389/fneur.2021.640069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: Cerebrovascular reactivity (CVR) represents the phenomenon where cerebral vessels dilate or constrict in response to vasoactive stimuli. CVR impairment may contribute to brain injury due to cerebral small vessel disease (SVD). We aimed to determine the CVR in hypertensive intracerebral hemorrhage (ICH) and to identify its vascular dysfunction. Methods: A total of 21 patients with spontaneous hypertensive ICH (strictly deep or mixed deep and lobar hemorrhages, mean age 62.5 ± 11.3 years) and 10 control subjects (mean age 66.1 ± 6.0 years) were enrolled for CVR measurement at least 3 months after the symptomatic ICH event. Each participant underwent a brain MRI study, and CVR was calculated as the cerebral blood flow (CBF) reduction using arterial spin labeling (ASL) between baseline and 10 min after an intravenous dipyridamole injection (0.57 mg/kg). Traditional MRI markers for SVD were also evaluated, including cerebral microbleed, white matter hyperintensity, lacune, and MRI-visible enlarged perivascular space, which were used to determine the total small vessel disease score. Results: Compared to control subjects, hypertensive ICH patients showed reduced CVR in the basal ganglia (CBF reduction 22.4 ± 22.7% vs. 41.7 ± 18.3, p = 0.026), the frontal lobe (15.1 ± 11.9 vs. 26.6 ± 9.9, p = 0.013), and the temporal lobe (14.7 ± 11.1 vs. 26.2 ± 10.0, p = 0.010). These differences remained significant in multivariable models after adjusting for age and sex. Within ICH groups, the CBF reduction in the basal ganglia was significantly correlated with the total small vessel disease score (R = 0.58, p = 0.006), but not with individual MRI markers. Conclusion: Patients with advanced hypertensive SVD demonstrated impaired vasoconstriction after dipyridamole challenge in the basal ganglia and the frontal and temporal lobes. Our findings provide safe approaches for whole-brain CVR mapping in SVD and identify a potential physiological basis for vascular dysfunction in hypertensive SVD.
Collapse
Affiliation(s)
- Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ling Lo
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
93
|
Imaging neurovascular, endothelial and structural integrity in preparation to treat small vessel diseases. The INVESTIGATE-SVDs study protocol. Part of the SVDs@Target project. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100020. [PMID: 36324725 PMCID: PMC9616332 DOI: 10.1016/j.cccb.2021.100020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/25/2021] [Accepted: 06/20/2021] [Indexed: 12/30/2022]
Abstract
Background Sporadic cerebral small vessel disease (SVD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) share clinical and neuroimaging features and possibly vascular dysfunction(s). However few studies have included both conditions, assessed more than one vascular dysfunction simultaneously, or included more than one centre. The INVESTIGATE-SVDs study will assess several cerebrovascular dysfunctions with MRI in participants with sporadic SVD or CADASIL at three European centres. Methods We will recruit participants with sporadic SVDs (ischaemic stroke or vascular cognitive impairment) and CADASIL in Edinburgh, Maastricht and Munich. We will perform detailed clinical and neuropsychological phenotyping of the participants, and neuroimaging including structural MRI, cerebrovascular reactivity MRI (CVR: using carbon dioxide challenge), phase contrast MRI (arterial, venous and CSF flow and pulsatility), dynamic contrast-enhanced MRI (blood brain barrier (BBB) leakage) and multishell diffusion imaging. Participants will measure their blood pressure (BP) and its variability over seven days using a telemetric device. Discussion INVESTIGATE-SVDs will assess the relationships of BBB integrity, CVR, pulsatility and CSF flow in sporadic SVD and CADASIL using a multisite, multimodal MRI protocol. We aim to establish associations between these measures of vascular function, risk factors particularly BP and its variability, and brain parenchymal lesions in these two SVD phenotypes. Additionally we will test feasibility of complex multisite MRI, provide reliable intermediary outcome measures and sample size estimates for future trials.
Collapse
Key Words
- BBB, blood brain barrier
- BOLD, blood oxygen level dependent
- BP, blood pressure
- BPv, blood pressure variability
- Blood-brain barrier permeability
- CADASIL
- CADASIL, cerebral autosomal dominant arteriopathy with leukoencephalopathy and subcortical infarcts
- CBF, cerebral blood flow
- CERAD+, consortium to establish a disease registry for Alzheimer's disease plus battery
- CO2, carbon dioxide
- CSF, cerebrospinal fluid
- CVR, cerebrovascular reactivity
- Cerebral small vessel disease
- Cerebrovascular reactivity
- DCE, dynamic contrast enhanced
- EtCO2, end-tidal carbon dioxide
- GM, grey matter
- MMSE, mini-mental state examination
- MRI
- MoCA, Montreal cognitive exam
- NIHSS, national institute for health stroke scale
- PI, pulsatility index
- PVS, perivascular space
- RSSI, recent small subcortical infarct
- SVDs, small vessel diseases
- WM, white matter
- WMH, white matter hyperintensity
Collapse
|
94
|
Stringer MS, Blair GW, Shi Y, Hamilton I, Dickie DA, Doubal FN, Marshall IM, Thrippleton MJ, Wardlaw JM. A Comparison of CVR Magnitude and Delay Assessed at 1.5 and 3T in Patients With Cerebral Small Vessel Disease. Front Physiol 2021; 12:644837. [PMID: 34149442 PMCID: PMC8207286 DOI: 10.3389/fphys.2021.644837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) measures blood flow change in response to a vasoactive stimulus. Impairment is associated with several neurological conditions and can be measured using blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI). Field strength affects the BOLD signal, but the effect on CVR is unquantified in patient populations. METHODS We recruited patients with minor ischemic stroke and assessed CVR magnitude and delay time at 3 and 1.5 Tesla using BOLD MRI during a hypercapnic challenge. We assessed subcortical gray (GM) and white matter (WM) differences using Wilcoxon signed rank tests and scatterplots. Additionally, we explored associations with demographic factors, WM hyperintensity burden, and small vessel disease score. RESULTS Eighteen of twenty patients provided usable data. At 3T vs. 1.5T: mean CVR magnitude showed less variance (WM 3T: 0.062 ± 0.018%/mmHg, range 0.035, 0.093; 1.5T: 0.057 ± 0.024%/mmHg, range 0.016, 0.094) but was not systematically higher (Wilcoxon signal rank tests, WM: r = -0.33, confidence interval (CI): -0.013, 0.003, p = 0.167); delay showed similar variance (WM 3T: 40 ± 12 s, range: 12, 56; 1.5T: 31 ± 13 s, range 6, 50) and was shorter in GM (r = 0.33, CI: -2, 9, p = 0.164) and longer in WM (r = -0.59, CI: -16, -2, p = 0.010). Patients with higher disease severity tended to have lower CVR at 1.5 and 3T. CONCLUSION Mean CVR magnitude at 3T was similar to 1.5T but showed less variance. GM/WM delay differences may be affected by low signal-to-noise ratio among other factors. Although 3T may reduce variance in CVR magnitude, CVR is readily assessable at 1.5T and reveals comparable associations and trends with disease severity.
Collapse
Affiliation(s)
- Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Gordon W. Blair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Yulu Shi
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Iona Hamilton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Dickie
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fergus N. Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Ian M. Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
95
|
van den Brink H, Kopczak A, Arts T, Onkenhout L, Siero JC, Zwanenburg JJ, Duering M, Blair GW, Doubal FN, Stringer MS, Thrippleton MJ, Kuijf HJ, de Luca A, Hendrikse J, Wardlaw JM, Dichgans M, Biessels GJ. Zooming in on cerebral small vessel function in small vessel diseases with 7T MRI: Rationale and design of the "ZOOM@SVDs" study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100013. [PMID: 36324717 PMCID: PMC9616370 DOI: 10.1016/j.cccb.2021.100013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/01/2023]
Abstract
Background Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves. Objective This paper presents the rationale and design of the ZOOM@SVDs study, which aims to establish measures of cerebral small vessel dysfunction on 7T MRI as novel disease markers of SVDs. Methods ZOOM@SVDs is a prospective observational cohort study with two years follow-up. ZOOM@SVDs recruits participants with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL, N = 20), sporadic SVDs (N = 60), and healthy controls (N = 40). Participants undergo 7T brain MRI to assess different aspects of small vessel function including small vessel reactivity, cerebral perforating artery flow, and pulsatility. Extensive work-up at baseline and follow-up further includes clinical and neuropsychological assessment as well as 3T brain MRI to assess conventional SVD imaging markers. Measures of small vessel dysfunction are compared between patients and controls, and related to the severity of clinical and conventional MRI manifestations of SVDs. Discussion ZOOM@SVDs will deliver novel markers of cerebral small vessel function in patients with monogenic and sporadic forms of SVDs, and establish their relation with disease burden and progression. These small vessel markers can support etiological studies in SVDs and may serve as surrogate outcome measures in future clinical trials to show target engagement of drugs directed at the small vessels.
Collapse
Key Words
- ASL, Arterial Spin Labeling
- BOLD, Blood Oxygenation Level-Dependent
- CADASIL
- CADASIL, Cerebral Autosomal Dominant Arteriopathy with Leukoencephalopathy and Subcortical Infarcts
- CDR, Clinical Dementia Rating scale
- CERAD+, Consortium to Establish a Disease Registry for Alzheimer's Disease Plus battery
- CES-D, Center for Epidemiologic Studies Depression Scale
- CO2, Carbon Dioxide
- CSF, Cerebrospinal Fluid
- Cerebral small vessel disease
- DTI, Diffusion Tensor Imaging
- EPIC, European Prospective Investigation into Cancer and Nutrition
- EtCO2, End-tidal Carbon Dioxide
- FLAIR, Fluid Attenuated Inversion Recovery
- FOV, Field Of View
- FWHM, Full-Width-at-Half-Maximum
- GE, Gradient Echo
- GM, Grey Matter
- GPRS, General Packet Radio Service
- HRF, Hemodynamic Response Function
- High field strength MRI
- LMU, Ludwig-Maximilians-Universität
- MMSE, Mini-Mental State Examination
- NAWM, Normal Appearing White Matter
- NIHSS, National Institute for Health Stroke Scale
- PI, Pulsatility Index
- ROI, Region Of Interest
- SPPB, Short Physical Performance Battery
- SVDs, Small Vessel Diseases
- SWI, Susceptibility Weighted Imaging
- Small vessel function
- Sporadic SVD
- Stroke
- TE, Echo Time
- TI, Inversion Time
- TR, Repetition Time
- TSE, Turbo Spin Echo
- UMCU, University Medical Center Utrecht
- Vmax, Maximum velocity
- Vmean, Mean velocity
- Vmin, Minimum velocity
- WM, White Matter
- WMH, White Matter Hyperintensity
- fMRI, Functional Magnetic Resonance Imaging
Collapse
Affiliation(s)
- Hilde van den Brink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, the Netherlands
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tine Arts
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laurien Onkenhout
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, the Netherlands
| | - Jeroen C.W. Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| | - Jaco J.M. Zwanenburg
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Gordon W. Blair
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus N. Doubal
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Hugo J. Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alberto de Luca
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, the Netherlands
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Jeroen Hendrikse
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joanna M. Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, the Netherlands
| | - SVDs@target group
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, the Netherlands
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
96
|
Toriello M, González-Quintanilla V, Pérez-Pereda S, Fontanillas N, Pascual J. The potential role of the glymphatic system in headache disorders. PAIN MEDICINE 2021; 22:3098-3100. [PMID: 33839781 DOI: 10.1093/pm/pnab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- María Toriello
- Service of Neurology, University Hospital Marqués de Valdecilla, University of Cantabria and IDIVAL
| | | | - Sara Pérez-Pereda
- Service of Neurology, University Hospital Marqués de Valdecilla, University of Cantabria and IDIVAL
| | | | - Julio Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla, University of Cantabria and IDIVAL
| |
Collapse
|
97
|
Wolf RL, Ware JB. Cerebrovascular Reactivity Mapping Made Simpler: A Pragmatic Approach for the Clinic and Laboratory. Radiology 2021; 299:426-427. [PMID: 33689475 DOI: 10.1148/radiol.2021210165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ronald L Wolf
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA 19104
| | - Jeffrey B Ware
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA 19104
| |
Collapse
|
98
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
99
|
Rudilosso S, Olivera M, Esteller D, Laredo C, Amaro S, Llull L, Renú A, Obach V, Vera V, Rodríguez A, Blasco J, López-Rueda A, Urra X, Chamorro Á. Susceptibility Vessel Sign in Deep Perforating Arteries in Patients with Recent Small Subcortical Infarcts. J Stroke Cerebrovasc Dis 2020; 30:105415. [PMID: 33142246 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Recent small subcortical infarcts (RSSI) are considered an acute manifestation of cerebral small vessel disease. Paramagnetic signals in perforating arteries supplying RSSI may be detected on T2*-relaxation derived sequences on MRI and is defined as susceptibility vessel sign (SVS). We aimed to study the prevalence of SVS in patients with RSSI, and explore whether its identification is related to cerebral small vessel disease markers. MATERIALS AND METHODS We selected patients with RSSI identified on MRI during admission from a single-center stroke registry. The main demographic and clinical features, including vascular risk factors, were collected. Radiological features of RSSI and cerebral small vessel disease [white matter hyperintensities in deep and periventricular regions, enlarged perivascular spaces, lacunae, microbleeds, and brain atrophy] were described using validated qualitative scores. The presence of SVS was assessed on T2*gradient-echo or other susceptibility-weighted imaging. We compared the clinical and radiological features of patients with or without SVS in uni- and multivariate models. RESULTS Out of 210 patients with an RSSI on an MRI, 35 (17%) showed SVS. The proportion of SVS+ patients was similar in different susceptibility imaging modalities (p=.64). Risk factor profiles and clinical course were similar in SVS+ and SVS- patients. SVS+ patients had a higher grade of deep white matter hyperintensities and brain atrophy, more lacunae (p=.001, p=.034, p=.022, respectively), and a similar degree of the rest of radiological variables, compared to SVS- patients. In the multivariate analysis, the grade of deep white matter hyperintensities was the only independent factor associated with SVS [OR 3.1 (95% CI, 1.5-6.4)]. CONCLUSIONS SVS in patients with RSSI is uncommon and related to a higher grade of deep white matter hyperintensities. Pathophysiological mechanisms underlying the deposition of hemosiderin in the path of occluded perforating arteries are uncertain and might include endothelial dysfunction or embolic mechanisms.
Collapse
Affiliation(s)
- Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Marta Olivera
- Department of Neurology, Hospital Clínic of Barcelona, Spain
| | - Diana Esteller
- Department of Neurology, Hospital Clínic of Barcelona, Spain
| | - Carlos Laredo
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sergio Amaro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Laura Llull
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Arturo Renú
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Víctor Obach
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Víctor Vera
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Alejandro Rodríguez
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Jordi Blasco
- Department of Radiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Antonio López-Rueda
- Department of Radiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Xabier Urra
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Ángel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
100
|
Clancy U, Garcia DJ, Stringer MS, Thrippleton MJ, Valdés-Hernández MC, Wiseman S, Hamilton OK, Chappell FM, Brown R, Blair GW, Hewins W, Sleight E, Ballerini L, Bastin ME, Maniega SM, MacGillivray T, Hetherington K, Hamid C, Arteaga C, Morgan AG, Manning C, Backhouse E, Hamilton I, Job D, Marshall I, Doubal FN, Wardlaw JM. Rationale and design of a longitudinal study of cerebral small vessel diseases, clinical and imaging outcomes in patients presenting with mild ischaemic stroke: Mild Stroke Study 3. Eur Stroke J 2020; 6:81-88. [PMID: 33817338 PMCID: PMC7995323 DOI: 10.1177/2396987320929617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral small vessel disease is a major cause of dementia and stroke, visible on brain magnetic resonance imaging. Recent data suggest that small vessel disease lesions may be dynamic, damage extends into normal-appearing brain and microvascular dysfunctions include abnormal blood–brain barrier leakage, vasoreactivity and pulsatility, but much remains unknown regarding underlying pathophysiology, symptoms, clinical features and risk factors of small vessel disease. Patients and Methods: The Mild Stroke Study 3 is a prospective observational cohort study to identify risk factors for and clinical implications of small vessel disease progression and regression among up to 300 adults with non-disabling stroke. We perform detailed serial clinical, cognitive, lifestyle, physiological, retinal and brain magnetic resonance imaging assessments over one year; we assess cerebrovascular reactivity, blood flow, pulsatility and blood–brain barrier leakage on magnetic resonance imaging at baseline; we follow up to four years by post and phone. The study is registered ISRCTN 12113543. Summary Factors which influence direction and rate of change of small vessel disease lesions are poorly understood. We investigate the role of small vessel dysfunction using advanced serial neuroimaging in a deeply phenotyped cohort to increase understanding of the natural history of small vessel disease, identify those at highest risk of early disease progression or regression and uncover novel targets for small vessel disease prevention and therapy.
Collapse
Affiliation(s)
- Una Clancy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Stewart Wiseman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Olivia Kl Hamilton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Gordon W Blair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Will Hewins
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Tom MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Charlene Hamid
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Carmen Arteaga
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alasdair G Morgan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Cameron Manning
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ellen Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Iona Hamilton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dominic Job
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|