51
|
Li TR, Dong QY, Jiang XY, Kang GX, Li X, Xie YY, Jiang JH, Han Y. Exploring brain glucose metabolic patterns in cognitively normal adults at risk of Alzheimer's disease: A cross-validation study with Chinese and ADNI cohorts. Neuroimage Clin 2021; 33:102900. [PMID: 34864286 PMCID: PMC8648808 DOI: 10.1016/j.nicl.2021.102900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Disease-related metabolic brain patterns have been verified for a variety of neurodegenerative diseases including Alzheimer's disease (AD). This study aimed to explore and validate the pattern derived from cognitively normal controls (NCs) in the Alzheimer's continuum. METHODS This study was based on two cohorts; one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the other from the Sino Longitudinal Study on Cognitive Decline (SILCODE). Each subject underwent [18F]fluoro-2-deoxyglucose positron emission tomography (PET) and [18F]florbetapir-PET imaging. Participants were binary-grouped based on β-amyloid (Aβ) status, and the positivity was defined as Aβ+. Voxel-based scaled subprofile model/principal component analysis (SSM/PCA) was used to generate the "at-risk AD-related metabolic pattern (ARADRP)" for NCs. The pattern expression score was obtained and compared between the groups, and receiver operating characteristic curves were drawn. Notably, we conducted cross-validation to verify the robustness and correlation analyses to explore the relationships between the score and AD-related pathological biomarkers. RESULTS Forty-eight Aβ+ NCs and 48 Aβ- NCs were included in the ADNI cohort, and 25 Aβ+ NCs and 30 Aβ- NCs were included in the SILCODE cohort. The ARADRPs were identified from the combined cohorts and the two separate cohorts, characterized by relatively lower regional loadings in the posterior parts of the precuneus, posterior cingulate, and regions of the temporal gyrus, as well as relatively higher values in the superior/middle frontal gyrus and other areas. Patterns identified from the two separate cohorts showed some regional differences, including the temporal gyrus, basal ganglia regions, anterior parts of the precuneus, and middle cingulate. Cross-validation suggested that the pattern expression score was significantly higher in the Aβ+ group of both cohorts (p < 0.01), and contributed to the diagnosis of Aβ+ NCs (with area under the curve values of 0.696-0.815). The correlation analysis revealed that the score was related to tau pathology measured in cerebrospinal fluid (p-tau: p < 0.02; t-tau: p < 0.03), but not Aβ pathology assessed with [18F]florbetapir-PET (p > 0.23). CONCLUSIONS ARADRP exists for NCs, and the acquired pattern expression score shows a certain ability to discriminate Aβ+ NCs from Aβ- NCs. The SSM/PCA method is expected to be helpful in the ultra-early diagnosis of AD in clinical practice.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Qiu-Yue Dong
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai 200444, China.
| | - Xue-Yan Jiang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Gui-Xia Kang
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao 066004, China
| | - Yun-Yan Xie
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Jie-Hui Jiang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai 200444, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; School of Biomedical Engineering, Hainan University, Haikou 570228, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.
| |
Collapse
|
52
|
Pelgrim TA, Beran M, Twait EL, Geerlings MI, Vonk JM. Cross-sectional associations of tau protein biomarkers with semantic and episodic memory in older adults without dementia: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101449. [PMID: 34400308 DOI: 10.1016/j.arr.2021.101449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Pathological tau is suggested to play a role in cognitive deterioration in the preclinical phase of Alzheimer's disease. We investigated cross-sectional associations of tau burden with episodic and semantic memory performance in older adults without dementia. A systematic search in MEDLINE (via PubMed), PsychINFO, and Embase resulted in 24 eligible studies for meta-analysis. Tau burden was assessed using CSF, PET, or histopathological measures. All studies evaluated associations of tau with episodic memory: weighted effect sizes were -0.46 (95 % CI [-0.73; -0.20], p < .001) for episodic composite scores, -0.19 ([-0.36; -0.03], p = .024) for delayed word list recall, and -0.05 ([-0.14; 0.04], p = .257) for logical memory. Fourteen studies evaluated associations of tau with semantic memory: weighted effect sizes were -0.28 ([-0.52; -0.04], p = .023) for semantic composite scores, -0.06 ([-0.16; 0.03], p = .194) for semantic fluency, and 0.06 ([-0.06; 0.18], p = .319) for picture naming. Our findings indicate that tau burden related to both episodic and semantic memory impairment in older individuals without a diagnosis of mild cognitive impairment or manifest dementia, with episodic composite scores showing the strongest association with tau burden. Future potential lies in developing more sensitive scores to detect this subtle cognitive impairment, which could contribute to early identification of individuals in the preclinical phase of Alzheimer's disease, thereby improving early diagnosis and timely intervention.
Collapse
|
53
|
Xu S, Sun Q, Li M, Luo J, Cai G, Chen R, Zhang L, Liu J. Hippocampal resting-state functional connectivity with the mPFC and DLPFC moderates and mediates the association between education level and memory function in subjective cognitive decline. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: This study aims to determine the relationship between education level, memory function, and hippocampus functional and structural alterations in subjective cognitive decline (SCD). Methods: Seventy-five participants with SCD were divided into high education (HE) and low education (LE) level groups. A Wechsler Memory Scale–Chinese Revision test and functional and structural MRI were performed within 1 week after participant recruitment. The bilateral hippocampus resting-state functional connectivity (rsFC), gray matter volume (GMV) of brain regions identified by rsFC analysis, and moderating and mediating effects were assessed. Results: Compared with the LE group, HE individuals showed 1) higher memory quotient (MQ) and Digit Span subscore, 2) decreased hippocampal rsFC with the right medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (DLPFC), and 3) increased GMV in the right mPFC and DLPFC. The bilateral hippocampus–right DLPFC rsFC significantly associated with the MQ and the bilateral hippocampus–right mPFCrsFC with the Digit Span subscore in each group. The bilateral hippocampus–right DLPFC rsFC moderated the relationship between the education level and MQ. The bilateral hippocampus–right mPFC rsFC mediated the relationship between the education level and Digit Span subscore in all subjects. Conclusion: The hippocampal rsFC with the right mPFC and DLPFC contributes to the education level effect on memory function in SCD.
Collapse
Affiliation(s)
- Shurui Xu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- These authors contributed equally to this work
| | - Qianqian Sun
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- These authors contributed equally to this work
| | - Ming Li
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- These authors contributed equally to this work
| | - Jia Luo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Guiyan Cai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Ruilin Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Lin Zhang
- Institute for Stroke and Dementia Research (ISD), Klinikum der UniversitätMünchen, Ludwig-Maximilians-Universität (LMU) München, Munich 81377, Germany
| | - Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou 350122, Fujian, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| |
Collapse
|
54
|
Ni L, Zhao M, Hu Z, Yang K, Zhao X, Niu H, Lin H. Neural Mechanism of Shentai Tea Polyphenols on Cognitive Improvements for Individuals with Subjective Cognitive Decline: A Functional Near-Infrared Spectroscopy Study. J Alzheimers Dis 2021; 82:1137-1145. [PMID: 34151814 DOI: 10.3233/jad-210469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND A growing awareness about non-pharmacological intervention for cognitively impaired individuals may represent an alternative therapeutic approach that is actively accepted by patients with very early stage of Alzheimer's disease. Understanding the neural basis of non-pharmacological intervention is a crucial step toward wide use for patients with cognitive disorders. OBJECTIVE To investigate the underlying neural mechanism of shentai tea polyphenols in subjects with subjective cognitive decline (SCD) using functional near-infrared spectroscopy (fNIRS). METHODS A total number of 36 patients with SCD participated in the study and received supplementation with shentai tea polyphenols for three months. All participants underwent a series of tests on neuropsychological function and fNIRS assessment during n-back tasks at baseline and follow-up. RESULTS After intervention with shentai tea polyphenols in SCD, increased cerebral activity was observed in left dorsolateral prefrontal cortex (DLPFC), left premotor cortex (PMC), left primary somatosensory cortex (PSC), right inferior frontal gyrus (IFG), and premotor cortex (PMC). Moreover, shentai tea polyphenols intervention of three months significantly improved SCD subjects' cognitive functions (memory, language, and subjective cognitive ability) and depression condition. We further found that the improvement of Hamilton Depression Rating Scale and Auditory Verbal Learning Test-recognition scores had positive correlations with increased brain activity in right IFG and left DLPFC, respectively. CONCLUSION This study provides new evidence that the frontal cortex was found to be specifically activated after non-pharmacological intervention of shentai tea polyphenols in SCD, which may be associated with cognitive enhancement and mental wellbeing. These findings provide important implications for the selection of shentai tea polyphenols interventions for SCD.
Collapse
Affiliation(s)
- Lianghui Ni
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhishan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Kun Yang
- Department of Evidence-Based Medicine, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xing Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
55
|
Ballarini T, Melo van Lent D, Brunner J, Schröder A, Wolfsgruber S, Altenstein S, Brosseron F, Buerger K, Dechent P, Dobisch L, Duzel E, Ertl-Wagner B, Fliessbach K, Freiesleben SD, Frommann I, Glanz W, Hauser D, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Laske C, Maier F, Metzger CD, Munk M, Perneczky R, Peters O, Priller J, Ramirez A, Rauchmann B, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel SJ, Vukovich R, Wiltfang J, Jessen F, Wagner M. Mediterranean Diet, Alzheimer Disease Biomarkers and Brain Atrophy in Old Age. Neurology 2021; 96:e2920-e2932. [PMID: 33952652 PMCID: PMC8253566 DOI: 10.1212/wnl.0000000000012067] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To determine whether following a Mediterranean-like diet (MeDi) relates to cognitive functions and in vivo biomarkers for Alzheimer disease (AD), we analyzed cross-sectional data from the German DZNE-Longitudinal Cognitive Impairment and Dementia Study. METHOD: The sample (n=512, mean age: 69.5±5.9 years) included 169 cognitively normal participants and subjects at higher AD risk (53 with relatives with AD, 209 with subjective cognitive decline, and 81 with mild cognitive impairment). We defined MeDi adherence based on the Food Frequency Questionnaire. Brain volume outcomes were generated via voxel-based morphometry on T1-MRI and cognitive performance with an extensive neuropsychological battery. AD-related biomarkers (Aβ42/40 ratio, pTau181) in cerebrospinal fluid were assessed in n=226 individuals. We analyzed the associations between MeDi and the outcomes with linear regression models controlling for several covariates. Additionally, we applied hypothesis-driven mediation and moderation analysis. RESULTS Higher MeDi adherence related to larger mediotemporal gray matter volume (p<0.05 FWE corrected), better memory (β±SE = 0.03 ± 0.02; p=0.038), and less amyloid (Aβ42/40 ratio, β±SE = 0.003 ± 0.001; p=0.008) and pTau181 pathology (β±SE = -1.96±0.68; p=0.004). Mediotemporal volume mediated the association between MeDi and memory (40% indirect mediation). Finally, MeDi favorably moderated the associations between Aβ42/40 ratio, pTau181 and mediotemporal atrophy. Results were consistent correcting for ApoE-ε4 status. CONCLUSION Our findings corroborate the view of MeDi as a protective factor against memory decline and mediotemporal atrophy. Importantly, they suggest that these associations might be explained by a decrease of amyloidosis and tau-pathology. Longitudinal and dietary intervention studies should further examine this conjecture and its treatment implications.
Collapse
Affiliation(s)
- Tommaso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Debora Melo van Lent
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- University of Texas Health Science Center at San Antonio: San Antonio, TX, US
| | - Julia Brunner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alina Schröder
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-LynenStrasse 17, 81377 Munich, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-AugustUniversity Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Emrah Duzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-MaximiliansUniversity, Marchioninistr. 15, 81377 Munich
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Silka Dawn Freiesleben
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dietmar Hauser
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Coraline Danielle Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED)
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931Köln, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
56
|
Sánchez-Benavides G, Suárez-Calvet M, Milà-Alomà M, Arenaza-Urquijo EM, Grau-Rivera O, Operto G, Gispert JD, Vilor-Tejedor N, Sala-Vila A, Crous-Bou M, González-de-Echávarri JM, Minguillon C, Fauria K, Simon M, Kollmorgen G, Zetterberg H, Blennow K, Molinuevo JL. Amyloid-β positive individuals with subjective cognitive decline present increased CSF neurofilament light levels that relate to lower hippocampal volume. Neurobiol Aging 2021; 104:24-31. [PMID: 33962331 DOI: 10.1016/j.neurobiolaging.2021.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Neurofilament light chain (NfL) is an axonal protein that when measured in cerebrospinal fluid (CSF) serves as a biomarker of neurodegeneration. We aimed at investigating the association among CSF NfL, presence of Subjective Cognitive Decline (SCD) and hippocampal volume, and how CSF amyloid-β (Aβ) modifies these associations. We included 278 cognitively unimpaired participants from the Alfa+ cohort (78 SCD and 200 Controls). Linear models accounting for covariates (age, gender, and mood) were used to test the association between CSF NfL and SCD status, and between CSF NfL and bilateral hippocampal volumes. Interactions with Aβ were also explored. Individuals with SCD had higher CSF NfL and lower CSF Aβ42/40 than Controls. There was a significant interaction between SCD and CSF-Aβ42/40 levels. Stratified analyses showed a significant association between SCD and NfL only in Aβ+ individuals. Higher CSF NfL was significantly associated with lower hippocampal volume specifically in Aβ+ individuals with SCD. The presence of SCD in Aβ+ individuals may represent an early symptom in the Alzheimer's continuum related to incipient neurodegeneration.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus MC. University Medical Center Rotterdam, Department of Clinical Genetics. Rotterdam, The Netherlands
| | - Aleix Sala-Vila
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Maria González-de-Echávarri
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maryline Simon
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Present address: H. Lundbeck A/S, Denmark.
| | | |
Collapse
|
57
|
Wesselman LMP, van Lent DM, Schröder A, van de Rest O, Peters O, Menne F, Fuentes M, Priller J, Spruth EJ, Altenstein S, Schneider A, Fließbach K, Roeske S, Wolfsgruber S, Kleineidam L, Spottke A, Pross V, Wiltfang J, Vukovich R, Schild AK, Düzel E, Metzger CD, Glanz W, Buerger K, Janowitz D, Perneczky R, Tatò M, Teipel S, Kilimann I, Laske C, Buchmann M, Ramirez A, Sikkes SAM, Jessen F, van der Flier WM, Wagner M. Dietary patterns are related to cognitive functioning in elderly enriched with individuals at increased risk for Alzheimer's disease. Eur J Nutr 2021; 60:849-860. [PMID: 32472387 PMCID: PMC7900077 DOI: 10.1007/s00394-020-02257-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate cross-sectional associations between dietary patterns and cognitive functioning in elderly free of dementia. METHODS Data of 389 participants from the German DELCODE study (52% female, 69 ± 6 years, mean Mini Mental State Score 29 ± 1) were included. The sample was enriched with elderly at increased risk for Alzheimer's disease (AD) by including participants with subjective cognitive decline, mild cognitive impairment (MCI) and siblings of AD patients. Mediterranean and MIND diets were derived from 148 Food Frequency Questionnaire items, and data-driven patterns by principal component analysis (PCA) of 39 food groups. Associations between dietary patterns and five cognitive domain scores were analyzed with linear regression analyses adjusted for demographics (model 1), and additionally for energy intake, BMI, other lifestyle variables and APOe4-status (model 2). For PCA-derived dietary components, final model 3 included all other dietary components. RESULTS In fully adjusted models, adherence to Mediterranean and MIND diet was associated with better memory. The 'alcoholic beverages' PCA component was positively associated with most cognitive domains. Exclusion of MCI subjects (n = 60) revealed that Mediterranean and MIND diet were also related to language functions; associations with the alcoholic beverages component were attenuated, but most remained significant. CONCLUSION In line with data from elderly population samples, Mediterranean and MIND diet and some data-derived dietary patterns were related to memory and language function. Longitudinal data are needed to draw conclusions on the putative effect of nutrition on the rate of cognitive decline, and on the potential of dietary interventions in groups at increased risk for AD.
Collapse
Affiliation(s)
- L. M. P. Wesselman
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - D. Melo van Lent
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health, San Antonio, TX USA
- Department of Neurology, Boston University, Boston, MA USA
- The Framingham Heart Study, Framingham, MA USA
| | - A. Schröder
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - O. van de Rest
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - O. Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - F. Menne
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - M. Fuentes
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - J. Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - E. J. Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - S. Altenstein
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - A. Schneider
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - K. Fließbach
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - S. Roeske
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - S. Wolfsgruber
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - L. Kleineidam
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - A. Spottke
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - V. Pross
- Study Center Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - J. Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen , Germany
| | - R. Vukovich
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen , Germany
| | - A. K. Schild
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - E. Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
| | - C. D. Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - W. Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - K. Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - D. Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - R. Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - M. Tatò
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - S. Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - I. Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - C. Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - M. Buchmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - A. Ramirez
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - S. A. M. Sikkes
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Developmental Psychology and Clinical Neuropsychology, Faculty of Behavioural and Movement Sciences (FGB), Vrije University Amsterdam, Amsterdam, The Netherlands
| | - F. Jessen
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - W. M. van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - M. Wagner
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
58
|
Amaefule CO, Dyrba M, Wolfsgruber S, Polcher A, Schneider A, Fliessbach K, Spottke A, Meiberth D, Preis L, Peters O, Incesoy EI, Spruth EJ, Priller J, Altenstein S, Bartels C, Wiltfang J, Janowitz D, Bürger K, Laske C, Munk M, Rudolph J, Glanz W, Dobisch L, Haynes JD, Dechent P, Ertl-Wagner B, Scheffler K, Kilimann I, Düzel E, Metzger CD, Wagner M, Jessen F, Teipel SJ. Association between composite scores of domain-specific cognitive functions and regional patterns of atrophy and functional connectivity in the Alzheimer's disease spectrum. Neuroimage Clin 2020; 29:102533. [PMID: 33360018 PMCID: PMC7770965 DOI: 10.1016/j.nicl.2020.102533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/24/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cognitive decline has been found to be associated with gray matter atrophy and disruption of functional neural networks in Alzheimer's disease (AD) in structural and functional imaging (fMRI) studies. Most previous studies have used single test scores of cognitive performance among monocentric cohorts. However, cognitive domain composite scores could be more reliable than single test scores due to the reduction of measurement error. Adopting a multicentric resting state fMRI (rs-fMRI) and cognitive domain approach, we provide a comprehensive description of the structural and functional correlates of the key cognitive domains of AD. METHOD We analyzed MRI, rs-fMRI and cognitive domain score data of 490 participants from an interim baseline release of the multicenter DELCODE study cohort, including 54 people with AD, 86 with Mild Cognitive Impairment (MCI), 175 with Subjective Cognitive Decline (SCD), and 175 Healthy Controls (HC) in the AD-spectrum. Resulting cognitive domain composite scores (executive, visuo-spatial, memory, working memory and language) from the DELCODE neuropsychological battery (DELCODE-NP), were previously derived using confirmatory factor analysis. Statistical analyses examined the differences between diagnostic groups, and the association of composite scores with regional atrophy and network-specific functional connectivity among the patient subgroup of SCD, MCI and AD. RESULT Cognitive performance, atrophy patterns and functional connectivity significantly differed between diagnostic groups in the AD-spectrum. Regional gray matter atrophy was positively associated with visuospatial and other cognitive impairments among the patient subgroup in the AD-spectrum. Except for the visual network, patterns of network-specific resting-state functional connectivity were positively associated with distinct cognitive impairments among the patient subgroup in the AD-spectrum. CONCLUSION Consistent associations between cognitive domain scores and both regional atrophy and network-specific functional connectivity (except for the visual network), support the utility of a multicentric and cognitive domain approach towards explicating the relationship between imaging markers and cognition in the AD-spectrum.
Collapse
Affiliation(s)
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | | | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Dix Meiberth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Goettingen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Matthias Munk
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Janna Rudolph
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Goettingen, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|