51
|
Carnero Contentti E, Okuda DT, Rojas JI, Chien C, Paul F, Alonso R. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J Neuroimaging 2023; 33:688-702. [PMID: 37322542 DOI: 10.1111/jon.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Differentiating multiple sclerosis (MS) from other relapsing inflammatory autoimmune diseases of the central nervous system such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is crucial in clinical practice. The differential diagnosis may be challenging but making the correct ultimate diagnosis is critical, since prognosis and treatments differ, and inappropriate therapy may promote disability. In the last two decades, significant advances have been made in MS, NMOSD, and MOGAD including new diagnostic criteria with better characterization of typical clinical symptoms and suggestive imaging (magnetic resonance imaging [MRI]) lesions. MRI is invaluable in making the ultimate diagnosis. An increasing amount of new evidence with respect to the specificity of observed lesions as well as the associated dynamic changes in the acute and follow-up phase in each condition has been reported in distinct studies recently published. Additionally, differences in brain (including the optic nerve) and spinal cord lesion patterns between MS, aquaporin4-antibody-positive NMOSD, and MOGAD have been described. We therefore present a narrative review on the most relevant findings in brain, spinal cord, and optic nerve lesions on conventional MRI for distinguishing adult patients with MS from NMOSD and MOGAD in clinical practice. In this context, cortical and central vein sign lesions, brain and spinal cord lesions characteristic of MS, NMOSD, and MOGAD, optic nerve involvement, role of MRI at follow-up, and new proposed diagnostic criteria to differentiate MS from NMOSD and MOGAD were discussed.
Collapse
Affiliation(s)
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan I Rojas
- Centro de esclerosis múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemman Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
52
|
Seok JM, Cho W, Chung YH, Ju H, Kim ST, Seong JK, Min JH. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using a deep learning model. Sci Rep 2023; 13:11625. [PMID: 37468553 DOI: 10.1038/s41598-023-38271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory disorders of the central nervous system (CNS) with similar characteristics. The differential diagnosis between MS and NMOSD is critical for initiating early effective therapy. In this study, we developed a deep learning model to differentiate between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using brain magnetic resonance imaging (MRI) data. The model was based on a modified ResNet18 convolution neural network trained with 5-channel images created by selecting five 2D slices of 3D FLAIR images. The accuracy of the model was 76.1%, with a sensitivity of 77.3% and a specificity of 74.8%. Positive and negative predictive values were 76.9% and 78.6%, respectively, with an area under the curve of 0.85. Application of Grad-CAM to the model revealed that white matter lesions were the major classifier. This compact model may aid in the differential diagnosis of MS and NMOSD in clinical practice.
Collapse
Affiliation(s)
- Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Wanzee Cho
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Hyunjin Ju
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- Department of Artificial Intelligence, Korea University, Seoul, South Korea.
- School of Biomedical Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
| |
Collapse
|
53
|
Tomizawa Y, Hoshino Y, Kamo R, Cossu D, Yokoyama K, Hattori N. Comparing clinical and imaging features of patients with MOG antibody-positivity and with and without oligoclonal bands. Front Immunol 2023; 14:1211776. [PMID: 37520579 PMCID: PMC10374016 DOI: 10.3389/fimmu.2023.1211776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Myelin-oligodendrocyte glycoprotein antibody (MOG)-associated disorder (MOGAD) is a recently identified immune-mediated inflammatory disorder of the central nervous system (CNS). The significance of oligoclonal bands (OCBs) is not fully elucidated. This study investigated the clinical differences between patients with MOGAD who tested positive or negative for OCBs. Methods The study was conducted on 23 patients with MOG-IgG-seropositivity who presented with central nervous system (CNS) symptoms. The patients were screened and divided into OCB-positive (n=10) and OCB-negative (n=13) groups, and their demographic, clinical, and magnetic resonance imaging (MRI) features were compared. Results The results revealed that patients with OCB-positivity had a significantly higher frequency of relapse, and their IgG index was significantly higher. Discussion OCBs were common in MOGAD met the consensus criteria. The study concluded that careful treatment decision-making is necessary in MOG antibody-positive cases with OCB-positivity.
Collapse
Affiliation(s)
- Yuji Tomizawa
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasunobu Hoshino
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryota Kamo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Davide Cossu
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
- Department of Biomedical Sciences, Sassari University, Sassari, Italy
| | - Kazumasa Yokoyama
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
- Tousei Center for Neurological Diseases, Shizuoka, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
54
|
Mainero C, Treaba CA, Barbuti E. Imaging cortical lesions in multiple sclerosis. Curr Opin Neurol 2023; 36:222-228. [PMID: 37078649 DOI: 10.1097/wco.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Cortical lesions are an established pathological feature of multiple sclerosis, develop from the earliest disease stages and contribute to disease progression. Here, we discuss current imaging approaches for detecting cortical lesions in vivo and their contribution for improving our understanding of cortical lesion pathogenesis as well as their clinical significance. RECENT FINDINGS Although a variable portion of cortical lesions goes undetected at clinical field strength and even at ultra-high field MRI, their evaluation is still clinically relevant. Cortical lesions are important for differential multiple sclerosis (MS) diagnosis, have relevant prognostic value and independently predict disease progression. Some studies also show that cortical lesion assessment could be used as a therapeutic outcome target in clinical trials. Advances in ultra-high field MRI not only allow increased cortical lesion detection in vivo but also the disclosing of some interesting features of cortical lesions related to their pattern of development and evolution as well to the nature of associated pathological changes, which might prove relevant for better understanding the pathogenesis of these lesions. SUMMARY Despite some limitations, imaging of cortical lesions is of paramount importance in MS for elucidating disease mechanisms as well as for improving patient management in clinic.
Collapse
Affiliation(s)
- Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Constantina A Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Barbuti
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Ospedale Sant'Andrea, University "La Sapienza", Rome, Italy
| |
Collapse
|
55
|
Harrison KL, Gaudioso C, Levasseur VA, Dunham SR, Schanzer N, Keuchel C, Salter A, Goyal MS, Mar S. Central Vein Sign in Pediatric Multiple Sclerosis and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Pediatr Neurol 2023; 146:21-25. [PMID: 37406422 DOI: 10.1016/j.pediatrneurol.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The central vein sign (CVS) on brain magnetic resonance imaging (MRI) is a promising diagnostic marker for distinguishing adult multiple sclerosis (MS) from other demyelinating conditions, but its prevalence is not well-established in pediatric-onset multiple sclerosis (POMS) versus myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). MOGAD can mimic MS radiologically. This study seeks to determine the utility of CVS, together with other radiological findings, in distinguishing POMS from MOGAD in children. METHODS Children with POMS or MOGAD were identified in a pediatric demyelinating database. Two reviewers, blinded to diagnosis, fused fluid-attenuated inversion recovery sequences and susceptibility-weighted imaging from clinical imaging to identify CVS. Agreement in CVS number was reported using intraclass correlation coefficients (ICC). We performed topographic analyses as well as characterization of the clinical information and lesions on brain, spinal cord, and orbital MRI when available. RESULTS Twenty children, 10 with POMS and 10 with MOGAD, were assessed. The median lesion percentage of CVS was higher in POMS versus MOGAD for both raters (rater 1: 80% vs 9.8%; rater 2: 22.7% vs 7.5%). Inter-rater reliability for identifying total white matter lesions was strong (ICC 0.94 [95% confidence interval [CI] 0.84, 0.97]); however, it was poor for detecting CVS lesions (ICC -0.17 [95% CI: -0.37, 0.58]). CONCLUSION The CVS can be a useful diagnostic tool for differentiating POMS from MOGAD. However, advanced clinical imaging tools that can better detect CVS are needed to increase inter-rater reliability before clinical application.
Collapse
Affiliation(s)
- Kimystian L Harrison
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| | - Cristina Gaudioso
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Victoria A Levasseur
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - S Richard Dunham
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Natalie Schanzer
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Connor Keuchel
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Amber Salter
- Department of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Manu S Goyal
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Soe Mar
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
56
|
Abdel-Mannan O, Ciccarelli O. Is the central vein sign a useful diagnostic marker for paediatric-onset multiple sclerosis? Mult Scler 2023; 29:479-480. [PMID: 36514269 PMCID: PMC9972230 DOI: 10.1177/13524585221142318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Omar Abdel-Mannan
- Queen Square MS Centre, UCL Queen Square
Institute of Neurology, Faculty of Brain Sciences, University College
London, London, UK/Department of Neurology, Great Ormond Street Hospital NHS
Trust, London, UK
| | - Olga Ciccarelli
- O Ciccarelli Queen Square MS Centre, UCL
Queen Square Institute of Neurology, Faculty of Brain Sciences, University
College London, London, WC1N 3BG, UK.
| |
Collapse
|