51
|
Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 2015; 9:11. [PMID: 25698950 PMCID: PMC4316720 DOI: 10.3389/fnhum.2015.00011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Collapse
Affiliation(s)
- Paul E. Rapp
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - David O. Keyser
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | | | - Rene Hernandez
- US Navy Bureau of Medicine and Surgery, Frederick, MD, USA
| | | | | | - W. David Hairston
- U. S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | | | | | | |
Collapse
|
52
|
Irimia A, Van Horn JD. Functional neuroimaging of traumatic brain injury: advances and clinical utility. Neuropsychiatr Dis Treat 2015; 11:2355-65. [PMID: 26396520 PMCID: PMC4576900 DOI: 10.2147/ndt.s79174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Functional deficits due to traumatic brain injury (TBI) can have significant and enduring consequences upon patients' life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques - especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography - for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI.
Collapse
Affiliation(s)
- Andrei Irimia
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Darrell Van Horn
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
53
|
Griesbach GS, Hovda DA. Cellular and molecular neuronal plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:681-90. [DOI: 10.1016/b978-0-444-63521-1.00042-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
54
|
Risen SR, Barber AD, Mostofsky SH, Suskauer SJ. Altered functional connectivity in children with mild to moderate TBI relates to motor control. J Pediatr Rehabil Med 2015; 8:309-19. [PMID: 26684071 PMCID: PMC4861163 DOI: 10.3233/prm-150349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Functionally relevant alterations in resting state fMRI (rs-fMRI) connectivity have been identified in adults with traumatic brain injury (TBI). We evaluated rs-fMRI connectivity in children with TBI and explored the relationship between altered connectivity and measures of neurological function. METHODS Rs-fMRI was obtained in 14 children after TBI and 14 controls matched for age, sex, and handedness. Whole-brain connectivity was evaluated separately for the default mode network (DMN) and dorsal attention network (DAN); Between-group contrasts identified regions with altered connectivity between TBI and control cohorts. In children with TBI, the relationships between regions of altered connectivity and performance on relevant functional measures were examined. RESULTS Compared to controls, children with TBI showed significantly greater connectivity between DMN and right dorsal premotor cortex (RdPM) and between DAN and bilateral sensorimotor cortex (SM1). In children with TBI, greater DMN-RdPM connectivity was associated with worse motor performance whereas greater DAN-LSM1 connectivity was associated with better motor performance; furthermore, DMN-RdPM and DAN-LSM1 connectivity were negatively correlated. CONCLUSION Rs-fMRI reveals significant altered connectivity in children with TBI compared to controls. After TBI in children, patterns of altered connectivity appear divergent, with increased DMN-motor network connectivity associated with worse motor control whereas increased DAN-motor network connectivity appears compensatory.
Collapse
Affiliation(s)
- S R Risen
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A D Barber
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - S H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - S J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
55
|
McGinn MJ, Povlishock JT. Cellular and molecular mechanisms of injury and spontaneous recovery. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:67-87. [PMID: 25702210 DOI: 10.1016/b978-0-444-52892-6.00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Until recently, most have assumed that traumatic brain injury (TBI) was singularly associated with the overt destruction of brain tissue resulting in subsequent morbidity or death. More recently, experimental and clinical studies have shown that the pathobiology of TBI is more complex, involving a host of cellular and subcellular changes that impact on neuronal function and viability while also affecting vascular reactivity and the activation of multiple biological response pathways. Here we review the brain's response to injury, examining both focal and diffuse changes and their implications for post-traumatic brain dysfunction and recovery. TBI-induced neuronal dysfunction and death as well as the diffuse involvement of multiple fiber projections are discussed together with considerations of how local axonal membrane changes or channelopathy translate into local ionic dysregulation and axonal disconnection. Concomitant changes in the cerebral microcirculation are also discussed and their relationship with the parallel changes in the brain's metabolism is considered. These cellular and subcellular events occurring within neurons and their blood supply are correlated with multiple biological response modifiers evoked by generalized post-traumatic inflammation and the parallel activation of oxidative stress processes. The chapter closes with considerations of recovery following focal or diffuse injury. Evidence for dynamic brain reorganization/repair is presented, with considerations of traumatically induced circuit disruption and their progression to either adaptive or in some cases, maladaptive reorganization.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Data from MRI can be used to generate detailed maps of central nervous system anatomy and functional activation. Here, we review new research that integrates advanced MRI acquisition and analysis to predict and track recovery following severe traumatic brain injury (TBI) or anoxic ischemic encephalopathy (AIE) following cardiac arrest. RECENT FINDINGS Diffusion tensor MRI studies of comatose TBI patients demonstrate specific distributions of white matter damage that are robustly associated with long-term functional outcomes. In unconscious patients with AIE, whole brain diffusion restriction has prognostic significance, as do regional changes in diffusion restriction or anisotropy. Results using functional MRI suggest that coma following TBI and cardiac arrest is associated with disconnections within cerebral architectures associated with arousal and conscious perception. The relation between these disconnections and postinjury recovery is being explored in ongoing cohorts. SUMMARY MRI of the brain is feasible in critically ill patients following TBI or cardiac arrest, revealing patterns of structural damage and functional disconnection that can help predict outcome in the long term. Prospective studies are needed to validate these findings and to identify relationships between MRI-defined alterations and specific postinjury cognitive and behavioural phenotypes.
Collapse
|
57
|
Robinson ME, Lindemer ER, Fonda JR, Milberg WP, McGlinchey RE, Salat DH. Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. Hum Brain Mapp 2014; 36:911-22. [PMID: 25366378 DOI: 10.1002/hbm.22675] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Although there is emerging data on the effects of blast-related concussion (or mTBI) on cognition, the effects of blast exposure itself on the brain have only recently been explored. Toward this end, we examine functional connectivity to the posterior cingulate cortex, a primary region within the default mode network (DMN), in a cohort of 134 Iraq and Afghanistan Veterans characterized for a range of common military-associated comorbidities. Exposure to a blast at close range (<10 meters) was associated with decreased connectivity of bilateral primary somatosensory and motor cortices, and these changes were not different from those seen in participants with blast-related mTBI. These results remained significant when clinical factors such as sleep quality, chronic pain, or post traumatic stress disorder were included in the statistical model. In contrast, differences in functional connectivity based on concussion history and blast exposures at greater distances were not apparent. Despite the limitations of a study of this nature (e.g., assessments long removed from injury, self-reported blast history), these data demonstrate that blast exposure per se, which is prevalent among those who served in Iraq and Afghanistan, may be an important consideration in Veterans' health. It further offers a clinical guideline for determining which blasts (namely, those within 10 meters) are likely to lead to long-term health concerns and may be more accurate than using concussion symptoms alone.
Collapse
Affiliation(s)
- Meghan E Robinson
- Neuroimaging Research for Veterans Center (NeRVe), VA Boston Healthcare System, Boston, Massachusetts; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
58
|
Yuan W, Wade SL, Babcock L. Structural connectivity abnormality in children with acute mild traumatic brain injury using graph theoretical analysis. Hum Brain Mapp 2014; 36:779-92. [PMID: 25363671 DOI: 10.1002/hbm.22664] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023] Open
Abstract
The traumatic biomechanical forces associated with mild traumatic brain injury (mTBI) typically impart diffuse, as opposed to focal, brain injury potentially disrupting the structural connectivity between neural networks. Graph theoretical analysis using diffusion tensor imaging was used to assess injury-related differences in structural connectivity between 23 children (age 11-16 years) with mTBI and 20 age-matched children with isolated orthopedic injuries (OI) scanned within 96 h postinjury. The distribution of hub regions and the associations between alterations in regional network measures and symptom burden, as assessed by the postconcussion symptom scale score (PCSS), were also examined. In comparison to the OI group, the mTBI group was found to have significantly higher small-worldness (P < 0.0001), higher normalized clustering coefficients (P < 0.0001), higher normalized characteristic path length (P = 0.007), higher modularity (P = 0.0005), and lower global efficiency (P < 0.0001). A series of hub regions in the mTBI group were found to have significant alterations in regional network measures including nodal degree, nodal clustering coefficient, and nodal between-ness centrality. Correlation analysis showed that PCSS total score acquired at the time of imaging was significantly associated with the nodal degree of two hubs, the superior frontal gyrus at orbital section and the middle frontal gyrus. These findings provide new evidence of acute white matter alteration at both global and regional network level following mTBI in children furthering our understanding of underlying mechanisms of acute neurological insult associated with mTBI.
Collapse
Affiliation(s)
- Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; College of Medicine University of Cincinnati, Cincinnati, Ohio
| | | | | |
Collapse
|
59
|
Gabriel M, Brennan NP, Peck KK, Holodny AI. Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning. Neuroimaging Clin N Am 2014; 24:557-71. [PMID: 25441500 DOI: 10.1016/j.nic.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has become a common tool for presurgical sensorimotor mapping, and is a significant preoperative asset for tumors located adjacent to the central sulcus. fMRI has changed surgical options for many patients. This noninvasive tool allows for easy display and integration with other neuroimaging techniques. Although fMRI is a useful preoperative tool, it is not perfect. Tumors that affect the normal vascular coupling of neuronal activity will affect fMRI measurements. This article discusses the usefulness of blood oxygen level dependent (BOLD) fMRI with regard to preoperative motor mapping.
Collapse
Affiliation(s)
- Meredith Gabriel
- Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nicole P Brennan
- Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kyung K Peck
- Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Andrei I Holodny
- Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
60
|
Abstract
Advances in task-based functional MRI (fMRI), resting-state fMRI (rs-fMRI), and arterial spin labeling (ASL) perfusion MRI have occurred at a rapid pace in recent years. These techniques for measuring brain function have great potential to improve the accuracy of prognostication for civilian and military patients with traumatic coma. In addition, fMRI, rs-fMRI, and ASL perfusion MRI have provided novel insights into the pathophysiology of traumatic disorders of consciousness, as well as the mechanisms of recovery from coma. However, functional neuroimaging techniques have yet to achieve widespread clinical use as prognostic tests for patients with traumatic coma. Rather, a broad spectrum of methodological hurdles currently limits the feasibility of clinical implementation. In this review, we discuss the basic principles of fMRI, rs-fMRI, and ASL perfusion MRI and their potential applications as prognostic tools for patients with traumatic coma. We also discuss future strategies for overcoming the current barriers to clinical implementation.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street - Lunder 650, Boston, MA 02114, USA.
| | | | | |
Collapse
|
61
|
Abstract
Diffuse axonal injury after traumatic brain injury (TBI) produces neurological impairment by disconnecting brain networks. This structural damage can be mapped using diffusion MRI, and its functional effects can be investigated in large-scale intrinsic connectivity networks (ICNs). Here, we review evidence that TBI substantially disrupts ICN function, and that this disruption predicts cognitive impairment. We focus on two ICNs--the salience network and the default mode network. The activity of these ICNs is normally tightly coupled, which is important for attentional control. Damage to the structural connectivity of these networks produces predictable abnormalities of network function and cognitive control. For example, the brain normally shows a 'small-world architecture' that is optimized for information processing, but TBI shifts network function away from this organization. The effects of TBI on network function are likely to be complex, and we discuss how advanced approaches to modelling brain dynamics can provide insights into the network dysfunction. We highlight how structural network damage caused by axonal injury might interact with neuroinflammation and neurodegeneration in the pathogenesis of Alzheimer disease and chronic traumatic encephalopathy, which are late complications of TBI. Finally, we discuss how network-level diagnostics could inform diagnosis, prognosis and treatment development following TBI.
Collapse
|
62
|
Bonita JD, Ambolode LCC, Rosenberg BM, Cellucci CJ, Watanabe TAA, Rapp PE, Albano AM. Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures. Cogn Neurodyn 2014; 8:1-15. [PMID: 24465281 PMCID: PMC3890093 DOI: 10.1007/s11571-013-9267-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022] Open
Abstract
Correlations between ten-channel EEGs obtained from thirteen healthy adult participants were investigated. Signals were obtained in two behavioral states: eyes open no task and eyes closed no task. Four time domain measures were compared: Pearson product moment correlation, Spearman rank order correlation, Kendall rank order correlation and mutual information. The psychophysiological utility of each measure was assessed by determining its ability to discriminate between conditions. The sensitivity to epoch length was assessed by repeating calculations with 1, 2, 3, …, 8 s epochs. The robustness to noise was assessed by performing calculations with noise corrupted versions of the original signals (SNRs of 0, 5 and 10 dB). Three results were obtained in these calculations. First, mutual information effectively discriminated between states with less data. Pearson, Spearman and Kendall failed to discriminate between states with a 1 s epoch, while a statistically significant separation was obtained with mutual information. Second, at all epoch durations tested, the measure of between-state discrimination was greater for mutual information. Third, discrimination based on mutual information was more robust to noise. The limitations of this study are discussed. Further comparisons should be made with frequency domain measures, with measures constructed with embedded data and with the maximal information coefficient.
Collapse
Affiliation(s)
- J. D. Bonita
- Department of Physics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - L. C. C. Ambolode
- Department of Physics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - B. M. Rosenberg
- Thomas Jefferson University College of Medicine, Philadelphia, PA USA
| | | | | | - P. E. Rapp
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - A. M. Albano
- Physics Department, Bryn Mawr College, Bryn Mawr, PA 19010 USA
| |
Collapse
|
63
|
Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: A review of epidemiology, pathology and neuroimaging techniques. ACTA ACUST UNITED AC 2014; 4. [PMID: 25324979 DOI: 10.4172/2161-0460.1000137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injuries (TBI) are induced by sudden acceleration-deceleration and/or rotational forces acting on the brain. Diffuse axonal injury (DAI) has been identified as one of the chief underlying causes of morbidity and mortality in head trauma incidents. DAIs refer to microscopic white matter (WM) injuries as a result of shearing forces that induce pathological and anatomical changes within the brain, which potentially contribute to significant impairments later in life. These microscopic injuries are often unidentifiable by the conventional computed tomography (CT) and magnetic resonance (MR) scans employed by emergency departments to initially assess head trauma patients and, as a result, TBIs are incredibly difficult to diagnose. The impairments associated with TBI may be caused by secondary mechanisms that are initiated at the moment of injury, but often have delayed clinical presentations that are difficult to assess due to the initial misdiagnosis. As a result, the true consequences of these head injuries may go unnoticed at the time of injury and for many years thereafter. The purpose of this review is to investigate these consequences of TBI and their potential link to neurodegenerative disease (ND). This review will summarize the current epidemiological findings, the pathological similarities, and new neuroimaging techniques that may help delineate the relationship between TBI and ND. Lastly, this review will discuss future directions and propose new methods to overcome the limitations that are currently impeding research progress. It is imperative that improved techniques are developed to adequately and retrospectively assess TBI history in patients that may have been previously undiagnosed in order to increase the validity and reliability across future epidemiological studies. The authors introduce a new surveillance tool (Retrospective Screening of Traumatic Brain Injury Questionnaire, RESTBI) to address this concern.
Collapse
Affiliation(s)
- Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Eric E Hall
- Department of Exercise Science, Elon University, Elon, NC, USA
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
64
|
Stubbs DJ, Yamamoto AK, Menon DK. Imaging in sepsis-associated encephalopathy--insights and opportunities. Nat Rev Neurol 2013; 9:551-61. [PMID: 23999468 DOI: 10.1038/nrneurol.2013.177] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sepsis-associated encephalopathy (SAE) refers to a clinical spectrum of acute neurological dysfunction that arises in the context of sepsis. Although the pathophysiology of SAE is incompletely understood, it is thought to involve endothelial activation, blood-brain barrier leakage, inflammatory cell migration, and neuronal loss with neurotransmitter imbalance. SAE is associated with a high risk of mortality. Imaging studies using MRI and CT have demonstrated changes in the brains of patients with SAE that are also seen in disorders such as stroke. Next-generation imaging techniques such as magnetic resonance spectroscopy, diffusion tensor imaging and PET, as well as experimental imaging modalities, provide options for early identification of patients with SAE, and could aid in identification of pathophysiological processes that represent possible therapeutic targets. In this Review, we explore the recent literature on imaging in SAE, relating the findings of these studies to pathological data and experimental studies to obtain insights into the pathophysiology of sepsis-associated neurological dysfunction. Furthermore, we suggest how novel imaging technologies can be used for early-stage proof-of-concept and proof-of-mechanism translational studies, which may help to improve diagnosis in SAE.
Collapse
Affiliation(s)
- Daniel J Stubbs
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | | | |
Collapse
|
65
|
Default mode network interference in mild traumatic brain injury - a pilot resting state study. Brain Res 2013; 1537:201-15. [PMID: 23994210 DOI: 10.1016/j.brainres.2013.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/12/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
Abstract
In this study we investigated the functional connectivity in 23 Mild TBI (mTBI) patients with and without memory complaints using resting state fMRI in the sub-acute stage of injury as well as a group of control participants. Results indicate that mTBI patients with memory complaints performed significantly worse than patients without memory complaints on tests assessing memory from the Automated Neuropsychological Assessment Metrics (ANAM). Altered functional connectivity was observed between the three groups between the default mode network (DMN) and the nodes of the task positive network (TPN). Altered functional connectivity was also observed between both the TPN and DMN and nodes associated with the Salience Network (SN). Following mTBI there is a reduction in anti-correlated networks for both those with and without memory complaints for the DMN, but only a reduction in the anti-correlated network in mTBI patients with memory complaints for the TPN. Furthermore, an increased functional connectivity between the TPN and SN appears to be associated with reduced performance on memory assessments. Overall the results suggest that a disruption in the segregation of the DMN and the TPN at rest may be mediated through both a direct pathway of increased FC between various nodes of the TPN and DMN, and through an indirect pathway that links the TPN and DMN through nodes of the SN. This disruption between networks may cause a detrimental impact on memory functioning following mTBI, supporting the Default Mode Interference Hypothesis in the context of mTBI related memory deficits.
Collapse
|
66
|
Han K, Mac Donald CL, Johnson AM, Barnes Y, Wierzechowski L, Zonies D, Oh J, Flaherty S, Fang R, Raichle ME, Brody DL. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. Neuroimage 2013; 84:76-96. [PMID: 23968735 DOI: 10.1016/j.neuroimage.2013.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 08/09/2013] [Indexed: 01/21/2023] Open
Abstract
Blast-related traumatic brain injury (TBI) has been one of the "signature injuries" of the wars in Iraq and Afghanistan. However, neuroimaging studies in concussive 'mild' blast-related TBI have been challenging due to the absence of abnormalities in computed tomography or conventional magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms. The goal of this study was to address these challenges utilizing single-subject, module-based graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20min of resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects underwent an initial scan within 90days post-injury and 65 subjects underwent a follow-up scan 6 to 12months later. A second independent cohort of 40 U.S. military personnel with concussive blast-related TBI served as a validation dataset. The second independent cohort underwent an initial scan within 30days post-injury. 75% of the scans were of good quality, with exclusions primarily due to excessive subject motion. Network analysis of the subset of these subjects in the first cohort with good quality scans revealed spatially localized reductions in the participation coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls at the time of the initial scan. These group differences were less prominent on the follow-up scans. The 15 brain areas with the most prominent reductions in the participation coefficient were next used as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than would be expected by chance (27/47 versus 2/47 expected, p<0.0001) had 3 or more brain regions with abnormally low between-module connectivity relative to the controls on the initial scans. On the follow-up scans, more subjects than expected by chance (5/37, p=0.044) but fewer subjects than on the initial scans had 3 or more brain regions with abnormally low between-module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters provided a partial replication; again more subjects than expected by chance (8/31, p=0.006) had 3 or more brain regions with abnormally low between-module connectivity on the initial scans, but the numbers were not significant (2/27, p=0.276) on the follow-up scans. A single-subject, multivariate analysis by probabilistic principal component analysis of the between-module connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31 patients were found to be abnormal in identical multivariate analysis with no free parameters. Again, there were not substantial differences on the follow-up scans. Taken together, these results indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides potentially useful information for concussive blast-related TBI if high quality scans can be obtained. The underlying biological mechanisms and consequences of disrupted between-module connectivity are unknown, thus further studies are required.
Collapse
Affiliation(s)
- Kihwan Han
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Harris NG, Chen SF, Pickard JD. Cortical reorganization after experimental traumatic brain injury: a functional autoradiography study. J Neurotrauma 2013; 30:1137-46. [PMID: 23305562 PMCID: PMC3700473 DOI: 10.1089/neu.2012.2785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cortical sensorimotor (SM) maps are a useful readout for providing a global view of the underlying status of evoked brain function, as well as a gross overview of ongoing mechanisms of plasticity. Recent evidence in the rat controlled cortical impact (CCI) injury model shows that the ipsilesional (injured) hemisphere is temporarily permissive for axon sprouting. This would predict that size and spatial alterations in cortical maps may occur much earlier than previously tested and that they might be useful as potential markers of the postinjury plasticity period as well as indicators of outcome. We investigated the evolution of changes in brain activation evoked by affected hindlimb electrical stimulation at 4, 7, and 30 days following CCI or sham injury over the hindlimb cortical region of adult rats. [(14)C]-iodoantipyrine autoradiography was used to quantitatively examine the local cerebral blood flow changes in response to hindlimb stimulation as a marker for neuronal activity. The results show that although ipsilesional hindlimb SM activity was persistently depressed from 4 days, additional novel regions of ipsilesional activity appeared concurrently within SM barrel and S2 regions as well as posterior auditory cortex. Simultaneously with this was the appearance of evoked activity within the intact, contralesional cortex that was maximal at 4 and 7 days, compared to stimulated sham-injured rats, where activation was solely unilateral. By 30 days, however, contralesional activation had greatly subsided and existing ipsilesional activity was enhanced within the same novel cortical regions that were identified acutely. These data indicate that significant reorganization of the cortical SM maps occurs after injury that evolves with a particular postinjury time course. We discuss these data in terms of the known mechanisms of plasticity that are likely to underlie these map changes, with particular reference to the differences and similarities that exist between rodent models of stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7039, USA.
| | | | | |
Collapse
|
68
|
Abstract
Diffuse axonal injury (DAI) remains a prominent feature of human traumatic brain injury (TBI) and a major player in its subsequent morbidity. The importance of this widespread axonal damage has been confirmed by multiple approaches including routine postmortem neuropathology as well as advanced imaging, which is now capable of detecting the signatures of traumatically induced axonal injury across a spectrum of traumatically brain-injured persons. Despite the increased interest in DAI and its overall implications for brain-injured patients, many questions remain about this component of TBI and its potential therapeutic targeting. To address these deficiencies and to identify future directions needed to fill critical gaps in our understanding of this component of TBI, the National Institute of Neurological Disorders and Stroke hosted a workshop in May 2011. This workshop sought to determine what is known regarding the pathogenesis of DAI in animal models of injury as well as in the human clinical setting. The workshop also addressed new tools to aid in the identification of this axonal injury while also identifying more rational therapeutic targets linked to DAI for continued preclinical investigation and, ultimately, clinical translation. This report encapsulates the oral and written components of this workshop addressing key features regarding the pathobiology of DAI, the biomechanics implicated in its initiating pathology, and those experimental animal modeling considerations that bear relevance to the biomechanical features of human TBI. Parallel considerations of alternate forms of DAI detection including, but not limited to, advanced neuroimaging, electrophysiological, biomarker, and neurobehavioral evaluations are included, together with recommendations for how these technologies can be better used and integrated for a more comprehensive appreciation of the pathobiology of DAI and its overall structural and functional implications. Lastly, the document closes with a thorough review of the targets linked to the pathogenesis of DAI, while also presenting a detailed report of those target-based therapies that have been used, to date, with a consideration of their overall implications for future preclinical discovery and subsequent translation to the clinic. Although all participants realize that various research gaps remained in our understanding and treatment of this complex component of TBI, this workshop refines these issues providing, for the first time, a comprehensive appreciation of what has been done and what critical needs remain unfulfilled.
Collapse
Affiliation(s)
- Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramona Hicks
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
69
|
Abstract
Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization, and interpretation.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
70
|
Abstract
Over the past 20 years, neuroimaging has become a predominant technique in systems neuroscience. One might envisage that over the next 20 years the neuroimaging of distributed processing and connectivity will play a major role in disclosing the brain's functional architecture and operational principles. The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses. I accepted the invitation to write this review with great pleasure and hope to celebrate and critique the achievements to date, while addressing the challenges ahead.
Collapse
Affiliation(s)
- Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom.
| |
Collapse
|
71
|
Moretti L, Cristofori I, Weaver SM, Chau A, Portelli JN, Grafman J. Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol 2013; 11:1103-12. [PMID: 23153408 DOI: 10.1016/s1474-4422(12)70226-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is an important public health problem with potentially serious long-term neurobehavioural sequelae. There is evidence to suggest that a history of TBI can increase a person's risk of developing Alzheimer's disease. However, individuals with dementia do not usually have a history of TBI, and survivors of TBI do not invariably acquire dementia later in life. Instead, a history of traumatic brain injury, combined with brain changes associated with normal ageing, might lead to exacerbated cognitive decline in older adults. Strategies to increase or maintain cognitive reserve might help to prevent exacerbated decline after TBI. Systematic clinical assessment could help to differentiate between exacerbated cognitive decline and mild cognitive impairment, a precursor of Alzheimer's disease, with important implications for patients and their families.
Collapse
Affiliation(s)
- Laura Moretti
- Traumatic Brain Injury Research Laboratory, Kessler Foundation, West Orange, NJ, USA
| | | | | | | | | | | |
Collapse
|
72
|
Stocchetti N, Le Roux P, Vespa P, Oddo M, Citerio G, Andrews PJ, Stevens RD, Sharshar T, Taccone FS, Vincent JL. Clinical review: neuromonitoring - an update. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:201. [PMID: 23320763 PMCID: PMC4057243 DOI: 10.1186/cc11513] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Critically ill patients are frequently at risk of neurological dysfunction as a result of primary neurological conditions or secondary insults. Determining which aspects of brain function are affected and how best to manage the neurological dysfunction can often be difficult and is complicated by the limited information that can be gained from clinical examination in such patients and the effects of therapies, notably sedation, on neurological function. Methods to measure and monitor brain function have evolved considerably in recent years and now play an important role in the evaluation and management of patients with brain injury. Importantly, no single technique is ideal for all patients and different variables will need to be monitored in different patients; in many patients, a combination of monitoring techniques will be needed. Although clinical studies support the physiologic feasibility and biologic plausibility of management based on information from various monitors, data supporting this concept from randomized trials are still required.
Collapse
|
73
|
Kozlowski DA, Leasure JL, Schallert T. The Control of Movement Following Traumatic Brain Injury. Compr Physiol 2013; 3:121-39. [DOI: 10.1002/cphy.c110005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
74
|
Ham TE, Sharp DJ. How can investigation of network function inform rehabilitation after traumatic brain injury? Curr Opin Neurol 2012; 25:662-9. [DOI: 10.1097/wco.0b013e328359488f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Stevens MC, Lovejoy D, Kim J, Oakes H, Kureshi I, Witt ST. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav 2012; 6:293-318. [PMID: 22555821 DOI: 10.1007/s11682-012-9157-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.
Collapse
Affiliation(s)
- Michael C Stevens
- Olin Neuropsychiatry Research Center, The Institute of Living/Hartford Hospital, CT, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Capturing dynamic patterns of task-based functional connectivity with EEG. Neuroimage 2012; 66:311-7. [PMID: 23142654 DOI: 10.1016/j.neuroimage.2012.10.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022] Open
Abstract
A new approach to trace the dynamic patterns of task-based functional connectivity, by combining signal segmentation, dynamic time warping (DTW), and Quality Threshold (QT) clustering techniques, is presented. Electroencephalography (EEG) signals of 5 healthy subjects were recorded as they performed an auditory oddball and a visual modified oddball tasks. To capture the dynamic patterns of functional connectivity during the execution of each task, EEG signals are segmented into durations that correspond to the temporal windows of previously well-studied event-related potentials (ERPs). For each temporal window, DTW is employed to measure the functional similarities among channels. Unlike commonly used temporal similarity measures, such as cross correlation, DTW compares time series by taking into consideration that their alignment properties may vary in time. QT clustering analysis is then used to automatically identify the functionally connected regions in each temporal window. For each task, the proposed approach was able to establish a unique sequence of dynamic pattern (observed in all 5 subjects) for brain functional connectivity.
Collapse
|
77
|
Beucke JC, Kaufmann C, Linnman C, Gruetzmann R, Endrass T, Deckersbach T, Dougherty DD, Kathmann N. Altered Cingulostriatal Coupling in Obsessive–Compulsive Disorder. Brain Connect 2012; 2:191-202. [DOI: 10.1089/brain.2012.0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jan Carl Beucke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Neurotherapeutics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clas Linnman
- Center for Pain and the Brain, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Rosa Gruetzmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tanja Endrass
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thilo Deckersbach
- Division of Neurotherapeutics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Darin D. Dougherty
- Division of Neurotherapeutics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
78
|
Electrophysiological abnormalities in both axotomized and nonaxotomized pyramidal neurons following mild traumatic brain injury. J Neurosci 2012; 32:6682-7. [PMID: 22573690 DOI: 10.1523/jneurosci.0881-12.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) often produces lasting detrimental effects on cognitive processes. The mechanisms underlying neurological abnormalities have not been fully identified, in part due to the diffuse pathology underlying mTBI. Here we employ a mouse model of mTBI that allows for identification of both axotomized and intact neurons in the living cortical slice via neuronal expression of yellow fluorescent protein. Both axotomized and intact neurons recorded within injured cortex are healthy with a normal resting membrane potential, time constant (τ), and input resistance (R(in)). In control cortex, 25% of cells show an intrinsically bursting action potential (AP) firing pattern, and the rest respond to injected depolarizing current with a regular-spiking pattern. At 2 d postinjury, intrinsic bursting activity is lost within the intact population. The AP amplitude is increased and afterhyperpolarization duration decreased in axotomized neurons at 1 and 2 d postinjury. In contrast, intact neurons also show these changes at 1 d, but recover by 2 d postinjury. Two measures suggest an initial decrease in excitability in axotomized neurons followed by an increase in excitability within intact neurons. The rheobase is significantly increased in axotomized neurons at 1 d postinjury. The slope of the plot of AP frequency versus injected current is larger for intact neurons at 2 d postinjury. Together, these results demonstrate that intact and axotomized neurons are both affected by mTBI, resulting in different changes in neuronal excitability that may contribute to network dysfunction following TBI.
Collapse
|
79
|
Toledo E, Lebel A, Becerra L, Minster A, Linnman C, Maleki N, Dodick DW, Borsook D. The young brain and concussion: imaging as a biomarker for diagnosis and prognosis. Neurosci Biobehav Rev 2012; 36:1510-31. [PMID: 22476089 PMCID: PMC3372677 DOI: 10.1016/j.neubiorev.2012.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 03/21/2012] [Indexed: 01/20/2023]
Abstract
Concussion (mild traumatic brain injury (mTBI)) is a significant pediatric public health concern. Despite increased awareness, a comprehensive understanding of the acute and chronic effects of concussion on central nervous system structure and function remains incomplete. Here we review the definition, epidemiology, and sequelae of concussion within the developing brain, during childhood and adolescence, with current data derived from studies of pathophysiology and neuroimaging. These findings may contribute to a better understanding of the neurological consequences of traumatic brain injuries, which in turn, may lead to the development of brain biomarkers to improve identification, management and prognosis of pediatric patients suffering from concussion.
Collapse
Affiliation(s)
- Esteban Toledo
- Center for Pain and the Brain, Children's Hospital Boston, Harvard Medical School, United States
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Stroman P, Bosma R, Kornelsen J, Lawrence-Dewar J, Wheeler-Kingshott C, Cadotte D, Fehlings M. Advanced MR imaging techniques and characterization of residual anatomy. Clin Neurol Neurosurg 2012; 114:460-70. [DOI: 10.1016/j.clineuro.2012.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022]
|
81
|
Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, Yu C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage 2012; 61:1213-25. [PMID: 22525876 DOI: 10.1016/j.neuroimage.2012.04.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 11/28/2022] Open
Abstract
The human cerebellum is a heterogeneous structure, and the pattern of resting-state functional connectivity (rsFC) of each subregion has not yet been fully characterized. We aimed to systematically investigate rsFC pattern of each cerebellar subregion in 228 healthy young adults. Voxel-based analysis revealed that several subregions showed similar rsFC patterns, reflecting functional integration; however, different subregions displayed distinct rsFC patterns, representing functional segregation. The same vermal and hemispheric subregions showed either different patterns or different strengths of rsFCs with the cerebrum, and different subregions of lobules VII and VIII displayed different rsFC patterns. Region of interest (ROI)-based analyses also confirmed these findings. Specifically, strong rsFCs were found: between lobules I-VI and vermal VIIb-IX and the visual network; between hemispheric VI, VIIb, VIIIa and the auditory network; between lobules I-VI, VIII and the sensorimotor network; between lobule IX, vermal VIIIb and the default-mode network; between lobule Crus I, hemispheric Crus II and the fronto-parietal network; between hemispheric VIIb, VIII and the task-positive network; between hemispheric VI, VIIb, VIII and the salience network; between most cerebellar subregions and the thalamus; between lobules V, VIIb and the midbrain red nucleus; between hemispheric Crus I, Crus II, vermal VIIIb, IX and the caudate nucleus; between lobules V, VI, VIIb, VIIIa and the pallidum and putamen; and between lobules I-V, hemispheric VIII, IX and the hippocampus and amygdala. These results confirm the existence of both functional integration and segregation among cerebellar subregions and largely improve our understanding of the functional organization of the human cerebellum.
Collapse
Affiliation(s)
- Li Sang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 2012; 59:2017-24. [PMID: 22040736 DOI: 10.1016/j.neuroimage.2011.10.050] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/04/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI) due to explosive blast is common among military service members and often associated with long term psychological and cognitive disruptions. Little is known about the neurological effects of blast-related mTBI and whether they differ from those of civilian, non-blast mTBI. Given that brain damage from blasts may be diffuse and heterogeneous, we tested the hypothesis that blast mTBI is associated with subtle white matter disruptions in the brain that are spatially inconsistent across individuals. We used diffusion tensor imaging to examine white matter integrity, as quantified by fractional anisotropy (FA), in a group of American military service members with (n=25) or without (n=33) blast-related mTBI who had been deployed as part of Operation Iraqi Freedom or Operation Enduring Freedom. History of civilian non-blast mTBI was equally common across groups, which enabled testing of both blast and non-blast mTBI effects on measures sensitive to (1) concentrated, spatially consistent (average FA within a region of interest [ROI]), (2) concentrated, spatially variable (number of ROIs with low average FA), and (3) diffuse (number of voxels with low FA) disruptions of white matter integrity. Blast mTBI was associated with a diffuse, global pattern of lower white matter integrity, and this pattern was not affected by previous civilian mTBI. Neither type of mTBI had an effect on the measures sensitive to more concentrated and spatially consistent white matter disruptions. Additionally, individuals with more than one blast mTBI tended to have a larger number of low FA voxels than individuals with a single blast injury. These results indicate that blast mTBI is associated with disrupted integrity of several white matter tracts, and that these disruptions are diluted by averaging across the large number of voxels within an ROI. The reported pattern of effects supports the conclusion that the neurological effects of blast mTBI are diffuse, widespread, and spatially variable.
Collapse
|
83
|
Kasahara M, Menon DK, Salmond CH, Outtrim JG, Tavares JVT, Carpenter TA, Pickard JD, Sahakian BJ, Stamatakis EA. Traumatic brain injury alters the functional brain network mediating working memory. Brain Inj 2011; 25:1170-87. [DOI: 10.3109/02699052.2011.608210] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
84
|
Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle V, De Boissezon X, Powell JH, Counsell SJ, Patel MC, Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011; 134:2233-47. [DOI: 10.1093/brain/awr175] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|