51
|
Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 2016; 126:191-200. [PMID: 27035164 DOI: 10.3171/2016.1.jns151591] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastoma is the most common malignant brain tumor, and it carries an extremely poor prognosis. Attempts to develop targeted therapies have been hindered because the blood-brain barrier prevents many drugs from reaching tumors cells. Furthermore, systemic toxicity of drugs often limits their therapeutic potential. A number of alternative methods of delivery have been developed, one of which is convection-enhanced delivery (CED), the focus of this review. The authors describe CED as a therapeutic measure and review preclinical studies and the most prominent clinical trials of CED in the treatment of glioblastoma. The utilization of this technique for the delivery of a variety of agents is covered, and its shortcomings and challenges are discussed in detail.
Collapse
Affiliation(s)
- Arman Jahangiri
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California
| | - Aaron T Chin
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California
| | - Patrick M Flanigan
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California
| | - Rebecca Chen
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California
| | - Krystof Bankiewicz
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California
| | - Manish K Aghi
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California
| |
Collapse
|
52
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
53
|
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii3-ii8. [PMID: 25746090 DOI: 10.1093/neuonc/nou354] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low-positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique.
Collapse
Affiliation(s)
- Michael A Vogelbaum
- Brain Tumor & Neuro-Oncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurological Surgery, University of California, San Francisco, California (M.K.A.)
| | - Manish K Aghi
- Brain Tumor & Neuro-Oncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurological Surgery, University of California, San Francisco, California (M.K.A.)
| |
Collapse
|
54
|
Azad TD, Pan J, Connolly ID, Remington A, Wilson CM, Grant GA. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus 2015; 38:E9. [PMID: 25727231 DOI: 10.3171/2014.12.focus14758] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBB's physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | |
Collapse
|
55
|
Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 2015; 15:845-63. [PMID: 25294374 DOI: 10.1631/jzus.b1400131] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.
Collapse
Affiliation(s)
- Chai-Hong Yeong
- Department of Biomedical Imaging & University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | | | | |
Collapse
|
56
|
Mehta AI, Linninger A, Lesniak MS, Engelhard HH. Current status of intratumoral therapy for glioblastoma. J Neurooncol 2015; 125:1-7. [DOI: 10.1007/s11060-015-1875-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/26/2015] [Indexed: 12/26/2022]
|
57
|
Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 2015; 6:353-69. [PMID: 25853310 DOI: 10.4155/tde.14.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.
Collapse
|
58
|
Li Y, Liu X, Zhang D, Lou B, Peng F, Wang X, Shan X, Jiang C, Gao M, Sun Z, Ni Y, Huang D, Zhang J. Evaluation of a metalloporphyrin (THPPMnCl) for necrosis-affinity in rat models of necrosis. J Drug Target 2015; 23:926-35. [PMID: 25950601 DOI: 10.3109/1061186x.2015.1036358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The combination of an (13I)I-labeled necrosis-targeting agent (NTA) with a vascular disrupting agent is a novel and potentially powerful technique for tumor necrosis treatment (TNT). The purpose of this study was to evaluate a NTA candidate, THPPMnCl, using (131)I isotope for tracing its biodistribution and necrosis affinity. (131)I-THPPMnCl was intravenously injected in rat models with liver, muscle, and tumor necrosis and myocardial infarction (MI), followed by investigations with macroscopic autoradiography, triphenyltetrazolium chloride (TTC) histochemical staining, fluorescence microscopy and H&E stained histology for up to 9 days. (131)I-THPPMnCl displayed a long-term affinity for all types of necrosis and accumulation in the mononuclear phagocytic system especially in the liver. Autoradiograms and TTC staining showed a good targetability of (131)I-THPPMnCl for MI. These findings indicate the potential of THPPMnCl for non-invasive imaging assessment of necrosis, such as in MI. However, (13I)I-THPPMnCl is unlikely suitable for TNT due to its long-term retention in normal tissues.
Collapse
Affiliation(s)
- Yue Li
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Xuejiao Liu
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Dongjian Zhang
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Bin Lou
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Fei Peng
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Xiaoning Wang
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Xin Shan
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Cuihua Jiang
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Meng Gao
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Ziping Sun
- b Radiation Medical Institute, Shandong Academy of Medical Sciences , Jinan , Shandong Province , P.R. China , and
| | - Yicheng Ni
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and.,c Department of Radiology , KU Leuven , Leuven , Belgium
| | - Dejian Huang
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| | - Jian Zhang
- a Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China and
| |
Collapse
|
59
|
Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH. Convection-enhanced delivery to the central nervous system. J Neurosurg 2015; 122:697-706. [DOI: 10.3171/2014.10.jns14229] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Convection-enhanced delivery (CED) is a bulk flow–driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.
Collapse
Affiliation(s)
- Russell R. Lonser
- 1Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- 2Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | - Malisa Sarntinoranont
- 3Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida; and
| | - Paul F. Morrison
- 4Biomedical Engineering and Physical Science Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Edward H. Oldfield
- 2Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
- 5Department of Neurological Surgery, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
60
|
Mangraviti A, Tyler B, Brem H. Interstitial chemotherapy for malignant glioma: Future prospects in the era of multimodal therapy. Surg Neurol Int 2015; 6:S78-84. [PMID: 25722936 PMCID: PMC4338488 DOI: 10.4103/2152-7806.151345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022] Open
Abstract
The advent of interstitial chemotherapy has significantly increased therapeutic options for patients with malignant glioma. Interstitial chemotherapy can deliver high concentrations of chemotherapeutic agents, directly at the site of the brain tumor while bypassing systemic toxicities. Gliadel, a locally implanted polymer that releases the alkylating agent carmustine, given alone and in combination with various other antitumor and resistance modifying therapies, has significantly increased the median survival for patients with malignant glioma. Convection enhanced delivery, a technique used to directly infuse drugs into brain tissue, has shown promise for the delivery of immunotoxins, monoclonal antibodies, and chemotherapeutic agents. Preclinical studies include delivery of chemotherapeutic and immunomodulating agents by polymer and microchips. Interstitial chemotherapy was shown to maximize local efficacy and is an important strategy for the efficacy of any multimodal approach.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
61
|
Healy AT, Vogelbaum MA. Convection-enhanced drug delivery for gliomas. Surg Neurol Int 2015; 6:S59-67. [PMID: 25722934 PMCID: PMC4338487 DOI: 10.4103/2152-7806.151337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
In spite of aggressive multi-modality treatments, patients diagnosed with anaplastic astrocytoma and glioblastoma continue to display poor median survival. The success of our current conventional and targeted chemotherapies are largely hindered by systemic- and neurotoxicity, as well as poor central nervous system (CNS) penetration. Interstitial drug administration via convection-enhanced delivery (CED) is an alternative that potentially overcomes systemic toxicities and CNS delivery issues by directly bypassing the blood–brain barrier (BBB). This novel approach not only allows for directed administration, but also allows for newer, tumor-selective agents, which would normally be excluded from the CNS due to molecular size alone. To date, randomized trials of CED therapy have yet to definitely show survival advantage as compared with today's standard of care, however, early studies appear to have been limited by “first generation” delivery techniques. Taking into consideration lessons learned from early trials along with decades of research, newer CED technologies and therapeutic agents are emerging, which are reviewed herein.
Collapse
Affiliation(s)
- Andrew T Healy
- Neurosurgical Resident, Department of Neurological Surgery, Director, Center for Translational Therapeutics, Associate Director, Brain Tumor and Neuro-Oncology Center, ND40, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Michael A Vogelbaum
- Department of Neurological Surgery, Director, Center for Translational Therapeutics, Associate Director, Brain Tumor and Neuro-Oncology Center, ND40, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
62
|
Parseghian MH, Mechetner E, Osidak MS, Domogatskii SP. Application of monoclonal antibodies for the diagnostic and therapeutic targeting of human tumors with a necrotic component. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214020364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
63
|
De Bonis P, Lofrese G, Anile C, Pompucci A, Vigo V, Mangiola A. Radioimmunotherapy for high-grade glioma. Immunotherapy 2014; 5:647-59. [PMID: 23725287 DOI: 10.2217/imt.13.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with high-grade glioma (HGG) still have a very poor prognosis. The infiltrative nature of the tumor and the inter- and intra-tumoral cellular and genetic heterogeneity, leading to the acquisition of new mutations over time, represent the main causes of treatment failure. Radioimmunotherapy represents an emerging approach for the treatment of HGG. Radioimmunotherapy utilizes a molecular vehicle (monoclonal antibodies) to deliver a radionuclide (the drug) to a selected cell population target. This review will provide an overview of preclinical and clinical studies to date and assess the effectiveness of radioimmunotherapy, focusing on possible future therapies for the treatment of HGG.
Collapse
Affiliation(s)
- Pasquale De Bonis
- Department of Neurosurgery, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
64
|
Oh JS, Kwon YS, Lee KH, Jeong W, Chung SK, Rhee K. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles. Comput Biol Med 2014; 44:37-43. [DOI: 10.1016/j.compbiomed.2013.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 12/20/2022]
|
65
|
Selek L, Seigneuret E, Nugue G, Wion D, Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T, Berger F. Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal. J Neurosci Methods 2013; 221:159-65. [PMID: 24126047 DOI: 10.1016/j.jneumeth.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/29/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
The prognosis of glioblastoma remains poor despite significant improvement in cytoreductive surgery, external irradiation and new approach of systemic treatment as antiangiogenic therapy. One of the issues is the low concentration in the infiltrated parenchyma of therapeutic agent administered intravenously mainly due to the blood-brain barrier. An intracerebral injection is advocated to overpass this barrier, this kind of administration need a low flow and continuous injection. The development of sophisticated implanted devices for convection-enhanced delivery is a mandatory step to have a controlled released of a therapeutic agent in glioblastoma treatment. Before testing such a device in a clinical trial a serious preclinical studies are required, in order to test it in realistic conditions we have develop the first induced high grade glioma model in a non-rodent animal: the pig. 21 pigs have been implanted in the parietal lobe with human glioblastoma cell lineage under a chemical immunosuppression by ciclosporine. A MRI follow up was then realized. 15 pigs have been implanted with U87MG, 14 have presented a macroscopic significant tumor, with radiological and anatomapathological characteristics of high grade glioma. 6 pigs were implanted with G6, stem-like cells tumors of glioblastoma, 1 pig develops a macroscopic tumor. This is the first reproducible glioma model in a large animal described, it open the way to preclinical studies to test implanted devices in anatomic realistic conditions, without the ethical issues of a primate use.
Collapse
Affiliation(s)
- Laurent Selek
- Clinique de neurochirurgie, CHU Grenoble, B.P. 217, 38043 Grenoble Cedex 09, France; Equipe 7 nanomedecine et cerveau, Inserm U836, Grenoble institut des Neurosciences, Chemin Fortuné Ferrini, Université Joseph Fourier - Site Santé, Bâtiment: Edmond J. Safra, 38706 La Tronche Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Sugiyama SI, Yamashita Y, Kikuchi T, Sonoda Y, Kumabe T, Tominaga T. Enhanced antitumor effect of combined-modality treatment using convection-enhanced delivery of hydrophilic nitrosourea with irradiation or systemic administration of temozolomide in intracranial brain tumor xenografts. Neurol Res 2013; 30:960-7. [DOI: 10.1179/174313208x331581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
67
|
Lopez KA, Waziri AE, Canoll PD, Bruce JN. Convection-enhanced delivery in the treatment of malignant glioma. Neurol Res 2013; 28:542-8. [PMID: 16808887 DOI: 10.1179/016164106x116836] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Despite advancements in glioma therapy, median survival remains low because of rapid post-resection recurrence. A regional method of drug delivery to address local invasion may improve clinical outcomes. Convection-enhanced delivery (CED) is a novel therapy that allows distribution of substances throughout the interstitium via positive-pressure infusion. Studies using various agents have investigated the parameters that affect CED including infusion rate, cannula size, infusion volume, extracellular space, particle characteristics and tumor tissue structure. We review models of small animal glioma that have been successfully treated using different substances administered through CED, particularly our favorable results using topotecan in a C6 rat glioma model. We also review Phase I/II trials utilizing CED which have shown promising response rates and acceptable safety profiles. Future studies should include prospective clinical trials and investigation of novel antitumor agents that are ineffective with systemic delivery. Development of a large animal glioma model would enhance pre-clinical investigation of CED. Clinically, methods to monitor distribution of therapeutic agents and real-time patient response should likewise be explored.
Collapse
Affiliation(s)
- Kim A Lopez
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
68
|
Mehta AI, Choi BD, Ajay D, Raghavan R, Brady M, Friedman AH, Pastan I, Bigner DD, Sampson JH. Convection enhanced delivery of macromolecules for brain tumors. Curr Drug Discov Technol 2013; 9:305-10. [PMID: 22339074 DOI: 10.2174/157016312803305951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 11/22/2022]
Abstract
The blood brain barrier (BBB) poses a significant challenge for drug delivery of macromolecules into the brain. Convection-enhanced delivery (CED) circumvents the BBB through direct intracerebral infusion using a hydrostatic pressure gradient to transfer therapeutic compounds. The efficacy of CED is dependent on the distribution of the therapeutic agent to the targeted region. Here we present a review of convection enhanced delivery of macromolecules, emphasizing the role of tracers in enabling effective delivery anddiscuss current challenges in the field.
Collapse
Affiliation(s)
- Ankit I Mehta
- Division of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Saito R, Tominaga T. Convection-enhanced delivery: from mechanisms to clinical drug delivery for diseases of the central nervous system. Neurol Med Chir (Tokyo) 2013; 52:531-8. [PMID: 22976134 DOI: 10.2176/nmc.52.531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of cancer chemotherapy has been a major advance in medical science in the late 20th century. However, patients with malignant gliomas have not benefitted much. The blood-brain barrier (BBB), which always hinders the entry of therapeutic agents into the central nervous system (CNS), may at least partly be responsible. Convection-enhanced delivery (CED), a method for distributing large and small molecular weight compounds bypassing the BBB, enables robust distribution of the infused molecules at the site of infusion. CED is promising as an effective treatment not only for malignant gliomas but also for multiple CNS disorders because this method can effectively distribute multiple molecules that are potentially effective against different diseases. Although the method is quite simple, several problems require solution in developing novel CED-based strategies, including what, where, when, and how to infuse. This review discusses basic considerations when developing CED-based strategies for CNS diseases, focusing mainly on brain tumors.
Collapse
Affiliation(s)
- Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | |
Collapse
|
70
|
AndersoN RCE, Kennedy B, Yanes CL, Garvin J, Needle M, Canoll P, Feldstein NA, Bruce JN. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr 2013; 11:289-95. [PMID: 23240851 PMCID: PMC7227321 DOI: 10.3171/2012.10.peds12142] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Convection-enhanced delivery (CED) for the treatment of malignant gliomas is a technique that can deliver chemotherapeutic agents directly into the tumor and the surrounding interstitium through sustained, low-grade positive-pressure infusion. This allows for high local concentrations of drug within the tumor while minimizing systemic levels that often lead to dose-limiting toxicity. Diffuse intrinsic pontine gliomas (DIPGs) are universally fatal childhood tumors for which there is currently no effective treatment. In this report the authors describe CED of the topoisomerase inhibitor topotecan for the treatment of DIPG in 2 children. As part of a pilot feasibility study, the authors treated 2 pediatric patients with DIPG. Stereotactic biopsy with frozen section confirmation of glial tumor was followed by placement of bilateral catheters for CED of topotecan during the same procedure. The first patient underwent CED 210 days after initial diagnosis, after radiation therapy and at the time of tumor recurrence, with a total dose of 0.403 mg in 6.04 ml over 100 hours. Her Karnofsky Performance Status (KPS) score was 60 before CED and 50 posttreatment. Serial MRI initially demonstrated a modest reduction in tumor size and edema, but the tumor progressed and the patient died 49 days after treatment. The second patient was treated 24 days after the initial diagnosis prior to radiation with a total dose of 0.284 mg in 5.30 ml over 100 hours. Her KPS score was 70 before CED and 50 posttreatment. Serial MRI similarly demonstrated an initial modest reduction in tumor size. The patient subsequently underwent fractionated radiation therapy, but the tumor progressed and she died 120 days after treatment. Topotecan delivered by prolonged CED into the brainstem in children with DIPG is technically feasible. In both patients, high infusion rates (> 0.12 ml/hr) and high infusion volumes (> 2.8 ml) resulted in new neurological deficits and reduction in the KPS score, but lower infusion rates (< 0.04 ml/hr) were well tolerated. While serial MRI showed moderate treatment effect, CED did not prolong survival in these 2 patients. More studies are needed to improve patient selection and determine the optimal flow rates for CED of chemotherapeutic agents into DIPG to maximize safety and efficacy. Clinical trial registration no.: NCT00324844.
Collapse
Affiliation(s)
- Richard C. E. AndersoN
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Benjamin Kennedy
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Candix L. Yanes
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - James Garvin
- Departments of Oncology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Michael Needle
- Departments of Oncology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Peter Canoll
- Departments of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Neil A. Feldstein
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Jeffrey N. Bruce
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
71
|
Convection-enhanced delivery for targeted delivery of antiglioma agents: the translational experience. JOURNAL OF DRUG DELIVERY 2013; 2013:107573. [PMID: 23476784 PMCID: PMC3586495 DOI: 10.1155/2013/107573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022]
Abstract
Recent improvements in the understanding of glioblastoma (GBM) have allowed for increased ability to develop specific, targeted therapies. In parallel, however, there is a need for effective methods of delivery to circumvent the therapeutic obstacles presented by the blood-brain barrier and systemic side effects. The ideal delivery system should allow for adequate targeting of the tumor while minimizing systemic exposure, applicability across a wide range of potential therapies, and have existing safe and efficacious systems that allow for widespread application. Though many alternatives to systemic delivery have been developed, this paper will focus on our experience with convection-enhanced delivery (CED) and our focus on translating this technology from pre-clinical studies to the treatment of human GBM.
Collapse
|
72
|
Tomblyn MB, Katin MJ, Wallner PE. The New Golden Era for Radioimmunotherapy: Not Just for Lymphomas Anymore. Cancer Control 2013; 20:60-71. [DOI: 10.1177/107327481302000109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Michael B. Tomblyn
- Department of Radiation Oncology at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | |
Collapse
|
73
|
Litvak-Greenfeld D, Benhar I. Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 2012; 64:1782-99. [PMID: 22659123 DOI: 10.1016/j.addr.2012.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 01/08/2023]
Abstract
Antibody-based immunoconjugates are specifically targeted monoclonal antibodies that deliver a cytotoxic payload to their target. The cytotoxic agents can be highly potent drugs, radionuclides or toxins. Such molecules, referred to as antibody-drug conjugates, radioimmunoconjugates and immunotoxins, respectively, represent a promising approach for enhancing the efficacy of unconjugated (naked) antibodies for improved therapeutic results. Though tremendous progress has been achieved over the last few decades, the safety of these molecules still remains a matter of concern and a careful design is required for achieving a relatively safe toxicity profile along with therapeutic effectiveness. This review focuses on the toxicities arising from the use of these potent agents.
Collapse
|
74
|
Hdeib A, Sloan A. Targeted radioimmunotherapy: the role of ¹³¹I-chTNT-1/B mAb (Cotara) for treatment of high-grade gliomas. Future Oncol 2012; 8:659-69. [PMID: 22764763 DOI: 10.2217/fon.12.58] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prognosis for patients with malignant gliomas remains poor, and novel treatment paradigms are needed. Radioimmunotherapeutic drugs have been studied in clinical trials as adjuncts to treatment for these tumors. One such agent is (131)I-chTNT-1/B mAb (Cotara(®)), a compound locally delivered to the tumor site through convection-enhanced delivery. It is a genetically engineered chimeric monoclonal antibody that binds to the DNA-histone H1 complex, and carries (131)I, which locally delivers its radioactive payload to kill adjacent tumor cells. Clinical experience with Cotara is emerging; completed Phase I and II trials with a total of 51 patients helped to define dosing regimens for the drug. A recent Phase II dose-confirmation trial with Cotara for patients with glioblastoma multiforme at first relapse has demonstrated promising overall survival results of 41 weeks. This review explores the clinical experience of radioimmunotherapy and describes the role of Cotara for treatment of patients with malignant gliomas.
Collapse
Affiliation(s)
- Alia Hdeib
- Department of Neurological Surgery, Seidman Cancer Center of the University Hospital-Case Medical Center & Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, University Hospital-Case Medical Center, 11100 Euclid Ave, HAN 524, Cleveland, OH 44106, USA
| | | |
Collapse
|
75
|
Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 2012; 436:299-310. [PMID: 22721856 DOI: 10.1016/j.ijpharm.2012.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
As primary brain tumors, malignant gliomas are known to be one of the most insidious types of brain cancer afflicting the humans. The current standard strategy for the treatment of malignant gliomas includes the surgical resection of the tumor when possible, followed by a combination of radiotherapy and/or a certain chemotherapeutic protocol. However, due to the short mean survival, frequent recurrences, and poor prognosis associated with the tumors, new therapeutic strategies are investigated consecutively. These novel drug delivery approaches can be subdivided as systemic and local drug administration. This review focuses on localized drug delivery strategies for the treatment of malignant gliomas, including the injections, infusions, trans-nasal delivery systems, convection enhanced delivery (CED) systems, and various types of polymeric implants. Furthermore, systemic strategies to increase the drug penetration into the brain, such as temporary disruption of the blood brain barrier (BBB), chemical modification of the available therapeutic substances, and utilization of endogenous transport systems will be briefly discussed.
Collapse
Affiliation(s)
- Daniela Allhenn
- Department of Pharm. Technology, Institute of Pharmacy, University of Bonn, Germany.
| | | | | |
Collapse
|
76
|
Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, Sands SA, Surapaneni K, Lai R, Yanes CL, Bagiella E, DeLaPaz RL. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery 2012; 69:1272-9; discussion 1279-80. [PMID: 21562434 DOI: 10.1227/neu.0b013e3182233e24] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Convection-enhanced delivery of chemotherapeutics for the treatment of malignant glioma is a technique that delivers drugs directly into a tumor and the surrounding interstitium through continuous, low-grade positive-pressure infusion. This allows high local concentrations of drug while overcoming the limitations imposed by toxicity and the blood-brain barrier in systemic therapies that prevent the use of many potentially effective drugs. OBJECTIVE To examine the safety profile of a conventional chemotherapeutic agent, topotecan, via convection-enhanced delivery in the treatment of recurrent malignant gliomas and secondarily to assess radiographic response and survival. METHODS We performed a prospective, dose-escalation phase Ib study of the topoisomerase-I inhibitor topotecan given by convection-enhanced delivery in patients with recurrent malignant gliomas. RESULTS Significant antitumor activity as described by radiographic changes and prolonged overall survival with minimal drug-associated toxicity was demonstrated. A maximum tolerated dose was established for future phase II studies. CONCLUSION Topotecan by convection-enhanced delivery has significant antitumor activity at concentrations that are nontoxic to normal brain. The potential for use of this therapy as a generally effective treatment option for malignant gliomas will be tested in subsequent phase II and III trials.
Collapse
Affiliation(s)
- Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Van de Putte M, Marysael T, Fonge H, Roskams T, Cona MM, Li J, Bormans G, Verbruggen A, Ni Y, de Witte PAM. Radiolabeled iodohypericin as tumor necrosis avid tracer: diagnostic and therapeutic potential. Int J Cancer 2012; 131:E129-37. [PMID: 22038886 DOI: 10.1002/ijc.26492] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/08/2011] [Accepted: 09/02/2011] [Indexed: 12/22/2022]
Abstract
It is estimated that 30-80% of solid tumor mass represents necrotic tissue that consists out of a significant number of dead and dying cells. The fact that these necrotic zones are restricted to dysplastic and malignant tissue and are rarely present in normal tissue makes necrosis an interesting target both for cancer diagnosis and therapy. In this study, the avidity of hypericin, [(123) I]iodohypericin and [(131) I]iodohypericin to tumor necrosis was explored for both diagnosis and therapy of experimental malignancies. The intratumoral distribution in RIF-1 tumors was investigated by means of fluorescence microscopy (hypericin) and autoradiography ([(123) I]iodohypericin). Results show high uptake of the tracers in necrosis at 24 hr, lasting for up to 72 hr p.i. Ratios of activity of [(123) I]iodohypericin in necrotic tissue over viable tumor reached up to 19.63 ± 4.66, correlating with 9.20% ID/g in necrosis. Nude mice bearing RIF-1 tumors that received three injections of 300 μCi over a 3-week treatment period showed stabilization in tumor growth for 5 days, as measured by caliper and micro-positron emission tomography using [(18) F]fluorodeoxyglucose. Based on these results, we suggest the potentials of radiolabeled hypericin (1) in diagnostic aspects including prognosis or staging assessment of bulky necrotic cancers, monitoring of treatments and therapeutic follow-up; and (2) in cancer treatment based on tumor necrosis. In conclusion, we showed that hypericin radiolabeled with iodine is a necrosis avid tracer that can be used both as a tumor diagnostic and therapeutic.
Collapse
Affiliation(s)
- Marie Van de Putte
- Laboratorium voor Farmaceutische Biologie, Faculteit Farmaceutische Wetenschappen, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Affiliation(s)
- Marta Penas-Prado
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
79
|
Marshall D, Mitchell DA, Graner MW, Bigner DD. Immunotherapy of brain tumors. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:309-30. [PMID: 22230450 DOI: 10.1016/b978-0-444-52138-5.00020-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
80
|
|
81
|
Blakeley J, Grossman SA. Chemotherapy with cytotoxic and cytostatic agents in brain cancer. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:229-54. [PMID: 22230447 DOI: 10.1016/b978-0-444-52138-5.00017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 2011; 70:944-59. [PMID: 22002425 DOI: 10.1097/nen.0b013e3182345e46] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.
Collapse
|
83
|
Abstract
In an orthotopic brain tumor mouse model, it was shown that convection-enhanced intratumoral delivery of a theranostic metallofullerene (f-Gd₃N@C₈₀) labeled with lutetium 177 (¹⁷⁷Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (¹⁷⁷Lu-DOTA-f-Gd₃N@C₈₀) increases median survival from 21 to 52 days, with a prolonged metallofullerene tumor retention that can be visualized with magnetic resonance (MR) imaging.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
84
|
Shahar T, Ram Z, Kanner AA. Convection-enhanced delivery catheter placements for high-grade gliomas: complications and pitfalls. J Neurooncol 2011; 107:373-8. [PMID: 22052334 DOI: 10.1007/s11060-011-0751-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
Convection-enhanced delivery (CED) of compounds into brain tumors reportedly circumvents the blood brain barrier. CED intends to increase drug delivery to malignant cells, reaching high local therapeutic concentration and decreasing or eliminating systemic side effects. Clinical experience and published data on catheter placement (CP) surgery are scarce. We propose practical and technical guidelines for planning CED based on our experience. We retrospectively analyzed the medical charts and relevant neuroimages of 25 patients following the insertion of 64 CED catheters. The patients were enrolled in at least one of four clinical trials using CED for treating recurrent glioblastoma multiforme in our institution between 2003-2006. Intra- and postoperative complications related to CP surgery and the difficulties and pitfalls of planning were evaluated. There were 29 CP surgeries. Forty-four peritumoral brain tissue catheters were inserted in 16 CP surgeries following tumor resection in 16 patients, and 20 catheters were placed into the tumor in 13 procedures in 10 patients. The lesions were in or near eloquent brain tissue areas in 13 of all CP surgeries. Complications included increased edema (31%), infection (6.9%), bleeding (6.9%) and seizures (13.8%). Significant neurological deterioration occurred in 4 patients (13.8%). Difficulties in adhering to CP surgery guidelines included lesion site (superficial, mesial temporal lobe, proximity to CSF spaces), proximity to eloquent cortical areas, tissue density that interfered with the trajectory, and technical limitations of stereotactic instruments. CED procedures for high-grade gliomas may be associated with surgical morbidity. Adherence to guidelines might be difficult because of lesion site and complicated by brain and tumor tissue characteristics. This should be considered while planning clinical trials that use convection-based technology.
Collapse
Affiliation(s)
- Tal Shahar
- Department of Neurosurgery, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, 64239 Tel Aviv, Israel
| | | | | |
Collapse
|
85
|
Buonerba C, Di Lorenzo G, Marinelli A, Federico P, Palmieri G, Imbimbo M, Conti P, Peluso G, De Placido S, Sampson JH. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit Rev Oncol Hematol 2011; 80:54-68. [DOI: 10.1016/j.critrevonc.2010.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/12/2010] [Accepted: 09/01/2010] [Indexed: 11/15/2022] Open
|
86
|
Hdeib A, Sloan AE. Convection-enhanced delivery of 131I-chTNT-1/B mAB for treatment of high-grade adult gliomas. Expert Opin Biol Ther 2011; 11:799-806. [PMID: 21521146 DOI: 10.1517/14712598.2011.579097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Despite treatment advances for malignant gliomas in adults, prognosis remains poor, largely due to the infiltrative and heterogeneous biology of these tumors. Response to adjuvant therapy is not always uniform and the blood-brain barrier prevents the majority of chemotherapeutics from adequately reaching primary tumor sites. These obstacles necessitate development of novel delivery methods and agents. AREAS COVERED (131)I-chTNT-1/B mAB (Cotara) is a genetically engineered chimeric monoclonal antibody that binds to the DNA-histone H1 complex. It carries (131)I, which delivers sufficient energy to kill adjacent tumor cells. Through convection-enhanced delivery (CED) it provides radioimmunotherapy directly to the resection cavity. We review the pharmacology and clinical experience with (131)I-chTNT-1/B mAB, detailing results of completed Phase I and II trials. EXPERT OPINION Novel agents and therapeutic modalities, such as (131)I-chTNT-1/B mAB, are of interest for treatment of malignant glioma, for which the prognosis continues to be dismal. (131)I-chTNT-1/B mAB targets tumor cells and radioisotope labeling allows radiation delivery to the tumor with sharp fall-off. Data from Phase I and II trials of CED delivery of (131)I-chTNT-1/B mAB shows it is well tolerated. Phase II trial data suggests it could be promising therapeutically, though conclusions about efficacy require further trials and clinical experience. The compound is currently in a Phase II trial for dose confirmation in patients with malignant gliomas.
Collapse
Affiliation(s)
- Alia Hdeib
- Department of Neurological Surgery, University Hospital-Case Medical Center, 11100 Euclid Ave, HAN 524, Cleveland, OH 44106, USA
| | | |
Collapse
|
87
|
The use of convection-enhanced delivery with liposomal toxins in neurooncology. Toxins (Basel) 2011; 3:369-97. [PMID: 22069714 PMCID: PMC3202827 DOI: 10.3390/toxins3040369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 01/23/2023] Open
Abstract
Liposomes have long been effective delivery vehicles for transport of toxins to peripheral cancers. The combination of convection-enhanced delivery (CED) with liposomal toxins was originally proposed to circumvent the limited delivery of intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier (BBB). CED offers markedly improved distribution of infused therapeutics within the CNS compared to direct injection or via drug eluting polymers, both of which depend on diffusion for parenchymal distribution. This review examines the basis for improved delivery of liposomal toxins via CED within the CNS, and discusses preclinical and clinical experience with these therapeutic techniques. How CED and liposomal technologies may influence future neurooncologic treatments are also considered.
Collapse
|
88
|
Sindhwani N, Ivanchenko O, Lueshen E, Prem K, Linninger AA. Methods for Determining Agent Concentration Profiles in Agarose Gel During Convection-Enhanced Delivery. IEEE Trans Biomed Eng 2011; 58:626-32. [DOI: 10.1109/tbme.2010.2089455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
89
|
Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 2010; 128:1-36. [PMID: 20546782 PMCID: PMC2939300 DOI: 10.1016/j.pharmthera.2010.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.
Collapse
Affiliation(s)
- Leopold Arko
- Surgical and Molecular Neuro-oncology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
90
|
Engh JA, Minhas DS, Kondziolka D, Riviere CN. Percutaneous Intracerebral Navigation by Duty-Cycled Spinning of Flexible Bevel-Tipped Needles. Neurosurgery 2010; 67:1117-22; discussion 1122-3. [DOI: 10.1227/neu.0b013e3181ec1551] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
BACKGROUND:
Intracerebral drug delivery using surgically placed microcatheters is a growing area of interest for potential treatment of a wide variety of neurological diseases, including tumors, neurodegenerative disorders, trauma, epilepsy, and stroke. Current catheter placement techniques are limited to straight trajectories. The development of an inexpensive system for flexible percutaneous intracranial navigation may be of significant clinical benefit.
OBJECTIVE:
Utilizing duty-cycled spinning of a flexible bevel-tipped needle, the authors devised and tested a means of achieving nonlinear trajectories for the navigation of catheters in the brain, which may be applicable to a wide variety of neurological diseases.
METHODS:
Exploiting the bending tendency of bevel-tipped needles due to their asymmetry, the authors devised and tested a means of generating curvilinear trajectories by spinning a needle with a variable duty cycle (ie, in on-off fashion). The technique can be performed using image guidance, and trajectories can be adjusted intraoperatively via joystick. Fifty-eight navigation trials were performed during cadaver testing to demonstrate the efficacy of the needle-steering system and to test its precision.
RESULTS:
The needle-steering system achieved a target acquisition error of 2 ± 1 mm, while demonstrating the ability to reach multiple targets from one burr hole using trajectories of varying curvature.
CONCLUSION:
The accuracy of the needle-steering system was demonstrated in a cadaveric model. Future studies will determine the safety of the device in vivo.
Collapse
Affiliation(s)
- Johnathan A Engh
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Davneet S Minhas
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas Kondziolka
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Cameron N Riviere
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
91
|
Sampson JH, Archer G, Pedain C, Wembacher-Schröder E, Westphal M, Kunwar S, Vogelbaum MA, Coan A, Herndon JE, Raghavan R, Brady ML, Reardon DA, Friedman AH, Friedman HS, Rodríguez-Ponce MI, Chang SM, Mittermeyer S, Croteau D, Puri RK, _ _. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg 2010; 113:301-9. [DOI: 10.3171/2009.11.jns091052] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial.
Methods
Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution.
Results
Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score.
Conclusions
The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.
Collapse
Affiliation(s)
- John H. Sampson
- 1Division of Neurosurgery, Department of Surgery,
- 2Department of Pathology,
- 4Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina
| | - Gary Archer
- 1Division of Neurosurgery, Department of Surgery,
- 4Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina
| | | | | | | | - Sandeep Kunwar
- 7California Center for Pituitary Disorders at University of California at San Francisco,
| | | | - April Coan
- 3Cancer Center Biostatistics Unit, and
- 4Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina
| | - James E. Herndon
- 3Cancer Center Biostatistics Unit, and
- 4Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina
| | | | | | | | - Allan H. Friedman
- 1Division of Neurosurgery, Department of Surgery,
- 4Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina
| | - Henry S. Friedman
- 1Division of Neurosurgery, Department of Surgery,
- 4Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina
| | | | | | | | | | - Raj K. Puri
- 12Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | | |
Collapse
|
92
|
Yang W, Huo T, Barth RF, Gupta N, Weldon M, Grecula JC, Ross BD, Hoff BA, Chou TC, Rousseau J, Elleaume H. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors. J Neurooncol 2010; 101:379-90. [PMID: 20577779 DOI: 10.1007/s11060-010-0272-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/14/2010] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 μg/10 μl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.5 μg/μl/h for 168 h.) beginning at 7 d after tumor implantation. Rats were irradiated with a 15 Gy fractionated dose (5 Gy × 3) of 6 MV photons to the whole brain beginning on the day after drug administration. Other groups of rats received either carboplatin or X-irradiation alone. The tumor carboplatin concentration following CED of 20 μg in 10 μl was 10.4 μg/g, which was equal to that observed following i.v. administration of 100 mg/kg b.w. Rats bearing small tumors, treated with carboplatin and X-irradiation, had a mean survival time (MST) of 83.4 d following CED and 111.8 d following pump delivery with 40% of the latter surviving >180 d (i.e. cured) compared to 55.2 d for CED and 77.2 d. for pump delivery of carboplatin alone and 31.8 d and 24.2 d, respectively, for X-irradiated and untreated controls. There was no microscopic evidence of residual tumor in the brains of all long-term survivors. Not surprisingly, rats with large tumors had much shorter MSTs. Only modest increases in MSTs were observed in animals that received either oral administration or CED of temozolomide plus X-irradiation (23.2 d and 29.3 d) compared to X-irradiation alone. The present survival data, and those previously reported by us, are among the best ever obtained with the F98 glioma model. Initially, they could provide a platform for a Phase I clinical trial to evaluate the safety and potential therapeutic efficacy of CED of carboplatin in patients with recurrent glioblastomas, and ultimately a Phase II trial of carboplatin in combination with radiation therapy.
Collapse
Affiliation(s)
- Weilian Yang
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Luther N, Cheung NK, Souliopoulos EP, Karampelas I, Karempelas I, Bassiri D, Edgar MA, Guo HF, Pastan I, Gutin PH, Souweidane MM. Interstitial infusion of glioma-targeted recombinant immunotoxin 8H9scFv-PE38. Mol Cancer Ther 2010; 9:1039-46. [PMID: 20371725 DOI: 10.1158/1535-7163.mct-09-0996] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies have the potential to target therapy for high-grade gliomas. Monoclonal antibody 8H9 is specific for membrane protein B7H3 and is reactive with most human high-grade gliomas. We tested the 8H9scFv-PE38 recombinant Pseudomonas immunotoxin in a preclinical model of high-grade glioma. The half maximal inhibitory concentration (IC(50)) of 8H9scFv-PE38 in vitro was determined using glioblastoma cell lines U87 and U251. Maximum tolerated infusion dose of 8H9scFv-PE38 following interstitial infusion to the striatum and pons was defined using athymic rats. Maximum tolerated infusion dose of 8H9scFv-PE38 or PBS control were interstitially delivered to athymic rats xenografted with U87 in the striatum or brain stem. Radiographic response and survivals were measured and compared between treatment groups. The in vitro IC(50) of 8H9scFv-PE38 for U87 was 1,265 ng/mL and, for U251, 91 ng/mL. The maximum tolerated infusion doses of interstitially infused 8H9scFv-PE38 to the striatum and brain stem were 0.75 and 1.8 mug, respectively. For rats harboring intracranial U87 xenografts, infusion of 8H9scFv-PE38 increased mean survival (striatum, 43.4 versus 24.6 days; brain stem, 80.6 versus 45.5 days; n = 28 total) and produced three long-term survivors past 120 days. None of the 14 placebo-treated animals survived >54 days. Tumors also showed volumetric response to infusion of 8H9scFv-PE38 by magnetic resonance imaging. Interstitial infusion of 8H9scFv-PE38 shows potential for the treatment of hemispherical and brain stem glioma. Mol Cancer Ther; 9(4); 1039-46. (c)2010 AACR.
Collapse
Affiliation(s)
- Neal Luther
- Department of Neurologic Surgery, Weill Medical College of Cornell University, Room A-969, 1300 York Avenue, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Minhas D, Engh JA, Riviere CN. Testing of neurosurgical needle steering via duty-cycled spinning in brain tissue in vitro. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:258-61. [PMID: 19964474 DOI: 10.1109/iembs.2009.5334006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A technique for steering of flexible bevel-tipped needles through tissue, providing proportional control of trajectory curvature by means of duty-cycled rotation or spinning during insertion, has been presented previously, and tested in vitro in gelatin samples. The present paper presents the results of testing under more authentic conditions. Thirty-two needle insertions were performed in cadaver brain tissue. Needle insertion was controlled interactively by the surgeon, adjusting parameters intraoperatively as needed based on fluoroscope images acquired at intervals of 1-2 cm of insertion depth. The average target acquisition error was 1.80 +/- 1.33 mm.
Collapse
Affiliation(s)
- Davneet Minhas
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
95
|
Hau P, Jachimczak P, Bogdahn U. Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 2010; 9:1663-74. [PMID: 19895249 DOI: 10.1586/era.09.138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antisense oligodeoxynucleotides (AS-ODNs) have been widely used to determine gene function, validate drug targets and as novel therapeutics for human diseases. In this review, we describe the development of AS-ODNs, including their modifications, pharmacokinetics and toxicity in animal models and humans, and their preclinical and clinical development in the therapy of human high-grade gliomas. The most advanced AS-ODN for the therapy of high-grade gliomas is a phosphorothioate-modified AS-ODN, AP 12009 (trabedersen), which targets mRNA encoding TGF-beta2. AP 12009 is administered intratumorally using convection-enhanced delivery. A series of Phase I and II clinical trials have evaluated the toxicity profile and optimal dose of the substance. A randomized, controlled international Phase III study was initiated in March 2009 and will compare trabedersen 10 microM versus conventional alkylating chemotherapy in patients with recurrent or refractory anaplastic astrocytoma after standard radio- and chemotherapy.
Collapse
Affiliation(s)
- Peter Hau
- Department of Neurology, University of Regensburg, Medical School, Regensburg, Germany.
| | | | | |
Collapse
|
96
|
Bidros DS, Liu JK, Vogelbaum MA. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 2010; 6:117-25. [DOI: 10.2217/fon.09.135] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gliomas are one of the most lethal forms of cancer. The poor prognosis associated with these malignant primary brain tumors treated with surgery, radiotherapy and chemotherapy has led researchers to develop new strategies for cure. Interstitial drug delivery has been the most appealing method for the treatment of primary brain tumors because it provides the most direct method of overcoming the barriers to tumor drug delivery. By administering therapeutic agents directly to the brain interstitium and, more specifically, to tumor-infiltrated parenchyma, one can overcome the elevated interstitial pressure produced by brain tumors. Convection-enhanced delivery (CED) has emerged as a leading investigational delivery technique for the treatment of brain tumors. Clinical trials utilizing these methods have been completed, with mixed results, and several more are being initiated. However, the potential efficacy of these drugs may be limited by ineffective tissue distribution. The development of computer models/algorithms to predict drug distribution, new catheter designs, and utilization of tracer models and nanocarriers have all laid the groundwork for the advancement of CED. In this review, we summarize the recent past of the clinical trials utilizing CED and discuss emerging technologies that will shape future CED trials.
Collapse
Affiliation(s)
- Dani S Bidros
- Brain Tumor and NeuroOncology Center, Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, OH, USA
| | - James K Liu
- Brain Tumor and NeuroOncology Center, Department of Neurological Surgery, Neurological Institute, Cleveland Clinic, OH, USA
| | - Michael A Vogelbaum
- Brain Tumor and NeuroOncology Center/ND40, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
97
|
|
98
|
Piepmeier JM. The future of neuro-oncology. Acta Neurochir (Wien) 2009; 151:1343-8. [PMID: 19639245 DOI: 10.1007/s00701-009-0471-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
|
99
|
Stukel JM, Caplan MR. Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin Drug Deliv 2009; 6:705-18. [PMID: 19538036 DOI: 10.1517/17425240902988470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than approximately 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.
Collapse
Affiliation(s)
- Jill M Stukel
- Arizona State University, Center for Interventional Biomaterials, Harrington Department of Bioengineering, Tempe, AZ 85287, USA
| | | |
Collapse
|
100
|
Harris DA, Pellikka R, Gasser O, Blaeuenstein P, Waibel R, Schubiger PA, King SW, Parseghian MH. In-Line Radiolabeling: A Novel Continuous-Flow System for Commercial-Scale Protein Labeling. J Nucl Med 2009; 50:1178-86. [DOI: 10.2967/jnumed.108.056812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|