51
|
Efficient genome-wide first-generation phenotypic screening system in mice using the piggyBac transposon. Proc Natl Acad Sci U S A 2019; 116:18507-18516. [PMID: 31451639 DOI: 10.1073/pnas.1906354116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome-wide phenotypic screens provide an unbiased way to identify genes involved in particular biological traits, and have been widely used in lower model organisms. However, cost and time have limited the utility of such screens to address biological and disease questions in mammals. Here we report a highly efficient piggyBac (PB) transposon-based first-generation (F1) dominant screening system in mice that enables an individual investigator to conduct a genome-wide phenotypic screen within a year with fewer than 300 cages. The PB screening system uses visually trackable transposons to induce both gain- and loss-of-function mutations and generates genome-wide distributed new insertions in more than 55% of F1 progeny. Using this system, we successfully conducted a pilot F1 screen and identified 5 growth retardation mutations. One of these mutants, a Six1/4 PB/+ mutant, revealed a role in milk intake behavior. The mutant animals exhibit abnormalities in nipple recognition and milk ingestion, as well as developmental defects in cranial nerves V, IX, and X. This PB F1 screening system offers individual laboratories unprecedented opportunities to conduct affordable genome-wide phenotypic screens for deciphering the genetic basis of mammalian biology and disease pathogenesis.
Collapse
|
52
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
53
|
Smad7:β-catenin complex regulates myogenic gene transcription. Cell Death Dis 2019; 10:387. [PMID: 31097718 PMCID: PMC6522533 DOI: 10.1038/s41419-019-1615-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Recent reports indicate that Smad7 promotes skeletal muscle differentiation and growth. We previously documented a non-canonical role of nuclear Smad7 during myogenesis, independent of its role in TGF-β signaling. Here further characterization of the myogenic function of Smad7 revealed β-catenin as a Smad7 interacting protein. Biochemical analysis identified a Smad7 interaction domain (SID) between aa575 and aa683 of β-catenin. Reporter gene analysis and chromatin immunoprecipitation demonstrated that Smad7 and β-catenin are cooperatively recruited to the extensively characterized ckm promoter proximal region to facilitate its muscle restricted transcriptional activation in myogenic cells. Depletion of endogenous Smad7 and β-catenin in muscle cells reduced ckm promoter activity indicating their role during myogenesis. Deletion of the β-catenin SID substantially reduced the effect of Smad7 on the ckm promoter and exogenous expression of SID abolished β-catenin function, indicating that SID functions as a trans dominant-negative regulator of β-catenin activity. β-catenin interaction with the Mediator kinase complex through its Med12 subunit led us to identify MED13 as an additional Smad7-binding partner. Collectively, these studies document a novel function of a Smad7-MED12/13-β-catenin complex at the ckm locus, indicating a key role of this complex in the program of myogenic gene expression underlying skeletal muscle development and regeneration.
Collapse
|
54
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
55
|
Bosch PJ, Fuller LC, Weiner JA. A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis 2019; 57:e23286. [PMID: 30801883 DOI: 10.1002/dvg.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
Abstract
Evolutionarily conserved Akirin nuclear proteins interact with chromatin remodeling complexes at gene enhancers and promoters, and have been reported to regulate cell proliferation and differentiation. Of the two mouse Akirin genes, Akirin2 is essential during embryonic development, with known in vivo roles in immune system function and the formation of the cerebral cortex. Here we demonstrate that Akirin2 is critical for mouse myogenesis, a tightly regulated developmental process through which myoblast precursors fuse to form mature skeletal muscle fibers. Loss of Akirin2 in somitic muscle precursor cells via Sim1-Cre-mediated excision of a conditional Akirin2 allele results in neonatal lethality. Mutant embryos exhibit a complete lack of forelimb, intercostal, and diaphragm muscles due to extensive apoptosis and loss of Pax3-positive myoblasts. Severe skeletal defects, including craniofacial abnormalities, disrupted ossification, and rib fusions are also observed, attributable to lack of skeletal muscles as well as patchy Sim1-Cre activity in the embryonic sclerotome. We further show that Akirin2 levels are tightly regulated during muscle cell differentiation in vitro, and that Akirin2 is required for the proper expression of muscle differentiation factors myogenin and myosin heavy chain. Our results implicate Akirin2 as a major regulator of mammalian muscle formation in vivo.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| |
Collapse
|
56
|
Magli A, Baik J, Mills LJ, Kwak IY, Dillon BS, Mondragon Gonzalez R, Stafford DA, Swanson SA, Stewart R, Thomson JA, Garry DJ, Dynlacht BD, Perlingeiro RCR. Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biol 2019; 17:e3000153. [PMID: 30807574 PMCID: PMC6390996 DOI: 10.1371/journal.pbio.3000153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - June Baik
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lauren J. Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Il-Youp Kwak
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bridget S. Dillon
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ricardo Mondragon Gonzalez
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Scott A. Swanson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - James A. Thomson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Daniel J. Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian D. Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
57
|
Wang J, Liu M, Zhao L, Li Y, Zhang M, Jin Y, Xiong Q, Liu X, Zhang L, Jiang H, Chen Q, Wang C, You Z, Yang H, Cao C, Dai Y, Li R. Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting. Xenotransplantation 2019; 26:e12484. [PMID: 30623494 DOI: 10.1111/xen.12484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
SIX1 and SIX4 genes play critical roles in kidney development. We evaluated the effect of these genes on pig kidney development by generating SIX1-/- and SIX1-/- /SIX4-/- pig foetuses using CRISPR/Cas9 and somatic cell nuclear transfer. We obtained 3 SIX1-/- foetuses and 16 SIX1-/- /SIX4-/- foetuses at different developmental stages. The SIX1-/- foetuses showed a migration block of the left kidney and a smaller size for both kidneys. The ureteric bud failed to form the normal branching and collecting system. Abnormal expressions of kidney development-related genes (downregulation of PAX2, PAX8, and BMP4 and upregulation of EYA1 and SALL1) were also observed in SIX1-/- foetal kidneys and confirmed in vitro in porcine kidney epithelial cells (PK15) following SIX1 gene deletion. The SIX1-/- /SIX4-/- foetuses exhibited more severe phenotypes, with most foetuses showing retarded development at early stages of gestation. The kidney developed only to the initial stage of metanephros formation. These results demonstrated that SIX1 and SIX4 are key genes for porcine metanephros development. The creation of kidney-deficient porcine foetuses provides a platform for generating human kidneys inside pigs using blastocyst complementation.
Collapse
Affiliation(s)
- Junzheng Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Manling Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yanru Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xiaorui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lining Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haibin Jiang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qiaoyu Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Chenyu Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhihuan You
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
58
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
59
|
Rafipay A, Berg ALR, Erskine L, Vargesson N. Expression analysis of limb element markers during mouse embryonic development. Dev Dyn 2018; 247:1217-1226. [PMID: 30225906 PMCID: PMC6282987 DOI: 10.1002/dvdy.24671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background: While data regarding expression of limb element and tissue markers during normal mouse limb development exist, few studies show expression patterns in upper and lower limbs throughout key limb development stages. A comparison to normal developmental events is essential when analyzing development of the limb in mutant mice models. Results: Expression patterns of the joint marker Gdf5, tendon and ligament marker Scleraxis, early muscle marker MyoD1, and blood vessel marker Cadherin5 (Cdh5) are presented during the most active phases of embryonic mouse limb patterning. Anti‐neurofilament staining of developing nerves in the fore‐ and hindlimbs and cartilage formation and progression also are described. Conclusions: This study demonstrates and describes a range of key morphological markers and methods that together can be used to assess normal and abnormal limb development. Developmental Dynamics 247:1217–1226, 2018. © 2018 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Expression patterns of molecular markers throughout both fore‐ and hindlimb development ‐ which can be used to assess normal and abnormal development. Detailled description of innervation during fore‐ and hindlimb development confirming innervation first seen after limb patterning events have begun. Description of cartilage development and progression indicates alizarin red staining not seen until E15.5 in both fore‐ and hindlimbs. Hindlimb lags behind forelimb molecularly and morphologically until E14.5. Detailled description of methods used to study fore‐ and hindlimb development.
Collapse
Affiliation(s)
- Alexandra Rafipay
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Amanda L R Berg
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen
| |
Collapse
|
60
|
Lee EJ, Kim M, Kim YD, Chung MJ, Elfadl A, Ulah HMA, Park D, Lee S, Park HS, Kim TH, Hwang D, Jeong KS. Establishment of stably expandable induced myogenic stem cells by four transcription factors. Cell Death Dis 2018; 9:1092. [PMID: 30361642 PMCID: PMC6202407 DOI: 10.1038/s41419-018-1114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Life-long regeneration of healthy muscle by cell transplantation is an ideal therapy for patients with degenerative muscle diseases. Yet, obtaining muscle stem cells from patients is very limited due to their exhaustion in disease condition. Thus, development of a method to obtain healthy myogenic stem cells is required. Here, we showed that the four transcription factors, Six1, Eya1, Esrrb, and Pax3, converts fibroblasts into induced myogenic stem cells (iMSCs). The iMSCs showed effective differentiation into multinucleated myotubes and also higher proliferation capacity than muscle derived stem cells both in vitro and in vivo. The iMSCs do not lose their proliferation capacity though the passaging number is increased. We further isolated CD106-negative and α7-integrin-positive iMSCs (sort-iMSCs) showing higher myogenic differentiation capacity than iMSCs. Moreover, genome-wide transcriptomic analysis of iMSCs and sort-iMSCs, followed by network analysis, revealed the genes and signaling pathways associated with enhanced proliferation and differentiation capacity of iMSCs and sort-iMSCs, respectively. The stably expandable iMSCs provide a new source for drug screening and muscle regenerative therapy for muscle wasting disease.
Collapse
Affiliation(s)
- Eun-Joo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minhyung Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yong Deuk Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ahmed Elfadl
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - H M Arif Ulah
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dongsu Park
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sunray Lee
- Cell Engineering for Origin Research Center 45-13, Ujeongguk-ro, Jongno-gu, Seoul, 03150, Republic of Korea
| | - Hyun-Sook Park
- Cell Engineering for Origin Research Center 45-13, Ujeongguk-ro, Jongno-gu, Seoul, 03150, Republic of Korea
| | - Tae-Hwan Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.,Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
61
|
Shu Y, Xia J, Yu Q, Wang G, Zhang J, He J, Wang H, Zhang L, Wu H. Integrated analysis of mRNA and miRNA expression profiles reveals muscle growth differences between adult female and male Chinese concave-eared frogs (Odorrana tormota). Gene 2018; 678:241-251. [PMID: 30103010 DOI: 10.1016/j.gene.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The Chinese concave-eared torrent frog (Odorrana tormota) is the first known non-mammalian vertebrate that can communicate using ultrasound. In this species, females are approximately four times as large as males, in which the female growth rate is obviously higher than that of male. Until now, the molecular mechanisms underlying muscle growth development differences between male and female frogs have not been reported. Here, we integrated mRNA and miRNA expression profiles to reveal growth differences in the hindlimb muscles of 2-year-old frogs. Among 569 differentially expressed genes (DEGs), 69 were associated with muscle growth and regeneration. Fifty-one up-regulated genes in females were potentially involved in promoting muscle growth and regeneration, whereas 18 up-regulated genes in males may lead to muscle growth inhibition and fast-twitch muscle fiber contraction. 244 DEGs were enriched in mTOR and other protein synthesis signaling pathways, and protein degradation pathways, including lysosomal protease, calpain, caspase, and ubiquitin-proteasome system pathways. It may interpret why female muscles grow faster than males. Based on expression differences of genes involved in glycolysis and oxidative metabolism, we speculated that the proportion of slow muscle fiber was higher and that of fast muscle fiber was lower in female compared with male muscle. Additionally, 767 miRNAs were identified, including 217 new miRNAs, and 6248 miRNA-negatively regulated mRNAs were predicted. The miRNA target genes were enriched in pathways related to muscle growth, protein synthesis, and degradation. Thus, in addition to the identified mRNA differential expressions, miRNAs may play other important roles in the differential regulation of hindlimb muscle growth between female and male O. tormota.
Collapse
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinquan Xia
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qiang Yu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jun He
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Huan Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
62
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
63
|
Yang Y, Workman S, Wilson M. The molecular pathways underlying early gonadal development. J Mol Endocrinol 2018; 62:JME-17-0314. [PMID: 30042122 DOI: 10.1530/jme-17-0314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022]
Abstract
The body of knowledge surrounding reproductive development spans the fields of genetics, anatomy, physiology and biomedicine, to build a comprehensive understanding of the later stages of reproductive development in humans and animal models. Despite this, there remains much to learn about the bi-potential progenitor structure that the ovary and testis arise from, known as the genital ridge (GR). This tissue forms relatively late in embryonic development and has the potential to form either the ovary or testis, which in turn produce hormones required for development of the rest of the reproductive tract. It is imperative that we understand the genetic networks underpinning GR development if we are to begin to understand abnormalities in the adult. This is particularly relevant in the contexts of disorders of sex development (DSDs) and infertility, two conditions that many individuals struggle with worldwide, with often no answers as to their aetiology. Here, we review what is known about the genetics of GR development. Investigating the genetic networks required for GR formation will not only contribute to our understanding of the genetic regulation of reproductive development, it may in turn open new avenues of investigation into reproductive abnormalities and later fertility issues in the adult.
Collapse
Affiliation(s)
- Yisheng Yang
- Y Yang, Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Megan Wilson
- M Wilson , Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
64
|
The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. Mol Biol Rep 2018; 45:1445-1456. [PMID: 30006771 DOI: 10.1007/s11033-018-4211-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022]
Abstract
In the past few decades, enhancement of animal productivity has been gaining increasing attention among decisions-makers, politicians, mangers, and breeders, because of the increasing of world population and shortage of natural resources. The selection of high productivity animals is the main goal, through the application of genetic improvement programs. The use of molecular genetics has conferred significant breeding advantages over conventional breeding techniques. In this regard, many economic characteristics are controlled by a small number of multiple gene loci, each of which is responsible for trait diversity and hence they are referred to as quantitative trait loci (QTL). Single-nucleotide polymorphisms (SNPs), which have recently been discovered through DNA sequencing, are considered one of the most useful types of genetic marker. SNPs are found where different nucleotides occur at the same position in the DNA sequence. They are found in both coding and noncoding regions of the genome and are present at one SNP in every 1000 b. Strategies for the identification and application of markers are based on reference to examples of loci that can control various traits. Furthermore, markers for growth, body measurements, and meat quality traits are preferred, because they can be used to predict the performance of animals, via blood samples, in the first few days of animal life. Marker-assisted selection using SNPs, such asSIRT1, SIRT2, LPL, CRTC2, SIX4, UCPs, and ZBTB38as selection criteria of body measurements and meat traits in beef cattle, will be beneficial in selection and breeding programs. The proteomic is a novel marker and a new approache of biotechnology which increases the understanding of the biological processes, besides being a remarkable biomarker that interrelated to growth and meat quality traits. Proteomics is a vigorous tool as usage for deduces molecular processes between quality traits and muscle proteins, which are helpful in analyzing the mechanisms of biochemistry that influence quality. So they could be potential biomarker for some meat quality traits. Among them, Actin, Myosin, Heat shock proteins are used a novel approaches in the field of biotechnology to understand the proteomics changes. This review article highlights the novel findings on the potential use of MAS and proteomics as biomarker for the selection for meat quality and carcass traits in Qinchuan cattle breed.
Collapse
|
65
|
Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy. PLoS Genet 2018; 14:e1007502. [PMID: 29979676 PMCID: PMC6051668 DOI: 10.1371/journal.pgen.1007502] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/18/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Left ventricular non-compaction (LVNC) is a rare cardiomyopathy associated with a hypertrabeculated phenotype and a large spectrum of symptoms. It is still unclear whether LVNC results from a defect of ventricular trabeculae development and the mechanistic basis that underlies the varying severity of this pathology is unknown. To investigate these issues, we inactivated the cardiac transcription factor Nkx2-5 in trabecular myocardium at different stages of trabecular morphogenesis using an inducible Cx40-creERT2 allele. Conditional deletion of Nkx2-5 at embryonic stages, during trabecular formation, provokes a severe hypertrabeculated phenotype associated with subendocardial fibrosis and Purkinje fiber hypoplasia. A milder phenotype was observed after Nkx2-5 deletion at fetal stages, during trabecular compaction. A longitudinal study of cardiac function in adult Nkx2-5 conditional mutant mice demonstrates that excessive trabeculation is associated with complex ventricular conduction defects, progressively leading to strain defects, and, in 50% of mutant mice, to heart failure. Progressive impaired cardiac function correlates with conduction and strain defects independently of the degree of hypertrabeculation. Transcriptomic analysis of molecular pathways reflects myocardial remodeling with a larger number of differentially expressed genes in the severe versus mild phenotype and identifies Six1 as being upregulated in hypertrabeculated hearts. Our results provide insights into the etiology of LVNC and link its pathogenicity with compromised trabecular development including compaction defects and ventricular conduction system hypoplasia. During fetal heart morphogenesis, formation of the mature ventricular wall requires coordinated compaction of the inner trabecular layer and growth of the outer layer of myocardium. Arrested trabecular development has been implicated in the pathogenesis of hypertrabeculation associated with ventricular non-compaction cardiomyopathy. However much uncertainty still exists among clinicians concerning the physiopathology of ventricular non-compaction cardiomyopathy, including its clinical characteristics, prognosis, classification and even the definition of hypertrabeculation. In particular, distinguishing between pathological and non-pathological subtypes of non-compaction is currently a major issue. Here we show that deletion of the gene encoding the transcription factor Nkx2-5 at critical steps during trabecular development recapitulates pathological features of hypertrabeculation, providing the first model of ventricular non-compaction cardiomyopathy in adult mice. We demonstrate that excessive trabeculation due to failure of trabecular compaction during fetal development is associated with Purkinje fiber hypoplasia and subendocardial fibrosis. Longitudinal functional studies reveal that these mice present all the clinical signs of symptomatic left ventricular non-compaction cardiomyopathy, including conduction defects, strain defects and progressive heart failure. Our results, including transcriptomic analysis, suggest that pathological features of non-compaction are primarily developmental defects. This study clarifies the origin of the pathological outcomes associated with LVNC and may provide helpful information for clinicians concerning the etiology of this rare cardiomyopathy.
Collapse
|
66
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuroda S, Kuratani S. Stepwise participation of HGF/MET signaling in the development of migratory muscle precursors during vertebrate evolution. ZOOLOGICAL LETTERS 2018; 4:18. [PMID: 29946484 PMCID: PMC6004694 DOI: 10.1186/s40851-018-0094-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The skeletal musculature of gnathostomes, which is derived from embryonic somites, consists of epaxial and hypaxial portions. Some hypaxial muscles, such as tongue and limb muscles, undergo de-epithelialization and migration during development. Delamination and migration of these myoblasts, or migratory muscle precursors (MMPs), is generally thought to be regulated by hepatocyte growth factor (HGF) and receptor tyrosine kinase (MET) signaling. However, the prevalence of this mechanism and the expression patterns of the genes involved in MMP development across different vertebrate species remain elusive. RESULTS We performed a comparative analysis of Hgf and Met gene expression in several vertebrates, including mouse, chicken, dogfish (Scyliorhinus torazame), and lamprey (Lethenteron camtschaticum). While both Hgf and Met were expressed during development in the mouse tongue muscle, and in limb muscle formation in the mouse and chicken, we found no clear evidence for the involvement of HGF/MET signaling in MMP development in shark or lamprey embryos. CONCLUSIONS Our results indicate that the expressions and functions of both Hgf and Met genes do not represent shared features of vertebrate MMPs, suggesting a stepwise participation of HGF/MET signaling in MMP development during vertebrate evolution.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Present address: Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Juan Pascual-Anaya
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
67
|
Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife 2018; 7:34465. [PMID: 29897331 PMCID: PMC6019068 DOI: 10.7554/elife.34465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Bara Szarowska
- Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kicheva
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francois Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael P Matise
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Hui Wang
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Ulrika Marklund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hind Abdo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pascal Maire
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Maud Wurmser
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| |
Collapse
|
68
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
69
|
How to make a tongue: Cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development. Semin Cell Dev Biol 2018; 91:45-54. [PMID: 29784581 DOI: 10.1016/j.semcdb.2018.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
The vertebrate tongue is a complex muscular organ situated in the oral cavity and involved in multiple functions including mastication, taste sensation, articulation and the maintenance of oral health. Although the gross embryological contributions to tongue formation have been known for many years, it is only relatively recently that the molecular pathways regulating these processes have begun to be discovered. In particular, there is now evidence that the Hedgehog, TGF-Beta, Wnt and Notch signaling pathways all play an important role in mediating appropriate signaling interactions between the epithelial, cranial neural crest and mesodermal cell populations that are required to form the tongue. In humans, a number of congenital abnormalities that affect gross morphology of the tongue have also been described, occurring in isolation or as part of a developmental syndrome, which can greatly impact on the health and well-being of affected individuals. These anomalies can range from an absence of tongue formation (aglossia) through to diminutive (microglossia), enlarged (macroglossia) or bifid tongue. Here, we present an overview of the gross anatomy and embryology of mammalian tongue development, focusing on the molecular processes underlying formation of the musculature and connective tissues within this organ. We also survey the clinical presentation of tongue anomalies seen in human populations, whilst considering their developmental and genetic etiology.
Collapse
|
70
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
71
|
Wei D, Raza SHA, Zhang J, Gui L, Rahman SU, Khan R, Hosseini SM, Kaleri HA, Zan L. Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene 2018; 656:9-16. [DOI: 10.1016/j.gene.2018.02.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
|
72
|
Suzuki A, Jun G, Abdallah N, Gajera M, Iwata J. Gene datasets associated with mouse cleft palate. Data Brief 2018; 18:655-673. [PMID: 29896534 PMCID: PMC5996166 DOI: 10.1016/j.dib.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
This article presents data on genes associated with cleft palate (CP), retrieved through both a full-text systematic review and a mouse genome informatics (MGI) database search. In order to group CP-associated genes according to function, pathway, biological process, and cellular component, the genes were analyzed using category enrichment bioinformatics tools, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). This approach provides invaluable opportunities for the identification of candidate pathways and genes in CP research.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
73
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
74
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
75
|
|
76
|
Wang JS, Infante CR, Park S, Menke DB. PITX1 promotes chondrogenesis and myogenesis in mouse hindlimbs through conserved regulatory targets. Dev Biol 2017; 434:186-195. [PMID: 29273440 DOI: 10.1016/j.ydbio.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
The PITX1 transcription factor is expressed during hindlimb development, where it plays a critical role in directing hindlimb growth and the specification of hindlimb morphology. While it is known that PITX1 regulates hindlimb formation, in part, through activation of the Tbx4 gene, other transcriptional targets remain to be elucidated. We have used a combination of ChIP-seq and RNA-seq to investigate enhancer regions and target genes that are directly regulated by PITX1 in embryonic mouse hindlimbs. In addition, we have analyzed PITX1 binding sites in hindlimbs of Anolis lizards to identify ancient PITX1 regulatory targets. We find that PITX1-bound regions in both mouse and Anolis hindlimbs are strongly associated with genes implicated in limb and skeletal system development. Gene expression analyses reveal a large number of misexpressed genes in the hindlimbs of Pitx1-/- mouse embryos. By intersecting misexpressed genes with genes that have neighboring mouse PITX1 binding sites, we identified 440 candidate targets of PITX1. Of these candidates, 68 exhibit ultra-conserved PITX1 binding events that are shared between mouse and Anolis hindlimbs. Among the ancient targets of PITX1 are important regulators of cartilage and skeletal muscle development, including Sox9 and Six1. Our data suggest that PITX1 promotes chondrogenesis and myogenesis in the hindlimb by direct regulation of several key members of the cartilage and muscle transcriptional networks.
Collapse
Affiliation(s)
- Jialiang S Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Carlos R Infante
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
77
|
Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 2017; 72:10-18. [PMID: 29127045 DOI: 10.1016/j.semcdb.2017.11.010] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- J Manuel Hernández-Hernández
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Estela G García-González
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Caroline E Brun
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
78
|
Fonseca BF, Couly G, Dupin E. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo. BMC DEVELOPMENTAL BIOLOGY 2017; 17:13. [PMID: 29017464 PMCID: PMC5634862 DOI: 10.1186/s12861-017-0155-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Background Vertebrate head development depends on a series of interactions between many cell populations of distinct embryological origins. Cranial mesenchymal tissues have a dual embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-development of cephalic NC and mesodermal cells to properly construct the head of vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have remained unclear. In this work, we addressed these issues in the avian embryo model by using quail-chick chimeras, cephalic NC cultures and immunostaining for SIX1. Results Our data show that, at early NC migration stages, SIX1 is expressed by mesodermal cells but excluded from the NC cells (NCC). Then, SIX1 becomes widely expressed in NCC that colonize the pre-otic mesenchyme. In contrast, in the branchial arches (BAs), SIX1 is present only in mesodermal cells that give rise to jaw muscles. At later developmental stages, the distribution of SIX1-expressing cells in mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In NC derivatives, SIX1 is notably expressed in perichondrium and chondrocytes of the nasal septum and in the sclera, although other facial cartilages such as Meckel’s were negative at the stages considered. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, not the neural and melanocytic cells express SIX1. Conclusion The present results point to a dynamic tissue-specific expression of SIX1 in a variety of cephalic NC- and mesoderm-derived cell types and tissues, opening the way for further analysis of Six1 function in the coordinated development of these two cellular populations during vertebrate head formation. Electronic supplementary material The online version of this article (10.1186/s12861-017-0155-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara F Fonseca
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Gérard Couly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,Université Paris Descartes, Institut de la Bouche et du Visage de l'Enfant, Hôpital Universitaire Necker, 149, rue de Sèvres, 75015, Paris, France
| | - Elisabeth Dupin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
79
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
80
|
Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget 2017; 8:71292-71316. [PMID: 29050362 PMCID: PMC5642637 DOI: 10.18632/oncotarget.19772] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression post-transcriptionally. They are crucial for normal development and maintaining homeostasis. Researchers have discovered that dysregulated miRNA expression contributes to many pathological conditions, including cancer. miRNAs can augment or suppress tumorigenesis based on their expression and transcribed targetome in various cell types. In recent years, researchers have begun to identify miRNAs commonly dysregulated in cancer. One recently identified miRNA, miR-708-5p, has been shown to have profound roles in promoting or suppressing oncogenesis in a myriad of solid and hematological tumors. This review highlights the diverse, sometimes controversial findings reported for miR-708-5p in cancer, and the importance of further exploring this exciting miRNA.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| |
Collapse
|
81
|
Zhang T, Xu J, Maire P, Xu PX. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium. PLoS Genet 2017; 13:e1006967. [PMID: 28892484 PMCID: PMC5593176 DOI: 10.1371/journal.pgen.1006967] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022] Open
Abstract
The organ of Corti in the cochlea is a two-cell layered epithelium: one cell layer of mechanosensory hair cells that align into one row of inner and three rows of outer hair cells interdigitated with one cell layer of underlying supporting cells along the entire length of the cochlear spiral. These two types of epithelial cells are derived from common precursors in the four- to five-cell layered primordium and acquire functionally important shapes during terminal differentiation through the thinning process and convergent extension. Here, we have examined the role of Six1 in the establishment of the auditory sensory epithelium. Our data show that prior to terminal differentiation of the precursor cells, deletion of Six1 leads to formation of only a few hair cells and defective patterning of the sensory epithelium. Previous studies have suggested that downregulation of Sox2 expression in differentiating hair cells must occur after Atoh1 mRNA activation in order to allow Atoh1 protein accumulation due to antagonistic effects between Atoh1 and Sox2. Our analysis indicates that downregulation of Sox2 in the differentiating hair cells depends on Six1 activity. Furthermore, we found that Six1 is required for the maintenance of Fgf8 expression and dynamic distribution of N-cadherin and E-cadherin in the organ of Corti during differentiation. Together, our analyses uncover essential roles of Six1 in hair cell differentiation and formation of the organ of Corti in the mammalian cochlea.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
82
|
The Eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol 2017; 96:165-170. [PMID: 28887153 DOI: 10.1016/j.biocel.2017.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
The Eya proteins were originally identified as essential transcriptional co-activators of the Six family of homeoproteins. Subsequently, the highly conserved C-terminal domains of the Eya proteins were discovered to act as a Mg2+-dependent Tyr phosphatases, making Eyas the first transcriptional activators to harbor intrinsic phosphatase activity. Only two direct targets of the Eya Tyr phosphatase have been identified: H2AX, whose dephosphorylation directs cells to the DNA repair instead of the apoptotic pathway upon DNA damage, and ERβ, whose dephosphorylation inhibits its anti-tumor transcriptional activity. The Eya Tyr phosphatase mediates breast cancer cell transformation, migration, invasion, as well as metastasis, through targets not yet identified. Intriguingly, the N-terminal domain of Eya contains a separate Ser/Thr phosphatase activity implicated in innate immunity and in regulating c-Myc stability. Thus, Eya proteins are highly complex, containing two separable phosphatase domains and a transcriptional activation domain, thereby influencing tumor progression through multiple mechanisms.
Collapse
|
83
|
Ahmed MU, Maurya AK, Cheng L, Jorge EC, Schubert FR, Maire P, Basson MA, Ingham PW, Dietrich S. Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility. Dev Biol 2017; 430:90-104. [PMID: 28807781 DOI: 10.1016/j.ydbio.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022]
Abstract
Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
Collapse
Affiliation(s)
- Mohi U Ahmed
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Ashish K Maurya
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | - Louise Cheng
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Erika C Jorge
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Universidade Federal de Minas Gerais - Departamento de Morfologia, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Pascal Maire
- Institut Cochin, INSERM U567, CNRS UMR 8104, Univ. Paris Descartes, Département Génétique et Développement, Equipegénétique et développement du systèmeneuromusculaire, 24 Rue du Fg St Jacques, 75014 Paris, France
| | - M Albert Basson
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Philip W Ingham
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore; Dept. of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Susanne Dietrich
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
84
|
Wei DW, Gui LS, Raza SHA, Zhang S, Khan R, Wang L, Guo HF, Zan LS. NRF1 and ZSCAN10 bind to the promoter region of the SIX1 gene and their effects body measurements in Qinchuan cattle. Sci Rep 2017; 7:7867. [PMID: 28801681 PMCID: PMC5554236 DOI: 10.1038/s41598-017-08384-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
The SIX1 homeobox gene belongs to the six homeodomain family and is widely thought to play a principal role in mediating of skeletal muscle development. In the present study, we determined that the bovine SIX1 gene was highly expressed in the longissimus thoracis and physiologically immature individuals. DNA sequencing of 428 individual Qinchuan cattle identified nine single nucleotide polymorphisms (SNPs) in the promoter region of the SIX1 gene. Using a series of 5′ deletion promoter plasmid luciferase reporter assays and 5′-rapid amplification of cDNA end analysis (RACE), two of these SNPs were found to be located in the proximal minimal promoter region −216/−28 relative to the transcriptional start site (TSS). Correlation analysis showed the combined haplotypes H1-H2 (-GG-GA-) was significantly greater in the body measurement traits (BMTs) than the others, which was consistent with the results showing that the transcriptional activity of Hap2 was higher than the others in Qinchuan cattle myoblast cells. Furthermore, the electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assay (ChIP) demonstrated that NRF1 and ZSCAN10 binding occurred in the promoter region of diplotypes H1-H2 to regulate SIX1 transcriptional activity. This information may be useful for molecular marker-assisted selection (MAS) in cattle breeding.
Collapse
Affiliation(s)
- Da-Wei Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong-Fang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
85
|
Lei L, Zhenzhong L, Lin L, Bo P. Uncovering the pathogenesis of microtia using bioinformatics approach. Int J Pediatr Otorhinolaryngol 2017; 99:30-35. [PMID: 28688561 DOI: 10.1016/j.ijporl.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/07/2017] [Accepted: 05/20/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Bioinformatics is widely used in the field of cancer research, but in the research of pathogenesis of congenital malformations the situation is different. The aim of this study was to explore the underlying mechanism using bioinformatics approach. METHODS The data were available from Mouse Genome Informatics and Pubmed. Protein-protein interaction (PPI) network of pathogenic genes was conducted using STRING. Gene ontology and pathway enrichment analyses were also performed to pathogenic genes. RESULTS Total 63 genes were identified as pathogenic genes in the study. The PPI networks for pathogenic genes were constructed, which contained 62 nodes and 228 edges with PAX6, FGFR1 and CTNNB1 as the hub genes. All the genes were linked to 921 pathways in biological processes, 31 pathways in cell component, 41 pathways in molecular function, and 76 pathways in the KEGG. These genes were discovered significantly enriched in embryonic organ development, ear morphogenesis, ear development, and regulation of RNA synthesis and processing. CONCLUSIONS bioinformatics methods were utilized to analysis pathogenic genes involved in microtia development, including pathogenic genes identifying, PPI network construction and functional analysis. And we also predicted that several potential mechanisms might contribute to occurrence of microtia by disturbing GO terms and pathways. This approach could be useful for the study of the etiology and pathogenesis of microtia.
Collapse
Affiliation(s)
- Liu Lei
- Department of Burns and Plastic Surgery, Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China.
| | - Liu Zhenzhong
- Department of Burns and Plastic Surgery, Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Lin Lin
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Pan Bo
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, People's Republic of China
| |
Collapse
|
86
|
Griffin J, St-Pierre N, Lilburn M, Wick M. Transcriptional comparison of myogenesis in leghorn and low score normal embryos. Poult Sci 2017; 96:1531-1543. [DOI: 10.3382/ps/pew452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
|
87
|
Cai B, Li Z, Ma M, Wang Z, Han P, Abdalla BA, Nie Q, Zhang X. LncRNA-Six1 Encodes a Micropeptide to Activate Six1 in Cis and Is Involved in Cell Proliferation and Muscle Growth. Front Physiol 2017; 8:230. [PMID: 28473774 PMCID: PMC5397475 DOI: 10.3389/fphys.2017.00230] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in epigenetic regulation of skeletal muscle development. In our previous RNA-seq study (accession number GSE58755), we found that lncRNA-Six1 is an lncRNA that is differentially expressed between White Recessive Rock (WRR) and Xinghua (XH) chicken. In this study, we have further demonstrated that lncRNA-Six1 is located 432 bp upstream of the gene encoding the protein Six homeobox 1 (Six1). A dual-luciferase reporter assay identified that lncRNA-Six1 overlaps the Six1 proximal promoter. In lncRNA-Six1, a micropeptide of about 7.26 kDa was found to play an important role in the lncRNA-Six1 in cis activity. Overexpression of lncRNA-Six1 promoted the mRNA and protein expression level of the Six1 gene, while knockdown of lncRNA-Six1 inhibited Six1 expression. Moreover, tissue expression profiles showed that both the lncRNA-Six1 and the Six1 mRNA were highly expressed in chicken breast tissue. LncRNA-Six1 overexpression promoted cell proliferation and induced cell division. Conversely, its loss of function inhibited cell proliferation and reduced cell viability. Similar effects were observed after overexpression or knockdown of the Six1 gene. In addition, overexpression or knockdown of Six1 promoted or inhibited, respectively, the expression levels of muscle-growth-related genes, such as MYOG, MYHC, MYOD, IGF1R, and INSR. Taken together, these data demonstrate that lncRNA-Six1 carries out cis-acting regulation of the protein-encoding Six1 gene, and encodes a micropeptide to activate Six1 gene, thus promoting cell proliferation and being involved in muscle growth.
Collapse
Affiliation(s)
- Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Manting Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Peigong Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| |
Collapse
|
88
|
MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2617-2630. [PMID: 28421535 DOI: 10.1007/s12035-017-0537-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a subset of endogenous, small, non-coding RNA molecules involved in the post-transcriptional regulation of eukaryotic gene expression. Dysregulation in miRNA-related pathways in the central nervous system (CNS) is associated with severe neuronal injury and cell death, which can lead to the development of neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS). ALS is a fatal adult onset disease characterized by the selective loss of upper and lower motor neurons. While the pathogenesis of ALS is still largely unknown, familial ALS forms linked to TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) gene mutations, as well as sporadic forms, display changes in several steps of RNA metabolism, including miRNA processing. Here, we review the current knowledge about miRNA metabolism and biological functions and their crucial role in ALS pathogenesis with an in-depth analysis on different pathways. A more precise understanding of miRNA involvement in ALS could be useful not only to elucidate their role in the disease etiopathogenesis but also to investigate their potential as disease biomarkers and novel therapeutic targets.
Collapse
|
89
|
Nishimura T, Tamaoki M, Komatsuzaki R, Oue N, Taniguchi H, Komatsu M, Aoyagi K, Minashi K, Chiwaki F, Shinohara H, Tachimori Y, Yasui W, Muto M, Yoshida T, Sakai Y, Sasaki H. SIX1 maintains tumor basal cells via transforming growth factor-β pathway and associates with poor prognosis in esophageal cancer. Cancer Sci 2017; 108:216-225. [PMID: 27987372 PMCID: PMC5329162 DOI: 10.1111/cas.13135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. Although improvement in both surgical techniques and neoadjuvant chemotherapy has been achieved, the 5-year survival rate of locally advanced tumors was, at best, still 55%. Therefore, elucidation of mechanisms of the malignancy is eagerly awaited. Epithelial-mesenchymal transition (EMT) by transforming growth factor-β (TGF-β) has been reported to have critical biological roles for cancer cell stemness, whereas little is known about it in ESCC. In the current study, a transcriptional factor SIX1 was found to be aberrantly expressed in ESCCs. SIX1 cDNA transfection induced overexpression of transforming growth factors (TGFB1 and TGFB2) and its receptor (TGFBR2). Cell invasion was reduced by SIX1 knockdown and was increased in stable SIX1-transfectants. Furthermore, the SIX1-transfectants highly expressed tumor basal cell markers such as NGFR, SOX2, ALDH1A1, and PDPN. Although mock-transfectants had only a 20% PDPN-high population, SIX1-transfectants had 60-70%. In two sets of 42 and 85 ESCC patients receiving surgery alone or neoadjuvant chemoradiotherapy followed by surgery, the cases with high SIX1 mRNA and protein expression level significantly showed a poor prognosis compared with those with low levels. These SIX1 high cases also expressed the above basal cell markers, but suppressed the differentiation markers. Finally, TGF-β signaling blockade suppressed ESCC cell growth in association with the reduction of PDPN-positive tumor basal cell population. The present results suggest that SIX1 accelerates self-renewal of tumor basal cells, resulting in a poor prognosis for ESCC patients.
Collapse
Affiliation(s)
- Takao Nishimura
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Tamaoki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Komatsuzaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | | | - Masayuki Komatsu
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiko Aoyagi
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keiko Minashi
- Department of Clinical Trial Promotion, Chiba Cancer Center, Chiba, Japan
| | - Fumiko Chiwaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisashi Shinohara
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Tachimori
- Department of Esophageal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
90
|
Chao L, Liu J, Zhao D. Increased Six1 expression is associated with poor prognosis in patients with osteosarcoma. Oncol Lett 2017; 13:2891-2896. [PMID: 28521394 PMCID: PMC5431299 DOI: 10.3892/ol.2017.5803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/16/2016] [Indexed: 11/17/2022] Open
Abstract
Sine oculis homeobox homolog 1 (Six1) is an evolutionarily conserved transcription factor that acts as master regulator of development and is frequently dysregulated in various types of cancer. Six1 has been demonstrated to be upregulated in human osteosarcoma cell lines compared with osteoblastic cell lines. However, the association of Six1 expression with the progression and prognosis of osteosarcoma patients remains unclear. The purpose of the present study was to investigate the association between Six1 expression and the clinicopathological characteristics and prognosis of osteosarcoma. Six1 protein was detected by immunohistochemistry in a series of 100 osteosarcoma patients, and Kaplan-Meier survival analysis was performed to assess prognosis. The results revealed that increased Six1 protein expression was prevalent in osteosarcoma and was significantly associated with Enneking stage (P=0.002) and tumor size (P=0.010). Additionally, according to the log-rank test and Cox regression model, expression of Six1 is indicated to be an independent prognostic factor in osteosarcoma patients. In summary, positive expression of Six1 protein is closely associated with the tumor progression and poor survival of osteosarcoma patients. The results suggest that Six1 is a overexpressed in individuals with poor prognosis, and may thus be used as a prognostic biomarker in patients with osteosarcoma.
Collapse
Affiliation(s)
- Lemeng Chao
- Graduate College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Orthopaedics, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region 010017, P.R. China
| | - Jianfeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
91
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
92
|
Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Dev Biol 2017; 421:171-182. [PMID: 27940157 PMCID: PMC5221411 DOI: 10.1016/j.ydbio.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Genevieve Abbruzzesse
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristy Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Vanessa Bartolo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Patrick Krohn
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
93
|
Zhang X, Xu R. Six1 expression is associated with a poor prognosis in patients with glioma. Oncol Lett 2017; 13:1293-1298. [PMID: 28454249 DOI: 10.3892/ol.2017.5577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/04/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is the most common human brain cancer and has poor prognosis. Messenger RNA profiling identified that sineoculis homeobox homolog 1 (Six1) is dysregulated in glioma tumor progenitor cells from glial progenitor cells isolated from normal white matter. However, the expression and role of Six1 in glioma remains unclear. The purpose of the present study was to investigate the expression level of Six1 in glioma tissues and the association between Six1 expression and clinicopathological characteristics and prognosis of gliomas. The Six1 protein was detected by immunohistochemistry in 163 glioma tissues of distinct malignancy grades, and Kaplan-Meier survival analysis was performed to assess the prognosis of the patients. The Six1 protein was stained in 49.1% (80 out of 163) of the glioma tissues, including 34.2% of low-grade [World Health Organization (WHO) I/II] gliomas and 80.8% of high-grade (WHO III/IV) gliomas. Normal brain tissues rarely expressed the Six1 protein. In addition, Six1 expression was significantly associated with WHO grade (P<0.001). According to the log-rank test and Cox regression model, Six1 may be suggested as an independent prognostic factor, in addition to the WHO grade. Overall, Six1 protein expression varies between different grades of glioma and is associated with the WHO grade. Upregulation of Six1 is more frequent in high-grade glioma and is an independent prognostic factor of poor clinical outcome.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, Affiliated General Hospital of Beijing Military Region, Southern Medical University, Beijing 100700, P.R. China.,Department of Neurosurgery, Inner Mongolia People's Hospital, Hohot, Inner Mongolia Autonomous Region 010017, P.R. China
| | - Ruxiang Xu
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, Affiliated General Hospital of Beijing Military Region, Southern Medical University, Beijing 100700, P.R. China.,Neurosurgery Institute of Beijing Military Region, Beijing 100700, P.R. China
| |
Collapse
|
94
|
Gendron C, Schwentker A, van Aalst JA. Genetic Advances in the Understanding of Microtia. J Pediatr Genet 2016; 5:189-197. [PMID: 27895971 DOI: 10.1055/s-0036-1592422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Microtia is a genetic condition affecting the external ears and presents clinically along a wide spectrum: minimally affected ears are small with minor shape abnormalities; extremely affected ears lack all identifiable structures, with the most extreme being absence of the entire external ear. Multiple genetic causes have been linked to microtia in both animal models and humans, which are improving our understanding of the condition and may lead to the identification of a unified cause for the condition. Microtia is also a prominent feature of several genetic syndromes, the study of which has provided further insight into the possible causes and genetic mechanisms of the condition. This article reviews our current understanding of microtia including epidemiological characteristics, classification systems, environmental and genetic causative factors leading to microtia. Despite our increased understanding of the genetics of microtia, we do not have a means of preventing the condition and still rely on complex staged, surgical correction.
Collapse
Affiliation(s)
- Craig Gendron
- Craniofacial and Pediatric Plastic Surgery, Saskatoon Health Region of Saskatchewan, Saskatoon, Canada
| | - Ann Schwentker
- Division of Plastic Surgery, University of Cincinnati, Cincinnati, Ohio, United States
| | - John A van Aalst
- Division of Plastic Surgery, University of Cincinnati, Cincinnati, Ohio, United States
| |
Collapse
|
95
|
Sakakibara I, Wurmser M, Dos Santos M, Santolini M, Ducommun S, Davaze R, Guernec A, Sakamoto K, Maire P. Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle. Skelet Muscle 2016; 6:30. [PMID: 27597886 PMCID: PMC5011358 DOI: 10.1186/s13395-016-0102-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skeletal muscles are composed of slow and fast myofiber subtypes which each express selective genes required for their specific contractile and metabolic activity. Six homeoproteins are transcription factors regulating muscle cell fate through activation of myogenic regulatory factors and driving fast-type gene expression during embryogenesis. RESULTS We show here that Six1 protein accumulates more robustly in the nuclei of adult fast-type muscles than in adult slow-type muscles, this specific enrichment takes place during perinatal growth. Deletion of Six1 in soleus impaired fast-type myofiber specialization during perinatal development, resulting in a slow phenotype and a complete lack of Myosin heavy chain 2A (MyHCIIA) expression. Global transcriptomic analysis of wild-type and Six1 mutant myofibers identified the gene networks controlled by Six1 in adult soleus muscle. This analysis showed that Six1 is required for the expression of numerous genes encoding fast-type sarcomeric proteins, glycolytic enzymes and controlling intracellular calcium homeostasis. Parvalbumin, a key player of calcium buffering, in particular, is a direct target of Six1 in the adult myofiber. CONCLUSIONS This analysis revealed that Six1 controls distinct aspects of adult muscle physiology in vivo, and acts as a main determinant of fast-fiber type acquisition and maintenance.
Collapse
Affiliation(s)
- Iori Sakakibara
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Maud Wurmser
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Matthieu Dos Santos
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Marc Santolini
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, Université D. Diderot, École Normale Supérieure, Paris, 75005 France
| | - Serge Ducommun
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Romain Davaze
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Anthony Guernec
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| |
Collapse
|
96
|
Suen AA, Jefferson WN, Wood CE, Padilla-Banks E, Bae-Jump VL, Williams CJ. SIX1 Oncoprotein as a Biomarker in a Model of Hormonal Carcinogenesis and in Human Endometrial Cancer. Mol Cancer Res 2016; 14:849-58. [PMID: 27259717 PMCID: PMC5025359 DOI: 10.1158/1541-7786.mcr-16-0084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED The oncofetal protein sine oculis-related homeobox 1 (SIX1) is a developmental transcription factor associated with carcinogenesis in several human cancer types but has not been investigated in human endometrial cancer. In a model of hormonal carcinogenesis, mice neonatally exposed to the soy phytoestrogen genistein (GEN) or the synthetic estrogen diethylstilbestrol (DES) develop endometrial cancer as adults. Previously, we demonstrated that SIX1 becomes aberrantly expressed in the uteri of these mice. Here, we used this mouse model to investigate the role of SIX1 expression in endometrial carcinoma development and used human tissue microarrays to explore the utility of SIX1 as a biomarker in human endometrial cancer. In mice neonatally exposed to GEN or DES, the Six1 transcript level increased dramatically over time in uteri at 6, 12, and 18 months of age and was associated with development of endometrial carcinoma. SIX1 protein localized within abnormal basal cells and all atypical hyperplastic and neoplastic lesions. These findings indicate that developmental estrogenic chemical exposure induces persistent endometrial SIX1 expression that is strongly associated with abnormal cell differentiation and cancer development. In human endometrial tissue specimens, SIX1 was not present in normal endometrium but was expressed in a subset of endometrial cancers in patients who were also more likely to have late-stage disease. These findings identify SIX1 as a disease biomarker in a model of hormonal carcinogenesis and suggest that SIX1 plays a role in endometrial cancer development in both mice and women. IMPLICATIONS The SIX1 oncoprotein is aberrantly expressed in the endometrium following developmental exposure to estrogenic chemicals, correlates with uterine cancer, and is a biomarker in human endometrial cancers. Mol Cancer Res; 14(9); 849-58. ©2016 AACR.
Collapse
Affiliation(s)
- Alisa A. Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
- Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC 27599
| | - Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Charles E. Wood
- Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC 27709
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology and Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC 27514
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
- Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
97
|
Santolini M, Sakakibara I, Gauthier M, Ribas-Aulinas F, Takahashi H, Sawasaki T, Mouly V, Concordet JP, Defossez PA, Hakim V, Maire P. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis. Nucleic Acids Res 2016; 44:8621-8640. [PMID: 27302134 PMCID: PMC5062961 DOI: 10.1093/nar/gkw512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/12/2022] Open
Abstract
Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.
Collapse
Affiliation(s)
- Marc Santolini
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Iori Sakakibara
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Morgane Gauthier
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Francesc Ribas-Aulinas
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | | | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Jean-Paul Concordet
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Vincent Hakim
- Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
98
|
Kawasaki T, Takahashi M, Yajima H, Mori Y, Kawakami K. Six1 is required for mouse dental follicle cell and human periodontal ligament-derived cell proliferation. Dev Growth Differ 2016; 58:530-45. [DOI: 10.1111/dgd.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Tatsuki Kawasaki
- Department of Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Masanori Takahashi
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Hiroshi Yajima
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Yoshiyuki Mori
- Department of Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Kiyoshi Kawakami
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| |
Collapse
|
99
|
Yajima H, Kawakami K. LowSix4andSix5gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. Dev Growth Differ 2016; 58:546-61. [DOI: 10.1111/dgd.12290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Hiroshi Yajima
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Kiyoshi Kawakami
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke Tochigi 329-0498 Japan
| |
Collapse
|
100
|
|