51
|
Regrowth of zebrafish caudal fin regeneration is determined by the amputated length. Sci Rep 2020; 10:649. [PMID: 31959817 PMCID: PMC6971026 DOI: 10.1038/s41598-020-57533-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 01/03/2020] [Indexed: 11/08/2022] Open
Abstract
Fish have a high ability to regenerate fins, including the caudal fin. After caudal fin amputation, original bi-lobed morphology is reconstructed during its rapid regrowth. It is still controversial whether positional memory in the blastema cells regulates reconstruction of fin morphology as in amphibian limb regeneration, in which limb blastema cells located at the same proximal-distal level have the same positional identity. We investigated growth period and growth rate in zebrafish caudal fin regeneration. We found that both the growth period and growth rate differed for fin rays that were amputated at the same proximal-distal level, indicating that it takes different periods of time for fin rays to restore their original lengths after straight amputation. We also show that more proximal amputation takes longer period to reconstruct the original morphology/size than more distal amputation. Statistical analysis suggested that both the growth period/rate are determined by amputated length (depth) regardless of the fin ray identity along dorsal-ventral axis. In addition, we suggest the possibility that the structural/physical condition such as width of the fin ray at the amputation site (niche at the stump) may determine the growth period/rate.
Collapse
|
52
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
53
|
Simsek MF, Özbudak EM. Spatial Fold Change of FGF Signaling Encodes Positional Information for Segmental Determination in Zebrafish. Cell Rep 2019; 24:66-78.e8. [PMID: 29972792 PMCID: PMC6063364 DOI: 10.1016/j.celrep.2018.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Signal gradients encode instructive information for numerous decision-making processes during embryonic development. A striking example of precise, scalable tissue-level patterning is the segmentation of somites—the precursors of the vertebral column—during which the fibroblast growth factor (FGF), Wnt, and retinoic acid (RA) pathways establish spatial gradients. Despite decades of studies proposing roles for all three pathways, the dynamic feature of these gradients that encodes instructive information determining segment sizes remained elusive. We developed a non-elongating tail explant system, integrated quantitative measurements with computational modeling, and tested alternative models to show that positional information is encoded solely by spatial fold change (SFC) in FGF signal output. Neighboring cells measure SFC to accurately position the determination front and thus determine segment size. The SFC model successfully recapitulates results of spatiotemporal perturbation experiments on both explants and intact embryos, and it shows that Wnt signaling acts permissively upstream of FGF signaling and that RA gradient is dispensable. Simsek et al. use an elongation-arrested 3D explant system, integrated with quantitative measurements and computational modeling, to show that positional information for segmentation is encoded solely by spatial fold change (SFC) in FGF signal output. Neighboring cells measure SFC to accurately determine somite segment sizes. Wnt signaling acts permissively upstream of FGF signaling.
Collapse
Affiliation(s)
- M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
54
|
Genetic Reprogramming of Positional Memory in a Regenerating Appendage. Curr Biol 2019; 29:4193-4207.e4. [PMID: 31786062 DOI: 10.1016/j.cub.2019.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/01/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Certain vertebrates such as salamanders and zebrafish are able to regenerate complex tissues (e.g., limbs and fins) with remarkable fidelity. However, how positional information of the missing structure is recalled by appendage stump cells has puzzled researchers for centuries. Here, we report that sizing information for adult zebrafish tailfins is encoded within proliferating blastema cells during a critical period of regeneration. Using a chemical mutagenesis screen, we identified a temperature-sensitive allele of the gene encoding DNA polymerase alpha subunit 2 (pola2) that disrupts fin regeneration in zebrafish. Temperature shift assays revealed a 48-h window of regeneration, during which positional identities could be disrupted in pola2 mutants, leading to regeneration of miniaturized appendages. These fins retained memory of the new size in subsequent rounds of amputation and regeneration. Similar effects were observed upon transient genetic or pharmacological disruption of progenitor cell proliferation after plucking of zebrafish scales or head or tail amputation in amphioxus and annelids. Our results provide evidence that positional information in regenerating tissues is not hardwired but malleable, based on regulatory mechanisms that appear to be evolutionarily conserved across distantly related phyla.
Collapse
|
55
|
Staudt N, Giger FA, Fielding T, Hutt JA, Foucher I, Snowden V, Hellich A, Kiecker C, Houart C. Pineal progenitors originate from a non-neural territory limited by FGF signalling. Development 2019; 146:dev.171405. [PMID: 31754007 PMCID: PMC7375831 DOI: 10.1242/dev.171405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells. Highlighted Article: Gene expression and fate mapping/lineage tracing in zebrafish reveals that the pineal organ develops from the non-neural pre-placodal ectoderm under the control of FGF signalling.
Collapse
Affiliation(s)
- Nicole Staudt
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Florence A Giger
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - James A Hutt
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Isabelle Foucher
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Vicky Snowden
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Agathe Hellich
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
56
|
Recent advancements in understanding fin regeneration in zebrafish. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e367. [DOI: 10.1002/wdev.367] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 11/07/2022]
|
57
|
No Correlation between Endo- and Exoskeletal Regenerative Capacities in Teleost Species. FISHES 2019. [DOI: 10.3390/fishes4040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regeneration of paired appendages in certain fish and amphibian lineages is a well established and extensively studied regenerative phenomenon. The teleost fin is comprised of a proximal endoskeletal part (considered homologous to the Tetrapod limb) and a distal exoskeletal one, and these two parts form their bony elements through different ossification processes. In the past decade, a significant body of literature has been generated about the biology of exoskeletal regeneration in zebrafish. However, it is still not clear if this knowledge can be applied to the regeneration of endoskeletal parts. To address this question, we decided to compare endo- and exoskeletal regenerative capacity in zebrafish (Danio rerio) and mudskippers (Periophthalmus barbarous). In contrast to the reduced endoskeleton of zebrafish, Periophthalmus has well developed pectoral fins with a large and easily accessible endoskeleton. We performed exo- and endoskeletal amputations in both species and followed the regenerative processes. Unlike the almost flawless exoskeletal regeneration observed in zebrafish, regeneration following endoskeletal amputation is often impaired in this species. This difference is even more pronounced in Periophthalmus where we could observe no regeneration in endoskeletal structures. Therefore, regeneration is regulated differentially in the exo- and endoskeleton of teleost species.
Collapse
|
58
|
Abstract
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sungmin Baek
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
59
|
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019; 146:146/18/dev167692. [DOI: 10.1242/dev.167692] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Ines J. Marques
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Eleonora Lupi
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
| |
Collapse
|
60
|
Ohgo S, Ichinose S, Yokota H, Sato-Maeda M, Shoji W, Wada N. Tissue regeneration during lower jaw restoration in zebrafish shows some features of epimorphic regeneration. Dev Growth Differ 2019; 61:419-430. [PMID: 31468519 DOI: 10.1111/dgd.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface. Subsequently, the blastema, an undifferentiated mesenchymal mass, forms beneath the epidermis. In the present study, we re-examined the regeneration of the zebrafish lower jaw in detail, and investigated whether epimorphic regeneration is involved in this process. We performed amputation of the lower jaw at two different positions; the proximal level (presence of Meckel's cartilage) and the distal level (absence of Meckel's cartilage). In both manipulations, a blastema-like cellular mass was initially formed. Subsequently, cartilaginous aggregates were formed in this mass. In the proximal amputation, the cartilaginous aggregates were then fused with Meckel's cartilage and remained as a skeletal component of the regenerated jaw, whereas in the distal amputation, the cartilaginous aggregates disappeared as regeneration progressed. Two molecules that were observed during epimorphic regeneration, Laminin and msxb, were expressed in the regenerating lower jaw, although the domain of msxb expression was out of the main plain of the aggregate formation. Administration of an inhibitor of Wnt/β-catenin signaling, a pathway associated with epimorphic regeneration, showed few effects on lower jaw regeneration. Our finding suggests that skeletal regeneration of the lower jaw mainly progresses through tissue regeneration that is dependent on the position in the jaw, and epimorphic regeneration plays an adjunctive role in this regeneration.
Collapse
Affiliation(s)
- Shiro Ohgo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Sayaka Ichinose
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Hinako Yokota
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Mika Sato-Maeda
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
61
|
Singh BN, Gong W, Das S, Theisen JWM, Sierra-Pagan JE, Yannopoulos D, Skie E, Shah P, Garry MG, Garry DJ. Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Sci Rep 2019; 9:9736. [PMID: 31278282 PMCID: PMC6611806 DOI: 10.1038/s41598-019-45841-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Etv2, an Ets-transcription factor, governs the specification of the earliest hemato-endothelial progenitors during embryogenesis. While the transcriptional networks during hemato-endothelial development have been well described, the mechanistic details are incompletely defined. In the present study, we described a new role for Etv2 as a regulator of cellular proliferation via Yes1 in mesodermal lineages. Analysis of an Etv2-ChIPseq dataset revealed significant enrichment of Etv2 peaks in the upstream regions of cell cycle regulatory genes relative to non-cell cycle genes. Our bulk-RNAseq analysis using the doxycycline-inducible Etv2 ES/EB system showed increased levels of cell cycle genes including E2f4 and Ccne1 as early as 6 h following Etv2 induction. Further, EdU-incorporation studies demonstrated that the induction of Etv2 resulted in a ~2.5-fold increase in cellular proliferation, supporting a proliferative role for Etv2 during differentiation. Next, we identified Yes1 as the top-ranked candidate that was expressed in Etv2-EYFP+ cells at E7.75 and E8.25 using single cell RNA-seq analysis. Doxycycline-mediated induction of Etv2 led to an increase in Yes1 transcripts in a dose-dependent fashion. In contrast, the level of Yes1 was reduced in Etv2 null embryoid bodies. Using bioinformatics algorithms, biochemical, and molecular biology techniques, we show that Etv2 binds to the promoter region of Yes1 and functions as a direct upstream transcriptional regulator of Yes1 during embryogenesis. These studies enhance our understanding of the mechanisms whereby Etv2 governs mesodermal fate decisions early during embryogenesis.
Collapse
Affiliation(s)
- Bhairab N Singh
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Demetris Yannopoulos
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik Skie
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Shah
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA. .,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
62
|
Gallegos TF, Kamei CN, Rohly M, Drummond IA. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev Biol 2019; 454:44-51. [PMID: 31220433 DOI: 10.1016/j.ydbio.2019.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
The zebrafish kidney regenerates after injury by development of new nephrons from resident adult kidney stem cells. Although adult kidney progenitor cells have been characterized by transplantation and single cell RNA seq, signals that stimulate new nephron formation are not known. Here we demonstrate that fibroblast growth factors and FGF signaling is rapidly induced after kidney injury and that FGF signaling is required for recruitment of progenitor cells to sites of new nephron formation. Chemical or dominant negative blockade of Fgfr1 prevented formation of nephron progenitor cell aggregates after injury and during kidney development. Implantation of FGF soaked beads induced local aggregation of lhx1a:EGFP + kidney progenitor cells. Our results reveal a previously unexplored role for FGF signaling in recruitment of renal progenitors to sites of new nephron formation and suggest a role for FGF signaling in maintaining cell adhesion and cell polarity in newly forming kidney epithelia.
Collapse
Affiliation(s)
- Thomas F Gallegos
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA
| | - Caramai N Kamei
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA
| | | | - Iain A Drummond
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA; Harvard Medical School Department of Genetics, Boston, MA, 02115, USA.
| |
Collapse
|
63
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
64
|
König D, Jaźwińska A. Zebrafish fin regeneration involves transient serotonin synthesis. Wound Repair Regen 2019; 27:375-385. [DOI: 10.1111/wrr.12719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Désirée König
- Department of BiologyUniversity of Fribourg Chemin du Musée 10, 1700, Fribourg Switzerland
| | - Anna Jaźwińska
- Department of BiologyUniversity of Fribourg Chemin du Musée 10, 1700, Fribourg Switzerland
| |
Collapse
|
65
|
Cao PL, Kumagai N, Inoue T, Agata K, Makino T. JmjC Domain-Encoding Genes Are Conserved in Highly Regenerative Metazoans and Are Associated with Planarian Whole-Body Regeneration. Genome Biol Evol 2019; 11:552-564. [PMID: 30698705 PMCID: PMC6390904 DOI: 10.1093/gbe/evz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
The capacity for regeneration varies greatly among metazoans, yet little is known about the evolutionary processes leading to such different regeneration abilities. In particular, highly regenerative species such as planarians and cnidarians can regenerate the whole body from an amputated fragment; however, a common molecular basis, if any, among these species remains unclear. Here, we show that genes encoding Jumonji C (JmjC) domain-containing proteins are associated with high regeneration ability. We classified 132 fully sequenced metazoans into two groups with high or low regeneration abilities and identified 118 genes conserved in the high regenerative group that were lost in species in the low regeneration group during evolution. Ninety-six percent of them were JmjC domain-encoding genes. We denoted the candidate genes as high regenerative species-specific JmjC domain-encoding genes (HRJDs). We observed losses of HRJDs in Helobdella robusta, which lost its high regeneration ability during evolution based on phylogenetic analysis. By RNA sequencing analyses, we observed that HRJD orthologs were differentially expressed during regeneration in two Cnidarians, as well as Platyhelminthes and Urochordata, which are highly regenerative species. Furthermore, >50% of the head and tail parts of amputated planarians (Dugesia japonica) died during regeneration after RNA interference of HRJD orthologs. These results indicate that HRJD are strongly associated with a high regeneration ability in metazoans. HRJD paralogs regulate gene expression by histone demethylation; thus, HRJD may be related to epigenetic regulation controlling stem cell renewal and stem cell differentiation during regeneration. We propose that HRJD play a central role in epigenetic regulation during regeneration.
Collapse
Affiliation(s)
- Ping-Lin Cao
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Nobuyoshi Kumagai
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
66
|
Han Y, Chen A, Umansky KB, Oonk KA, Choi WY, Dickson AL, Ou J, Cigliola V, Yifa O, Cao J, Tornini VA, Cox BD, Tzahor E, Poss KD. Vitamin D Stimulates Cardiomyocyte Proliferation and Controls Organ Size and Regeneration in Zebrafish. Dev Cell 2019; 48:853-863.e5. [PMID: 30713073 DOI: 10.1016/j.devcel.2019.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/15/2018] [Accepted: 12/28/2018] [Indexed: 01/07/2023]
Abstract
Attaining proper organ size during development and regeneration hinges on the activity of mitogenic factors. Here, we performed a large-scale chemical screen in embryonic zebrafish to identify cardiomyocyte mitogens. Although commonly considered anti-proliferative, vitamin D analogs like alfacalcidol had rapid, potent mitogenic effects on embryonic and adult cardiomyocytes in vivo. Moreover, pharmacologic or genetic manipulation of vitamin D signaling controlled proliferation in multiple adult cell types and dictated growth rates in embryonic and juvenile zebrafish. Tissue-specific modulation of vitamin D receptor (VDR) signaling had organ-restricted effects, with cardiac VDR activation causing cardiomegaly. Alfacalcidol enhanced the regenerative response of injured zebrafish hearts, whereas VDR blockade inhibited regeneration. Alfacalcidol activated cardiac expression of genes associated with ErbB2 signaling, while ErbB2 inhibition blunted its effects on cell proliferation. Our findings identify vitamin D as mitogenic for cardiomyocytes and other cell types in zebrafish and indicate a mechanism to regulate organ size and regeneration.
Collapse
Affiliation(s)
- Yanchao Han
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Anzhi Chen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Kfir-Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kelsey A Oonk
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Wen-Yee Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Valentina Cigliola
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Oren Yifa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Valerie A Tornini
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Ben D Cox
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
67
|
Lush ME, Diaz DC, Koenecke N, Baek S, Boldt H, St Peter MK, Gaitan-Escudero T, Romero-Carvajal A, Busch-Nentwich EM, Perera AG, Hall KE, Peak A, Haug JS, Piotrowski T. scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLife 2019; 8:e44431. [PMID: 30681411 PMCID: PMC6363392 DOI: 10.7554/elife.44431] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Loss of sensory hair cells leads to deafness and balance deficiencies. In contrast to mammalian hair cells, zebrafish ear and lateral line hair cells regenerate from poorly characterized support cells. Equally ill-defined is the gene regulatory network underlying the progression of support cells to differentiated hair cells. scRNA-Seq of lateral line organs uncovered five different support cell types, including quiescent and activated stem cells. Ordering of support cells along a developmental trajectory identified self-renewing cells and genes required for hair cell differentiation. scRNA-Seq analyses of fgf3 mutants, in which hair cell regeneration is increased, demonstrates that Fgf and Notch signaling inhibit proliferation of support cells in parallel by inhibiting Wnt signaling. Our scRNA-Seq analyses set the foundation for mechanistic studies of sensory organ regeneration and is crucial for identifying factors to trigger hair cell production in mammals. The data is searchable and publicly accessible via a web-based interface.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Daniel C Diaz
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Nina Koenecke
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Sungmin Baek
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Helena Boldt
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Andres Romero-Carvajal
- Stowers Institute for Medical ResearchKansas CityUnited States
- Pontificia Universidad Catolica del EcuadorCiencias BiologicasQuitoEcuador
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Anoja G Perera
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Kathryn E Hall
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison Peak
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jeffrey S Haug
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | |
Collapse
|
68
|
Keskin S, Simsek MF, Vu HT, Yang C, Devoto SH, Ay A, Özbudak EM. Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. iScience 2019; 12:247-259. [PMID: 30711748 PMCID: PMC6360518 DOI: 10.1016/j.isci.2019.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Gene regulatory networks govern pattern formation and differentiation during embryonic development. Segmentation of somites, precursors of the vertebral column among other tissues, is jointly controlled by temporal signals from the segmentation clock and spatial signals from morphogen gradients. To explore how these temporal and spatial signals are integrated, we combined time-controlled genetic perturbation experiments with computational modeling to reconstruct the core segmentation network in zebrafish. We found that Mesp family transcription factors link the temporal information of the segmentation clock with the spatial action of the fibroblast growth factor signaling gradient to establish rostrocaudal (head to tail) polarity of segmented somites. We further showed that cells gradually commit to patterning by the action of different genes at different spatiotemporal positions. Our study provides a blueprint of the zebrafish segmentation network, which includes evolutionarily conserved genes that are associated with the birth defect congenital scoliosis in humans. A core network establishes rostrocaudal polarity of segmented somites in zebrafish mesp genes link the segmentation clock with the FGF signaling gradient Gradual patterning is done by the action of different genes at different positions
Collapse
Affiliation(s)
- Sevdenur Keskin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ha T Vu
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Carlton Yang
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA.
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
69
|
Rasouli SJ, El-Brolosy M, Tsedeke AT, Bensimon-Brito A, Ghanbari P, Maischein HM, Kuenne C, Stainier DY. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7:e38889. [PMID: 30592462 PMCID: PMC6329608 DOI: 10.7554/elife.38889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Complex interplay between cardiac tissues is crucial for their integrity. The flow responsive transcription factor KLF2, which is expressed in the endocardium, is vital for cardiovascular development but its exact role remains to be defined. To this end, we mutated both klf2 paralogues in zebrafish, and while single mutants exhibit no obvious phenotype, double mutants display a novel phenotype of cardiomyocyte extrusion towards the abluminal side. This extrusion requires cardiac contractility and correlates with the mislocalization of N-cadherin from the lateral to the apical side of cardiomyocytes. Transgenic rescue data show that klf2 expression in endothelium, but not myocardium, prevents this cardiomyocyte extrusion phenotype. Transcriptome analysis of klf2 mutant hearts reveals that Fgf signaling is affected, and accordingly, we find that inhibition of Fgf signaling in wild-type animals can lead to abluminal cardiomyocyte extrusion. These studies provide new insights into how Klf2 regulates cardiovascular development and specifically myocardial wall integrity.
Collapse
Affiliation(s)
- Seyed Javad Rasouli
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Mohamed El-Brolosy
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Ayele Taddese Tsedeke
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Anabela Bensimon-Brito
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Parisa Ghanbari
- Department of Cardiac Development and RemodelingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans-Martin Maischein
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Carsten Kuenne
- Bioinformatics Core UnitMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier Y Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| |
Collapse
|
70
|
Kirchgeorg L, Felker A, van Oostrom M, Chiavacci E, Mosimann C. Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish. Dev Dyn 2018; 247:1146-1159. [PMID: 30194800 DOI: 10.1002/dvdy.24668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs. non-autonomous requirements for FGF signaling in individual processes difficult. RESULTS Here, we created the novel transgenic line fgfr1-dn-cargo, encoding dominant-negative Fgfr1a with fluorescent tag under combined Cre/lox and heatshock control to perturb FGF signaling spatiotemporally. Validating efficient perturbation of FGF signaling by fgfr1-dn-cargo primed with ubiquitous CreERT2, we established that primed, heatshock-induced fgfr1-dn-cargo behaves similarly to pulsed treatment with the FGFR inhibitor SU5402. Priming fgfr1-dn-cargo with CreERT2 in the lateral plate mesoderm triggered selective cardiac and pectoral fin phenotypes without drastic impact on overall embryo patterning. Harnessing lateral plate mesoderm-specific FGF inhibition, we recapitulated the cell-autonomous and temporal requirement for FGF signaling in pectoral fin outgrowth, as previously inferred from pan-embryonic FGF inhibition. CONCLUSIONS As a paradigm for rapid Cre/lox-mediated signaling perturbations, our results establish fgfr1-dn-cargo as a genetic tool to define the spatiotemporal requirements for FGF signaling in zebrafish. Developmental Dynamics 247:1146-1159, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Marek van Oostrom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
71
|
Cox BD, De Simone A, Tornini VA, Singh SP, Di Talia S, Poss KD. In Toto Imaging of Dynamic Osteoblast Behaviors in Regenerating Skeletal Bone. Curr Biol 2018; 28:3937-3947.e4. [PMID: 30503623 DOI: 10.1016/j.cub.2018.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Osteoblasts are matrix-depositing cells that can divide and heal bone injuries. Their deep-tissue location and the slow progression of bone regeneration challenge attempts to capture osteoblast behaviors in live tissue at high spatiotemporal resolution. Here, we have developed an imaging platform to monitor and quantify individual and collective behaviors of osteoblasts in adult zebrafish scales, skeletal body armor discs that regenerate rapidly after loss. Using a panel of transgenic lines that visualize and manipulate osteoblasts, we find that a founder pool of osteoblasts emerges through de novo differentiation within one day of scale plucking. These osteoblasts undergo division events that are largely uniform in frequency and orientation to establish a primordium. Osteoblast proliferation dynamics diversify across the primordium by two days after injury, with cell divisions focused near, and with orientations parallel to, the scale periphery, occurring coincident with dynamic localization of fgf20a gene expression. In posterior scale regions, cell elongation events initiate in areas soon occupied by mineralized grooves called radii, beginning approximately 2 days post injury, with patterned osteoblast death events accompanying maturation of these radii. By imaging at single-cell resolution, we detail acquisition of spatiotemporally distinct cell division, motility, and death dynamics within a founder osteoblast pool as bone regenerates.
Collapse
Affiliation(s)
- Ben D Cox
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro De Simone
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A Tornini
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Sumeet P Singh
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
72
|
Goldshmit Y, Tang JKKY, Siegel AL, Nguyen PD, Kaslin J, Currie PD, Jusuf PR. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish. Neural Dev 2018; 13:24. [PMID: 30447699 PMCID: PMC6240426 DOI: 10.1186/s13064-018-0122-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Despite conserved developmental processes and organization of the vertebrate central nervous system, only some vertebrates including zebrafish can efficiently regenerate neural damage including after spinal cord injury. The mammalian spinal cord shows very limited regeneration and neurogenesis, resulting in permanent life-long functional impairment. Therefore, there is an urgent need to identify the cellular and molecular mechanisms that can drive efficient vertebrate neurogenesis following injury. A key pathway implicated in zebrafish neurogenesis is fibroblast growth factor signaling. Methods In the present study we investigated the roles of distinct fibroblast growth factor members and their receptors in facilitating different aspects of neural development and regeneration at different timepoints following spinal cord injury. After spinal cord injury in adults and during larval development, loss and/or gain of Fgf signaling was combined with immunohistochemistry, in situ hybridization and transgenes marking motor neuron populations in in vivo zebrafish and in vitro mammalian PC12 cell culture models. Results Fgf3 drives neurogenesis of Islet1 expressing motor neuron subtypes and mediate axonogenesis in cMet expressing motor neuron subtypes. We also demonstrate that the role of Fgf members are not necessarily simple recapitulating development. During development Fgf2, Fgf3 and Fgf8 mediate neurogenesis of Islet1 expressing neurons and neuronal sprouting of both, Islet1 and cMet expressing motor neurons. Strikingly in mammalian PC12 cells, all three Fgfs increased cell proliferation, however, only Fgf2 and to some extent Fgf8, but not Fgf3 facilitated neurite outgrowth. Conclusions This study demonstrates differential Fgf member roles during neural development and adult regeneration, including in driving neural proliferation and neurite outgrowth of distinct spinal cord neuron populations, suggesting that factors including Fgf type, age of the organism, timing of expression, requirements for different neuronal populations could be tailored to best drive all of the required regenerative processes.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.,Steyer School of Health Professions, Sackler School of Medicine, Tel-Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Jean Kitty K Y Tang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ashley L Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Phong D Nguyen
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patricia R Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia. .,School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
73
|
Yin J, Lee R, Ono Y, Ingham PW, Saunders TE. Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Dev Cell 2018; 46:735-750.e4. [PMID: 30253169 DOI: 10.1016/j.devcel.2018.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Somitic cells give rise to a variety of cell types in response to Hh, BMP, and FGF signaling. Cell position within the developing zebrafish somite is highly dynamic: how, when, and where these signals specify cell fate is largely unknown. Combining four-dimensional imaging with pathway perturbations, we characterize the spatiotemporal specification and localization of somitic cells. Muscle formation is guided by highly orchestrated waves of cell specification. We find that FGF directly and indirectly controls the differentiation of fast and slow-twitch muscle lineages, respectively. FGF signaling imposes tight temporal control on Shh induction of slow muscles by regulating the time at which fast-twitch progenitors displace slow-twitch progenitors from contacting the Shh-secreting notochord. Further, we find a reciprocal regulation of fast and slow muscle differentiation, morphogenesis, and migration. In conclusion, robust cell fate determination in the developing somite requires precise spatiotemporal coordination between distinct cell lineages and signaling pathways.
Collapse
Affiliation(s)
- Jianmin Yin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Raymond Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Yosuke Ono
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
74
|
Geurtzen K, Knopf F. Adult Zebrafish Injury Models to Study the Effects of Prednisolone in Regenerating Bone Tissue. J Vis Exp 2018. [PMID: 30394396 DOI: 10.3791/58429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Zebrafish are able to regenerate various organs, including appendages (fins) after amputation. This involves the regeneration of bone, which regrows within roughly two weeks after injury. Furthermore, zebrafish are able to heal bone rapidly after trepanation of the skull, and repair fractures that can be easily introduced into zebrafish bony fin rays. These injury assays represent feasible experimental paradigms to test the effect of administered drugs on rapidly forming bone. Here, we describe the use of these 3 injury models and their combined use with systemic glucocorticoid treatment, which exerts bone inhibitory and immunosuppressive effects. We provide a workflow on how to prepare for immunosuppressive treatment in adult zebrafish, illustrate how to perform fin amputation, trepanation of calvarial bones, and fin fractures, and describe how the use of glucocorticoids affects both bone forming osteoblasts and cells of the monocyte/macrophage lineage as part of innate immunity in bone tissue.
Collapse
Affiliation(s)
- Karina Geurtzen
- CRTD - Center for Regenerative Therapies Dresden, TU Dresden
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies Dresden, TU Dresden; Center for Healthy Aging, TU Dresden;
| |
Collapse
|
75
|
A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat Commun 2018; 9:4237. [PMID: 30315164 PMCID: PMC6185975 DOI: 10.1038/s41467-018-06617-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/15/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian heart has a limited regenerative capacity and typically progresses to heart failure following injury. Here, we defined a hedgehog (HH)-Gli1-Mycn network for cardiomyocyte proliferation and heart regeneration from amphibians to mammals. Using a genome-wide screen, we verified that HH signaling was essential for heart regeneration in the injured newt. Next, pharmacological and genetic loss- and gain-of-function of HH signaling demonstrated the essential requirement for HH signaling in the neonatal, adolescent, and adult mouse heart regeneration, and in the proliferation of hiPSC-derived cardiomyocytes. Fate-mapping and molecular biological studies revealed that HH signaling, via a HH-Gli1-Mycn network, contributed to heart regeneration by inducing proliferation of pre-existing cardiomyocytes and not by de novo cardiomyogenesis. Further, Mycn mRNA transfection experiments recapitulated the effects of HH signaling and promoted adult cardiomyocyte proliferation. These studies defined an evolutionarily conserved function of HH signaling that may serve as a platform for human regenerative therapies. Due to the limited proliferation capacity of adult mammalian cardiomyocytes, the human heart has negligible regenerative capacity after injury. Here the authors show that a Hedgehog-Gli1-Mycn signaling cascade regulates cardiomyocyte proliferation and cardiac regeneration from amphibians to mammals.
Collapse
|
76
|
Kim JY, Lee SY, Kim H, Park JW, Lim DK, Moon DW. Biomolecular Imaging of Regeneration of Zebrafish Caudal Fins Using High Spatial Resolution Ambient Mass Spectrometry. Anal Chem 2018; 90:12723-12730. [DOI: 10.1021/acs.analchem.8b03066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Ji-Won Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | | |
Collapse
|
77
|
Singh BN, Weaver CV, Garry MG, Garry DJ. Hedgehog and Wnt Signaling Pathways Regulate Tail Regeneration. Stem Cells Dev 2018; 27:1426-1437. [PMID: 30003832 DOI: 10.1089/scd.2018.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urodele amphibians have a tremendous capacity for the regeneration of appendages, including limb and tail, following injury. While studies have focused on the cellular and morphological changes during appendicular regeneration, the signaling mechanisms that govern these cytoarchitectural changes during the regenerative response are unclear. In this study, we describe the essential role of hedgehog (Hh) and Wnt signaling pathways following tail amputation in the newt. Quantitative PCR studies revealed that members of both the Hh and Wnt signaling pathways, including the following: shh, ihh, ptc-1, wnt-3a, β-catenin, axin2, frizzled (frzd)-1, and frzd-2 transcripts, were induced following injury. Continuous pharmacological-mediated inhibition of Hh signaling resulted in spike-like regenerates with no evidence of tissue patterning, whereas activation of Hh signaling enhanced the regenerative process. Pharmacological-mediated temporal inhibition experiments demonstrated that the Hh-mediated patterning of the regenerating tail occurs early during regeneration and Hh signals are continuously required for proliferation of the blastemal progenitors. BrdU incorporation and PCNA immunohistochemical studies demonstrated that Hh signaling regulates the cellular proliferation of the blastemal cells following amputation. Similarly, Wnt inhibition resulted in perturbed regeneration, whereas its activation promoted tail regeneration. Using an inhibitor-activator strategy, we demonstrated that the Wnt pathway is likely to be upstream of the Hh pathway and together these signaling pathways function in a coordinated manner to facilitate tail regeneration. Mechanistically, the Wnt signaling pathway activated the Hh signaling pathway that included ihh and ptc-1 during the tail regenerative process. Collectively, our results demonstrate the absolute requirement of signaling pathways that are essential in the regulation of tail regeneration.
Collapse
Affiliation(s)
- Bhairab N Singh
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Cyprian V Weaver
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Mary G Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
78
|
Christou M, Iliopoulou M, Witten PE, Koumoundouros G. Segmentation pattern of zebrafish caudal fin is affected by developmental temperature and defined by multiple fusions between segments. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:330-340. [PMID: 30156749 DOI: 10.1002/jez.b.22825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 11/10/2022]
Abstract
Caudal-fin lepidotrichia is composed of numerous segments, which are linked to each other by intersegmental joints. During fish growth, lepidotrichia elongate by the addition of new segments at their distal margin, whereas the length of each segment remains constant after it is formed. In the present paper, we examined whether the water temperature affects the segmentation pattern of the juvenile and adult caudal fin. For this purpose, zebrafish (Danio rerio) embryos and larvae were exposed to three different temperature conditions (24°C, 28°C, and 32°C) from the pharyngula stage (1 day postfertilization [dpf]) to metamorphosis, whereas the control temperature (28°C) was applied to all the groups before and after this period. Results demonstrated that water temperature had a significant effect on the length of the segments of each lepidotrichium, at both the juvenile and adult stages. Moreover, at higher temperatures, there was a significant proximal shift of the position of the first bifurcation of the second lepidotrichium of the dorsal lobe. At all the experimental conditions, the length of proximal segment was not constant during fish growth, but it followed a discontinuous saltatory growth. Histological analysis of the proximal lepidotrichia segments revealed that the observed apparent growth of segments is the result of fusions between segments. Fusion occurs not by mineralization of the intersegmental joints, but by bone deposition around the joints.
Collapse
Affiliation(s)
| | | | - Paul Eckhard Witten
- Biology Department, Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
79
|
Wang J, Yin Y, Lau S, Sankaran J, Rothenberg E, Wohland T, Meier-Schellersheim M, Knaut H. Anosmin1 Shuttles Fgf to Facilitate Its Diffusion, Increase Its Local Concentration, and Induce Sensory Organs. Dev Cell 2018; 46:751-766.e12. [PMID: 30122631 DOI: 10.1016/j.devcel.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/26/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023]
Abstract
Growth factors induce and pattern sensory organs, but how their distribution is regulated by the extracellular matrix (ECM) is largely unclear. To address this question, we analyzed the diffusion behavior of Fgf10 molecules during sensory organ formation in the zebrafish posterior lateral line primordium. In this tissue, secreted Fgf10 induces organ formation at a distance from its source. We find that most Fgf10 molecules are highly diffusive and move rapidly through the ECM. We identify Anosmin1, which when mutated in humans causes Kallmann Syndrome, as an ECM protein that binds to Fgf10 and facilitates its diffusivity by increasing the pool of fast-moving Fgf10 molecules. In the absence of Anosmin1, Fgf10 levels are reduced and organ formation is impaired. Global overexpression of Anosmin1 slows the fast-moving Fgf10 molecules and results in Fgf10 dispersal. These results suggest that Anosmin1 liberates ECM-bound Fgf10 and shuttles it to increase its signaling range.
Collapse
Affiliation(s)
- John Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Stephanie Lau
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jagadish Sankaran
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
80
|
Neelathi UM, Dalle Nogare D, Chitnis AB. Cxcl12a induces snail1b expression to initiate collective migration and sequential Fgf-dependent neuromast formation in the zebrafish posterior lateral line primordium. Development 2018; 145:dev162453. [PMID: 29945870 PMCID: PMC6078336 DOI: 10.1242/dev.162453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The zebrafish posterior lateral line primordium migrates along a path defined by the chemokine Cxcl12a, periodically depositing neuromasts, to pioneer formation of the zebrafish posterior lateral line system. snail1b, known for its role in promoting cell migration, is expressed in leading cells of the primordium in response to Cxcl12a, whereas its expression in trailing cells is inhibited by Fgf signaling. snail1b knockdown delays initiation of primordium migration. This delay is associated with aberrant expansion of epithelial cell adhesion molecule (epcam) and reduction of cadherin 2 expression in the leading part of the primordium. Co-injection of snail1b morpholino with snail1b mRNA prevents the initial delay in migration and restores normal expression of epcam and cadherin 2 The delay in initiating primordium migration in snail1b morphants is accompanied by a delay in sequential formation of trailing Fgf signaling centers and associated protoneuromasts. This delay is not specifically associated with knockdown of snail1b but also with other manipulations that delay migration of the primordium. These observations reveal an unexpected link between the initiation of collective migration and sequential formation of protoneuromasts in the primordium.
Collapse
Affiliation(s)
- Uma M Neelathi
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
81
|
Fernandes SF, Fior R, Pinto F, Gama-Carvalho M, Saúde L. Fine-tuning of fgf8a expression through alternative polyadenylation has a selective impact on Fgf-associated developmental processes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30100-7. [PMID: 30071346 DOI: 10.1016/j.bbagrm.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The formation of distinct 3'UTRs through alternative polyadenylation is a mechanism of gene expression regulation that has been implicated in many physiological and pathological processes. However, its functions in the context of vertebrate embryonic development have been largely unaddressed, in particular with a gene-specific focus. Here we show that the most abundant 3'UTR for the zebrafish fgf8a gene in the developing embryo mediates a strong translational repression, when compared to a more sparsely used alternative 3'UTR, which supports a higher translational efficiency. By inducing a shift in the selection efficiency of the associated polyadenylation sites, we show a temporally and spatially specific impact of fgf8a 3'UTR usage on embryogenesis, in particular at late stages during sensory system development. In addition, we identified a previously undescribed role for Fgf signalling in the initial stages of superficial retinal vascularization. These results reveal a critical functional importance of gene-specific alternative 3'UTRs in vertebrate embryonic development.
Collapse
Affiliation(s)
- Sara F Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Rita Fior
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco Pinto
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Leonor Saúde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
82
|
Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin. Sci Rep 2018; 8:10391. [PMID: 29991812 PMCID: PMC6039437 DOI: 10.1038/s41598-018-28450-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
The establishment of relative size of organs and structures is paramount for attaining final form and function of an organism. Importantly, variation in the proportions of structures frequently underlies adaptive change in morphology in evolution and maybe a common mechanism underlying selection. However, the mechanism by which growth is integrated within tissues during development to achieve proper proportionality is poorly understood. We have shown that signaling by potassium channels mediates coordinated size regulation in zebrafish fins. Recently, calcineurin inhibitors were shown to elicit changes in zebrafish fin allometry as well. Here, we identify the potassium channel kcnk5b as a key player in integrating calcineurin’s growth effects, in part through regulation of the cytoplasmic C-terminus of the channel. We propose that the interaction between Kcnk5b and calcineurin acts as a signaling node to regulate allometric growth. Importantly, we find that this regulation is epistatic to inherent mechanisms instructing overall size as inhibition of calcineurin is able to bypass genetic instruction of size as seen in sof and wild-type fins, however, it is not sufficient to re-specify positional memory of size of the fin. These findings integrate classic signaling mediators such as calcineurin with ion channel function in the regulation of size and proportion during growth.
Collapse
|
83
|
Row RH, Pegg A, Kinney BA, Farr GH, Maves L, Lowell S, Wilson V, Martin BL. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018; 7:31018. [PMID: 29877796 PMCID: PMC6013256 DOI: 10.7554/elife.31018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
The mesodermal germ layer is patterned into mediolateral subtypes by signaling factors including BMP and FGF. How these pathways are integrated to induce specific mediolateral cell fates is not well understood. We used mesoderm derived from post-gastrulation neuromesodermal progenitors (NMPs), which undergo a binary mediolateral patterning decision, as a simplified model to understand how FGF acts together with BMP to impart mediolateral fate. Using zebrafish and mouse NMPs, we identify an evolutionarily conserved mechanism of BMP and FGF-mediated mediolateral mesodermal patterning that occurs through modulation of basic helix-loop-helix (bHLH) transcription factor activity. BMP imparts lateral fate through induction of Id helix loop helix (HLH) proteins, which antagonize bHLH transcription factors, induced by FGF signaling, that specify medial fate. We extend our analysis of zebrafish development to show that bHLH activity is responsible for the mediolateral patterning of the entire mesodermal germ layer.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Amy Pegg
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian A Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, United States
| | - Sally Lowell
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie Wilson
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
84
|
Takayama K, Muto A, Kikuchi Y. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration. Sci Rep 2018; 8:8278. [PMID: 29844341 PMCID: PMC5974189 DOI: 10.1038/s41598-018-26664-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.
Collapse
Affiliation(s)
- Kazuya Takayama
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Hematology Business Development, HU Business Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
85
|
Ricci L, Srivastava M. Wound-induced cell proliferation during animal regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e321. [PMID: 29719123 DOI: 10.1002/wdev.321] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Many animal species are capable of replacing missing tissues that are lost upon injury or amputation through the process of regeneration. Although the extent of regeneration is variable across animals, that is, some animals can regenerate any missing cell type whereas some can only regenerate certain organs or tissues, regulated cell proliferation underlies the formation of new tissues in most systems. Notably, many species display an increase in proliferation within hours or days upon wounding. While different cell types proliferate in response to wounding in various animal taxa, comparative molecular data are beginning to point to shared wound-induced mechanisms that regulate cell division during regeneration. Here, we synthesize current insights about early molecular pathways of regeneration from diverse model and emerging systems by considering these species in their evolutionary contexts. Despite the great diversity of mechanisms underlying injury-induced cell proliferation across animals, and sometimes even in the same species, similar pathways for proliferation have been implicated in distantly related species (e.g., small diffusible molecules, signaling from apoptotic cells, growth factor signaling, mTOR and Hippo signaling, and Wnt and Bmp pathways). Studies that explicitly interrogate molecular and cellular regenerative mechanisms in understudied animal phyla will reveal the extent to which early pathways in the process of regeneration are conserved or independently evolved. This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
86
|
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Dev Biol 2018; 438:44-56. [PMID: 29548943 DOI: 10.1016/j.ydbio.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/16/2018] [Accepted: 03/03/2018] [Indexed: 11/21/2022]
Abstract
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip.
Collapse
|
87
|
González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Dev Cell 2018; 44:433-446.e7. [PMID: 29486195 PMCID: PMC5830170 DOI: 10.1016/j.devcel.2018.01.021] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michka Sharpe
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dorothy Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Soonpaa
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Loren J Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Schall KA, Holoyda KA, Isani M, Lien CL, Alam DA, Grikscheit TC. Corrigendum to "Inhibition of Fgf signaling in short bowel syndrome increases weight loss and epithelial proliferation." [surgery volume 161, number 3 (2017) 694-703]. Surgery 2018; 163:1330-1331. [PMID: 29452701 DOI: 10.1016/j.surg.2018.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kathy A Schall
- Divisions of Pediatric Surgery, Developmental Biology and Regenerative Medicine, USA
| | - Kathleen A Holoyda
- Divisions of Pediatric Surgery, Developmental Biology and Regenerative Medicine, USA
| | - Mubina Isani
- Divisions of Pediatric Surgery, Developmental Biology and Regenerative Medicine, USA
| | - Ching-Ling Lien
- Cardiothoracic Surgery, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, USA
| | - Denise Al Alam
- Divisions of Pediatric Surgery, Developmental Biology and Regenerative Medicine, USA
| | - Tracy C Grikscheit
- Divisions of Pediatric Surgery, Developmental Biology and Regenerative Medicine, USA.
| |
Collapse
|
89
|
Hale AJ, den Hertog J. Shp2-Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration. Mol Cell Biol 2018; 38:e00515-17. [PMID: 29203641 PMCID: PMC5789028 DOI: 10.1128/mcb.00515-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022] Open
Abstract
Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a-/- ptpn11b-/- zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functional signaling role, requiring its catalytic activity and SH2 domains but not the two C-terminal tyrosine phosphorylation sites. Surprisingly, expression of Shp2a variants with increased and reduced catalytic activity, respectively, rescued caudal fin fold regeneration to similar extents. Expression of mmp9 and junbb, indicative of formation of the wound epidermis and distal blastema, respectively, suggested that these processes occurred in ptpn11a-/- ptpn11b-/- zebrafish embryos. However, cell proliferation and MAPK phosphorylation were reduced. Pharmacological inhibition of MEK1 in wild-type zebrafish embryos phenocopied loss of Shp2. Our results suggest an essential role for Shp2a-mitogen-activated protein kinase (MAPK) signaling in promoting cell proliferation during zebrafish embryo caudal fin fold regeneration.
Collapse
Affiliation(s)
- Alexander James Hale
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
90
|
Murciano C, Cazorla-Vázquez S, Gutiérrez J, Hijano JA, Ruiz-Sánchez J, Mesa-Almagro L, Martín-Reyes F, Fernández TD, Marí-Beffa M. Widening control of fin inter-rays in zebrafish and inferences about actinopterygian fins. J Anat 2018; 232:783-805. [PMID: 29441573 DOI: 10.1111/joa.12785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/03/2023] Open
Abstract
The amputation of a teleost fin rapidly triggers an intricate maze of hierarchically regulated signalling processes which ultimately reconstruct the diverse tissues of the appendage. Whereas the generation of the fin pattern along the proximodistal axis brings with it several well-known developmental regulators, the mechanisms by which the fin widens along its dorsoventral axis remain poorly understood. Utilizing the zebrafish as an experimental model of fin regeneration and studying more than 1000 actinopterygian species, we hypothesized a connection between specific inter-ray regulatory mechanisms and the morphological variability of inter-ray membranes found in nature. To tackle these issues, both cellular and molecular approaches have been adopted and our results suggest the existence of two distinguishable inter-ray areas in the zebrafish caudal fin, a marginal and a central region. The present work associates the activity of the cell membrane potassium channel kcnk5b, the fibroblast growth factor receptor 1 and the sonic hedgehog pathway to the control of several cell functions involved in inter-ray wound healing or dorsoventral regeneration of the zebrafish caudal fin. This ray-dependent regulation controls cell migration, cell-type patterning and gene expression. The possibility that modifications of these mechanisms are responsible for phenotypic variations found in euteleostean species, is discussed.
Collapse
Affiliation(s)
- Carmen Murciano
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Salvador Cazorla-Vázquez
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Javier Gutiérrez
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Juan Antonio Hijano
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Josefa Ruiz-Sánchez
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Laura Mesa-Almagro
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Flores Martín-Reyes
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | | | - Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain.,Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
| |
Collapse
|
91
|
Impact of cycling cells and cell cycle regulation on Hydra regeneration. Dev Biol 2018; 433:240-253. [DOI: 10.1016/j.ydbio.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023]
|
92
|
Generic wound signals initiate regeneration in missing-tissue contexts. Nat Commun 2017; 8:2282. [PMID: 29273738 PMCID: PMC5741630 DOI: 10.1038/s41467-017-02338-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Despite the identification of numerous regulators of regeneration in different animal models, a fundamental question remains: why do some wounds trigger the full regeneration of lost body parts, whereas others resolve by mere healing? By selectively inhibiting regeneration initiation, but not the formation of a wound epidermis, here we create headless planarians and finless zebrafish. Strikingly, in both missing-tissue contexts, injuries that normally do not trigger regeneration activate complete restoration of heads and fin rays. Our results demonstrate that generic wound signals have regeneration-inducing power. However, they are interpreted as regeneration triggers only in a permissive tissue context: when body parts are missing, or when tissue-resident polarity signals, such as Wnt activity in planarians, are modified. Hence, the ability to decode generic wound-induced signals as regeneration-initiating cues may be the crucial difference that distinguishes animals that regenerate from those that cannot. Some wounds trigger regeneration, while others simply heal but how this is regulated is unclear. Here, by manipulating ERK and Wnt signalling pathways, the authors create headless planarians and finless zebrafish and show that wounds that normally only trigger wound healing can activate regeneration of heads and bones.
Collapse
|
93
|
Banerji R, Skibbens RV, Iovine MK. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol Open 2017; 6:1802-1813. [PMID: 29084713 PMCID: PMC5769645 DOI: 10.1242/bio.026013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
94
|
Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144:4047-4060. [PMID: 29138288 DOI: 10.1242/dev.152587] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.
Collapse
Affiliation(s)
- Luigi Maddaluno
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Corinne Urwyler
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
95
|
Abstract
Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
- Regeneration Next, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
96
|
Teijeiro-Valiño C, Yebra-Pimentel E, Guerra-Varela J, Csaba N, Alonso MJ, Sánchez L. Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine (Lond) 2017; 12:2069-2082. [DOI: 10.2217/nnm-2017-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the capacity of a new drug delivery nanocapsule (NC) with a double shell of hyaluronic acid and protamine to overcome biological barriers using the zebrafish model. Materials & methods: NCs were prepared by the solvent displacement method, tagged with fluorescent makers and physicochemically characterized. Toxicity was evaluated according to the Fish Embryo Acute Toxicity test, and permeability was tested by exposing zebrafish, with and without chorion, to the fluorescent NCs. Results: Toxicity of NCs was very low as compared with that of a control nanoemulsion. Double-shell NCs were able to cross chorion and skin. Conclusion: Beyond the potential value of hyaluronic acid:protamine NCs for overcoming epithelial barriers, this works highlights the utility of zebrafish for fast screening of nanocarriers.
Collapse
Affiliation(s)
- Carmen Teijeiro-Valiño
- Nanobiofar Group, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Elena Yebra-Pimentel
- ZF-Screens B.V., 2333 Leiden, The Netherlands
- Department of Zoology, Genetics & Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jorge Guerra-Varela
- Department of Zoology, Genetics & Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Noemi Csaba
- Nanobiofar Group, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - María J Alonso
- Nanobiofar Group, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics & Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
97
|
Alibardi L. Immunohistochemical and western blot analysis suggest that the soluble forms of FGF1-2 and FGFR1-2 sustain tail regeneration in the lizard. Ann Anat 2017; 214:67-74. [PMID: 28823877 DOI: 10.1016/j.aanat.2017.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
Fibroblast Growth Factors 1-2 (FGF1-2) stimulate tail regeneration in lizards and therefore the distribution of their receptors, FGFR1-2, in the regenerating tail of the lizard. Podarcis muralis has been studied using immunofluorescence and western blotting. Immunoreactive protein bands at 15-16kDa for FGF1-2 in addition to those at 50-65kDa are detected in the regenerating epidermis, but weak bands at 35, 45 and 50kDa appear from the regenerating connective tissues. Strongly immunolabeled bands for FGFR1 at 32, 60, and 80kDa and less intense for FGFR2 only appear in the regenerating tail. In normal tail epidermis and dermis, higher MW forms are present at 80 and 115-140kDa, respectively, but they disappear in the regenerating epidermis and dermis where low MW forms of FGFR1-2 are found at 50-70kDa. Immunolocalization confirms that most FGFR1-2 are present in the wound epidermis, Apical Epidermal Peg, ependymal tube while immunolabeling lowers in regenerating muscles, blastema cells, cartilage and connectives tissues. The likely release of FGFs from the Apical Epidermal Peg and ependyma and the presence of their receptors in these tissues may determine the autocrine stimulation of proliferation and a paracrine stimulation of the blastema cells through their FGF Receptors.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology of the University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
98
|
König D, Page L, Chassot B, Jaźwińska A. Dynamics of actinotrichia regeneration in the adult zebrafish fin. Dev Biol 2017; 433:416-432. [PMID: 28760345 DOI: 10.1016/j.ydbio.2017.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/21/2023]
Abstract
The skeleton of adult zebrafish fins comprises lepidotrichia, which are dermal bones of the rays, and actinotrichia, which are non-mineralized spicules at the distal margin of the appendage. Little is known about the regenerative dynamics of the actinotrichia-specific structural proteins called Actinodins. Here, we used immunofluorescence analysis to determine the contribution of two paralogous Actinodin proteins, And1/2, in regenerating fins. Both proteins were detected in the secretory organelles in the mesenchymal cells of the blastema, but only And1 was detected in the epithelial cells of the wound epithelium. The analysis of whole mount fins throughout the entire regenerative process and longitudinal sections revealed that And1-positive fibers are complementary to the lepidotrichia. The analysis of another longfin fish, a gain-of-function mutation in the potassium channel kcnk5b, revealed that the long-fin phenotype is associated with an extended size of actinotrichia during homeostasis and regeneration. Finally, we investigated the role of several signaling pathways in actinotrichia formation and maintenance. This revealed that the pulse-inhibition of either TGFβ/Activin-βA or FGF are sufficient to impair deposition of Actinodin during regeneration. Thus, the dynamic turnover of Actinodin during fin regeneration is regulated by multiple factors, including the osteoblasts, growth rate in a potassium channel mutant, and instructive signaling networks between the epithelium and the blastema of the regenerating fin.
Collapse
Affiliation(s)
- Désirée König
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Lionel Page
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Bérénice Chassot
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
99
|
Li L, He J, Wang L, Chen W, Chang Z. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu). Gene Expr Patterns 2017; 25-26:124-130. [PMID: 28710028 DOI: 10.1016/j.gep.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration.
Collapse
Affiliation(s)
- Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China; Department of Biology and CAREG, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jingya He
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China
| | - Linlin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China
| | - Weihua Chen
- Swiss Institute of Bioinformatics, University Medical Center (CMU), Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China.
| |
Collapse
|
100
|
Dardis G, Tryon R, Ton Q, Johnson SL, Iovine MK. Cx43 suppresses evx1 expression to regulate joint initiation in the regenerating fin. Dev Dyn 2017; 246:691-699. [PMID: 28577298 DOI: 10.1002/dvdy.24531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND How joints are correctly positioned in the vertebrate skeleton remains poorly understood. From our studies on the regenerating fin, we have evidence that the gap junction protein Cx43 suppresses joint formation by suppressing the expression of the evx1 transcription factor. Joint morphogenesis proceeds through at least two discrete stages. First, cells that will produce the joint condense in a single row on the bone matrix ("initiation"). Second, these cells separate coincident with articulation of the bone matrix. We propose that Cx43 activity is transiently reduced prior to joint initiation. RESULTS We first define the timing of joint initiation with respect to regeneration. We next correlate reduced cx43 expression and increased evx1 expression with initiation. Through manipulation of cx43 expression, we demonstrate that Cx43 negatively influences evx1 expression and joint formation. We further demonstrate that Cx43 activity in the dermal fibroblasts is required to rescue joint formation in the cx43 mutant, short finb123 . CONCLUSIONS We conclude that Cx43 activity in the dermal fibroblasts influences the expression of evx1, and therefore the differentiation of the precursor cells that give rise to the joint-forming osteoblasts. Developmental Dynamics 246:691-699, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabrielle Dardis
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Robert Tryon
- Genetics Department, Washington University School of Medicine, St. Louis, Missouri
| | - Quynh Ton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Stephen L Johnson
- Genetics Department, Washington University School of Medicine, St. Louis, Missouri
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|