51
|
Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ. Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol 2013; 3:488. [PMID: 23316168 PMCID: PMC3539680 DOI: 10.3389/fphys.2012.00488] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
Cleft palate is a common congenital birth defect in humans. In mammals, the palatal tissue can be distinguished into anterior bony hard palate and posterior muscular soft palate that have specialized functions in occlusion, speech or swallowing. Regulation of palate development appears to be the result of distinct signaling and genetic networks in the anterior and posterior regions of the palate. Development and maintenance of expression of these region-specific genes is crucial for normal palate development. Numerous transcription factors and signaling pathways are now recognized as either anterior- (e.g., Msx1, Bmp4, Bmp2, Shh, Spry2, Fgf10, Fgf7, and Shox2) or posterior-specific (e.g., Meox2, Tbx22, and Barx1). Localized expression and function clearly highlight the importance of regional patterning and differentiation within the palate at the molecular level. Here, we review how these molecular pathways and networks regulate the anterior-posterior patterning and development of secondary palate. We hypothesize that the anterior palate acts as a signaling center in setting up development of the secondary palate.
Collapse
Affiliation(s)
- Tara M Smith
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
52
|
Jeong J, Cesario J, Zhao Y, Burns L, Westphal H, Rubenstein JLR. Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate. Dev Dyn 2012; 241:1757-69. [PMID: 22972697 DOI: 10.1002/dvdy.23867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mice lacking the activities of Dlx1 and Dlx2 (Dlx1/2-/-) exhibit cleft palate, one of the most common human congenital defects, but the etiology behind this phenotype has been unknown. Therefore, we analyzed the morphological, cellular, and molecular changes caused by inactivation of Dlx1 and Dlx2 as related to palate development. RESULTS Dlx1/2-/- mutants exhibited lack of vertical growth in the posterior palate during the earliest stage of palatogenesis. We attributed this growth deficiency to reduced cell proliferation. Expression of a cell cycle regulator Ccnd1 was specifically down-regulated in the same region. Previous studies established that the epithelial-mesenchymal signaling loop involving Shh, Bmp4, and Fgf10 is important for cell proliferation and tissue growth during palate development. This signaling loop was disrupted in Dlx1/2-/- palate. Interestingly, however, the decreases in Ccnd1 expression and mitosis in Dlx1/2-/- mutants were independent of this signaling loop. Finally, Dlx1/2 activity was required for normal expression of several transcription factor genes whose mutation results in palate defects. CONCLUSIONS The functions of Dlx1 and Dlx2 are crucial for the initial formation of the posterior palatal shelves, and that the Dlx genes lie upstream of multiple signaling molecules and transcription factors important for later stages of palatogenesis.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Parada C, Chai Y. Roles of BMP signaling pathway in lip and palate development. FRONTIERS OF ORAL BIOLOGY 2012; 16:60-70. [PMID: 22759670 DOI: 10.1159/000337617] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cleft lip with or without cleft palate (CLP) and cleft palate only (CP) are severe disruptions affecting orofacial structures. Patients with orofacial clefts require complex interdisciplinary care, which includes nursing, plastic surgery, maxillofacial surgery, otolaryngology, speech therapy, audiology, psychological and genetic counseling, orthodontics and dental treatment, among others. Overall, treatment of clefts of the lip and palate entails a significant economic burden for families and society. Therefore, prevention is the ultimate objective and this will be facilitated by a complete understanding of the etiology of this condition. Here we review the current concepts regarding the genetic and environmental factors contributing to orofacial clefts and emphasize on the roles of BMP signaling pathway components in the normal and aberrant development of the lip and palate.
Collapse
Affiliation(s)
- Carolina Parada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
54
|
Tanimoto Y, Veistinen L, Alakurtti K, Takatalo M, Rice DPC. Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2). J Biol Chem 2012; 287:21429-38. [PMID: 22547067 DOI: 10.1074/jbc.m112.362145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene encoding the zinc finger transcription factor GLI3 (GLI-Kruppel family member 3) have been identified in patients with Grieg cephalopolysyndactyly syndrome in which premature fusion of calvarial suture (craniosynostosis) is an infrequent but important feature. Here, we show that Gli3 acts as a repressor in the developing murine calvaria and that Dlx5, Runx2 type II isoform (Runx2-II), and Bmp2 are expressed ectopically in the calvarial mesenchyme, which results in aberrant osteoblastic differentiation in Gli3-deficient mouse (Gli3(Xt-J/Xt-J)) and resulted in craniosynostosis. At the same time, enhanced activation of phospho-Smad1/5/8 (pSmad1/5/8), which is a downstream mediator of canonical Bmp signaling, was observed in Gli3(Xt-J/Xt-J) embryonic calvaria. Therefore, we generated Gli3;Runx2 compound mutant mice to study the effects of decreasing Runx2 dosage in a Gli3(Xt-J/Xt-J) background. Gli3(Xt-J/Xt-J) Runx2(+/-) mice have neither craniosynostosis nor additional ossification centers in interfrontal suture and displayed a normalization of Dlx5, Runx2-II, and pSmad1/5/8 expression as well as sutural mesenchymal cell proliferation. These findings suggest a novel role for Gli3 in regulating calvarial suture development by controlling canonical Bmp-Smad signaling, which integrates a Dlx5/Runx2-II cascade. We propose that targeting Runx2 might provide an attractive way of preventing craniosynostosis in patients.
Collapse
Affiliation(s)
- Yukiho Tanimoto
- Department of Orthodontics, Institute of Dentistry, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | |
Collapse
|
55
|
Bush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 2012; 139:231-43. [PMID: 22186724 DOI: 10.1242/dev.067082] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology and Program in Craniofacial and Mesenchymal Biology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
56
|
Abstract
Cleft palate, a malformation of the secondary palate development, is one of the most common human congenital birth defects. Palate formation is a complex process resulting in the separation of the oral and nasal cavities that involves multiple events, including palatal growth, elevation, and fusion. Recent findings show that transforming growth factor beta (TGF-β) signaling plays crucial roles in regulating palate development in both the palatal epithelium and mesenchyme. Here, we highlight recent advances in our understanding of TGF-β signaling during palate development.
Collapse
Affiliation(s)
- J Iwata
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
57
|
Li L, Zhu GQ, Meng T, Shi JY, Wu J, Xu X, Shi B. Biological and epidemiological evidence of interaction of infant genotypes at Rs7205289 and maternal passive smoking in cleft palate. Am J Med Genet A 2011; 155A:2940-8. [DOI: 10.1002/ajmg.a.34254] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 07/17/2011] [Indexed: 12/21/2022]
|
58
|
He F, Xiong W, Wang Y, Li L, Liu C, Yamagami T, Taketo MM, Zhou C, Chen Y. Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression. Dev Biol 2011; 350:511-9. [PMID: 21185284 PMCID: PMC3040240 DOI: 10.1016/j.ydbio.2010.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 01/23/2023]
Abstract
The canonical Wnt/β-catenin signaling plays essential role in development and diseases. Previous studies have implicated the canonical Wnt/β-catenin signaling in the regulation of normal palate development, but functional Wnt/β-catenin signaling and its tissue-specific activities remain to be accurately elucidated. In this study, we show that functional Wnt/β-catenin signaling operates primarily in the palate epithelium, particularly in the medial edge epithelium (MEE) of the developing mouse palatal shelves, consistent with the expression patterns of β-catenin and several Wnt ligands and receptors. Epithelial specific inactivation of β-catenin by the K14-Cre transgenic allele abolishes the canonical Wnt signaling activity in the palatal epithelium and leads to an abnormal persistence of the medial edge seam (MES), ultimately causing a cleft palate formation, a phenotype resembling that in Tgfβ3 mutant mice. Consistent with this phenotype is the down-regulation of Tgfβ3 and suppression of apoptosis in the MEE of the β-catenin mutant palatal shelves. Application of exogenous Tgfβ3 to the mutant palatal shelves in organ culture rescues the midline seam phenotype. On the other hand, expression of stabilized β-catenin in the palatal epithelium also disrupts normal palatogenesis by activating ectopic Tgfβ3 expression in the palatal epithelium and causing an aberrant fusion between the palate shelf and mandible in addition to severely deformed palatal shelves. Collectively, our results demonstrate an essential role for Wnt/β-catenin signaling in the epithelial component at the step of palate fusion during palate development by controlling the expression of Tgfβ3 in the MEE.
Collapse
Affiliation(s)
- Fenglei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Wei Xiong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Takashi Yamagami
- Department of Cell Biology and Human Anatomy, University of California, Davis, Shriners Hospital for Children, Sacramento, CA 95817, USA
| | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chengji Zhou
- Department of Cell Biology and Human Anatomy, University of California, Davis, Shriners Hospital for Children, Sacramento, CA 95817, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
59
|
Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA. Cranial neural crest cells on the move: their roles in craniofacial development. Am J Med Genet A 2011; 155A:270-9. [PMID: 21271641 PMCID: PMC3039913 DOI: 10.1002/ajmg.a.33702] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/17/2010] [Indexed: 12/15/2022]
Abstract
The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders.
Collapse
Affiliation(s)
- Dwight R Cordero
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Yamamoto H, Muramatsu T, Shibukawa Y, Sohn WJ, Kim JY, Tazaki M. Alteration of the Cytokeratin Expression During Palatine Rugae Development in Mice. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Chung IH, Han J, Iwata J, Chai Y. Msx1 and Dlx5 function synergistically to regulate frontal bone development. Genesis 2010; 48:645-55. [PMID: 20824629 DOI: 10.1002/dvg.20671] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/09/2022]
Abstract
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1(-/-) ;Dlx5(-/-) mice, the frontal bones defect was more severe than that of either Msx1(-/-) or Dlx5(-/-) mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development.
Collapse
Affiliation(s)
- Il-Hyuk Chung
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
62
|
Greene RM, Pisano MM. Palate morphogenesis: current understanding and future directions. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:133-54. [PMID: 20544696 PMCID: PMC3138490 DOI: 10.1002/bdrc.20180] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past, most scientists conducted their inquiries of nature via inductivism, the patient accumulation of "pieces of information" in the pious hope that the sum of the parts would clarify the whole. Increasingly, modern biology employs the tools of bioinformatics and systems biology in attempts to reveal the "big picture." Most successful laboratories engaged in the pursuit of the secrets of embryonic development, particularly those whose research focus is craniofacial development, pursue a middle road where research efforts embrace, rather than abandon, what some have called the "pedestrian" qualities of inductivism, while increasingly employing modern data mining technologies. The secondary palate has provided an excellent paradigm that has enabled examination of a wide variety of developmental processes. Examination of cellular signal transduction, as it directs embryogenesis, has proven exceptionally revealing with regard to clarification of the "facts" of palatal ontogeny-at least the facts as we currently understand them. Herein, we review the most basic fundamentals of orofacial embryology and discuss how functioning of TGFbeta, BMP, Shh, and Wnt signal transduction pathways contributes to palatal morphogenesis. Our current understanding of palate medial edge epithelial differentiation is also examined. We conclude with a discussion of how the rapidly expanding field of epigenetics, particularly regulation of gene expression by miRNAs and DNA methylation, is critical to control of cell and tissue differentiation, and how examination of these epigenetic processes has already begun to provide a better understanding of, and greater appreciation for, the complexities of palatal morphogenesis.
Collapse
Affiliation(s)
- Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Birth Defects Center, ULSD, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|