51
|
Lahne M, Hyde DR. Interkinetic Nuclear Migration in the Regenerating Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:587-93. [DOI: 10.1007/978-3-319-17121-0_78] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
52
|
Badouel C, Zander MA, Liscio N, Bagherie-Lachidan M, Sopko R, Coyaud E, Raught B, Miller FD, McNeill H. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development. Development 2015. [PMID: 26209645 DOI: 10.1242/dev.123539] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.
Collapse
Affiliation(s)
- Caroline Badouel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Mark A Zander
- Neuroscience and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Liscio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | - Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Freda D Miller
- Neuroscience and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
53
|
Yamashita K, Ide M, Furukawa KT, Suzuki A, Hirano H, Ohno S. Tumor suppressor protein Lgl mediates G1 cell cycle arrest at high cell density by forming an Lgl-VprBP-DDB1 complex. Mol Biol Cell 2015; 26:2426-38. [PMID: 25947136 PMCID: PMC4571298 DOI: 10.1091/mbc.e14-10-1462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/28/2015] [Indexed: 11/25/2022] Open
Abstract
Lgl is a conserved tumor suppressor suggested to be involved in cell polarity regulation and suppression of cell proliferation. Lgl inhibits formation of the VprBP-DDB1-Cul4A-Roc1 ubiquitin E3 ligase complex, which is implicated in cell cycle progression, by promoting formation of the Lgl-VprBP-DDB1 complex to prevent overproliferation. Lethal giant larvae (Lgl) is an evolutionarily conserved tumor suppressor whose loss of function causes disrupted epithelial architecture with enhanced cell proliferation and defects in cell polarity. A role for Lgl in the establishment and maintenance of cell polarity via suppression of the PAR-aPKC polarity complex is established; however, the mechanism by which Lgl regulates cell proliferation is not fully understood. Here we show that depletion of Lgl1 and Lgl2 in MDCK epithelial cells results in overproliferation and overproduction of Lgl2 causes G1 arrest. We also show that Lgl associates with the VprBP-DDB1 complex independently of the PAR-aPKC complex and prevents the VprBP-DDB1 subunits from binding to Cul4A, a central component of the CRL4 [VprBP] ubiquitin E3 ligase complex implicated in G1- to S-phase progression. Consistently, depletion of VprBP or Cul4 rescues the overproliferation of Lgl-depleted cells. In addition, the affinity between Lgl2 and the VprBP-DDB1 complex increases at high cell density. Further, aPKC-mediated phosphorylation of Lgl2 negatively regulates the interaction between Lgl2 and VprBP-DDB1 complex. These results suggest a mechanism protecting overproliferation of epithelial cells in which Lgl plays a critical role by inhibiting formation of the CRL4 [VprBP] complex, resulting in G1 arrest.
Collapse
Affiliation(s)
- Kazunari Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Mariko Ide
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Kana T Furukawa
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Atsushi Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan Molecular Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hisashi Hirano
- Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 230-0045, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
54
|
Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. PLoS One 2015; 10:e0121789. [PMID: 25803551 PMCID: PMC4372396 DOI: 10.1371/journal.pone.0121789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/05/2015] [Indexed: 12/31/2022] Open
Abstract
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.
Collapse
|
55
|
Paolini A, Duchemin AL, Albadri S, Patzel E, Bornhorst D, González Avalos P, Lemke S, Machate A, Brand M, Sel S, Di Donato V, Del Bene F, Zolessi FR, Ramialison M, Poggi L. Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function. Development 2015; 142:832-9. [PMID: 25655700 DOI: 10.1242/dev.118612] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Divisions that generate one neuronal lineage-committed and one self-renewing cell maintain the balance of proliferation and differentiation for the generation of neuronal diversity. The asymmetric inheritance of apical domains and components of the cell division machinery has been implicated in this process, and might involve interactions with cell fate determinants in regulatory feedback loops of an as yet unknown nature. Here, we report the dynamics of Anillin - an essential F-actin regulator and furrow component - and its contribution to progenitor cell divisions in the developing zebrafish retina. We find that asymmetrically dividing retinal ganglion cell progenitors position the Anillin-rich midbody at the apical domain of the differentiating daughter. anillin hypomorphic conditions disrupt asymmetric apical domain inheritance and affect daughter cell fate. Consequently, the retinal cell type composition is profoundly affected, such that the ganglion cell layer is dramatically expanded. This study provides the first in vivo evidence for the requirement of Anillin during asymmetric neurogenic divisions. It also provides insights into a reciprocal regulation between Anillin and the ganglion cell fate determinant Ath5, suggesting a mechanism whereby the balance of proliferation and differentiation is accomplished during progenitor cell divisions in vivo.
Collapse
Affiliation(s)
- Alessio Paolini
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Anne-Laure Duchemin
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Shahad Albadri
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Eva Patzel
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany Department of Ophthalmology, University of Heidelberg, Heidelberg 69120, Germany
| | - Dorothee Bornhorst
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Paula González Avalos
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Steffen Lemke
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Anja Machate
- Biotechnology Center and Center for Regenerative Therapies Dresden, TU Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, TU Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Saadettin Sel
- Department of Ophthalmology, University of Heidelberg, Heidelberg 69120, Germany
| | - Vincenzo Di Donato
- Institut Curie - Centre de Recherche, U934/UMR3215, Paris 75248, Cedex 05, France
| | - Filippo Del Bene
- Institut Curie - Centre de Recherche, U934/UMR3215, Paris 75248, Cedex 05, France
| | - Flavio R Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República and Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3187, Australia
| | - Lucia Poggi
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| |
Collapse
|
56
|
Strzyz P, Lee H, Sidhaye J, Weber I, Leung L, Norden C. Interkinetic Nuclear Migration Is Centrosome Independent and Ensures Apical Cell Division to Maintain Tissue Integrity. Dev Cell 2015; 32:203-19. [DOI: 10.1016/j.devcel.2014.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/07/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022]
|
57
|
Yeo NC, O'Meara CC, Bonomo JA, Veth KN, Tomar R, Flister MJ, Drummond IA, Bowden DW, Freedman BI, Lazar J, Link BA, Jacob HJ. Shroom3 contributes to the maintenance of the glomerular filtration barrier integrity. Genome Res 2014; 25:57-65. [PMID: 25273069 PMCID: PMC4317173 DOI: 10.1101/gr.182881.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genome-wide association studies (GWAS) identify regions of the genome correlated with disease risk but are restricted in their ability to identify the underlying causative mechanism(s). Thus, GWAS are useful "roadmaps" that require functional analysis to establish the genetic and mechanistic structure of a particular locus. Unfortunately, direct functional testing in humans is limited, demonstrating the need for complementary approaches. Here we used an integrated approach combining zebrafish, rat, and human data to interrogate the function of an established GWAS locus (SHROOM3) lacking prior functional support for chronic kidney disease (CKD). Congenic mapping and sequence analysis in rats suggested Shroom3 was a strong positional candidate gene. Transferring a 6.1-Mb region containing the wild-type Shroom3 gene significantly improved the kidney glomerular function in FHH (fawn-hooded hypertensive) rat. The wild-type Shroom3 allele, but not the FHH Shroom3 allele, rescued glomerular defects induced by knockdown of endogenous shroom3 in zebrafish, suggesting that the FHH Shroom3 allele is defective and likely contributes to renal injury in the FHH rat. We also show for the first time that variants disrupting the actin-binding domain of SHROOM3 may cause podocyte effacement and impairment of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Nan Cher Yeo
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Caitlin C O'Meara
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Jason A Bonomo
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Kerry N Veth
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Ritu Tomar
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Iain A Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Barry I Freedman
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; Department of Internal Medicine - Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
58
|
Parsons LM, Portela M, Grzeschik NA, Richardson HE. Lgl regulates Notch signaling via endocytosis, independently of the apical aPKC-Par6-Baz polarity complex. Curr Biol 2014; 24:2073-2084. [PMID: 25220057 DOI: 10.1016/j.cub.2014.07.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/01/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Drosophila melanogaster junctional neoplastic tumor suppressor, Lethal-2-giant larvae (Lgl), is a regulator of apicobasal cell polarity and tissue growth. We have previously shown in the developing Drosophila eye epithelium that, without affecting cell polarity, depletion of Lgl results in ectopic cell proliferation and blockage of developmental cell death due to deregulation of the Hippo signaling pathway. RESULTS Here, we show that Notch signaling is increased in lgl-depleted eye tissue, independently of Lgl's function in apicobasal cell polarity. The upregulation of Notch signaling is ligand dependent and correlates with accumulation of cleaved Notch. Concomitant with higher cleaved Notch levels in lgl- tissue, early endosomes (Avalanche [Avl+]), recycling endosomes (Rab11+), early multivesicular bodies (Hrs+), and acidified vesicles, but not late endosomal markers (Car+ and Rab7+), accumulate. Colocalization studies revealed that Lgl associates with early to late endosomes and lysosomes. Upregulation of Notch signaling in lgl- tissue requires dynamin- and Rab5-mediated endocytosis and vesicle acidification but is independent of Hrs/Stam or Rab11 activity. Furthermore, Lgl regulates Notch signaling independently of the aPKC-Par6-Baz apical polarity complex. CONCLUSIONS Altogether, our data show that Lgl regulates endocytosis to restrict vesicle acidification and prevent ectopic ligand-dependent Notch signaling. This Lgl function is independent of the aPKC-Par6-Baz polarity complex and uncovers a novel attenuation mechanism of ligand-activated Notch signaling during Drosophila eye development.
Collapse
Affiliation(s)
- Linda M Parsons
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St. Andrew's Place, East Melbourne, Melbourne, VIC 3002, Australia; Department of Genetics, University of Melbourne, 1-100 Grattan Street, Parkville, Melbourne, VIC 3010, Australia
| | - Marta Portela
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St. Andrew's Place, East Melbourne, Melbourne, VIC 3002, Australia
| | - Nicola A Grzeschik
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St. Andrew's Place, East Melbourne, Melbourne, VIC 3002, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St. Andrew's Place, East Melbourne, Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, 7 St. Andrew's Place, East Melbourne, Melbourne, VIC 3002, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, 1-100 Grattan Street, Parkville, Melbourne, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, 1-100 Grattan Street, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
59
|
Abstract
A unique feature of humans is the complexity of our central nervous system. A fully functional brain requires that billions of neurons make specific contacts in a highly coordinated way, an issue that is still not well understood. The neural retina constitutes an excellent system with which to analyze key aspects of neurogenesis and circuit formation in the central nervous system. Here, we provide an overview of retinal neurogenesis in vertebrates and discuss implications of the developmental mechanisms involved for regenerative therapy approaches.
Collapse
Affiliation(s)
- Lázaro Centanin
- Department of Developmental Biology/Physiology, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | |
Collapse
|
60
|
Forbes-Osborne MA, Wilson SG, Morris AC. Insulinoma-associated 1a (Insm1a) is required for photoreceptor differentiation in the zebrafish retina. Dev Biol 2013; 380:157-71. [PMID: 23747542 PMCID: PMC3703496 DOI: 10.1016/j.ydbio.2013.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/29/2013] [Accepted: 05/18/2013] [Indexed: 01/01/2023]
Abstract
The zinc-finger transcription factor insulinoma-associated 1 (Insm1, previously IA-1) is expressed in the developing nervous and neuroendocrine systems, and is required for cell type specific differentiation. Expression of Insm1 is largely absent in the adult, although it is present in neurogenic regions of the adult brain and zebrafish retina. While expression of Insm1 has also been observed in the embryonic retina of numerous vertebrate species, its function during retinal development has remained unexplored. Here, we demonstrate that in the developing zebrafish retina, insm1a is required for photoreceptor differentiation. Insm1a-deficient embryos were microphthalmic and displayed defects in rod and cone photoreceptor differentiation. Rod photoreceptor cells were more sensitive to loss of insm1a expression than were cone photoreceptor cells. Additionally, we provide evidence that insm1a regulates cell cycle progression of retinoblasts, and functions upstream of the bHLH transcription factors ath5/atoh7 and neurod, and the photoreceptor specification genes crx and nr2e3. Finally, we show that insm1a is negatively regulated by Notch-Delta signaling. Taken together, our data demonstrate that Insm1 influences neuronal subtype differentiation during retinal development.
Collapse
Affiliation(s)
| | - Stephen G. Wilson
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225
| |
Collapse
|