51
|
Leung CY, Zhu M, Zernicka-Goetz M. Polarity in Cell-Fate Acquisition in the Early Mouse Embryo. Curr Top Dev Biol 2016; 120:203-34. [PMID: 27475853 DOI: 10.1016/bs.ctdb.2016.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Establishing polarity is a fundamental part of embryogenesis and can be traced back to the earliest developmental stages. It can be achieved in one of two ways: through the preexisting polarization of germ cells before fertilization or via symmetry breaking after fertilization. In mammals, it seems to be the latter, and we will discuss the various cytological and molecular events that lead up to this event, its mechanisms and the consequences. In mammals, the first polarization event occurs in the preimplantation period, when the embryo is but a cluster of cells, free-floating in the oviduct. This provides a unique, autonomous system to study the de novo polarization that is essential to life. In this review, we will cover modern and past studies on the polarization of the early embryo, using the mouse as a model system, as well as hypothesizing the potential implications and functions of the biological events involved.
Collapse
Affiliation(s)
- C Y Leung
- University of Cambridge, Cambridge, United Kingdom
| | - M Zhu
- University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
52
|
Lokken AA, Ralston A. The Genetic Regulation of Cell Fate During Preimplantation Mouse Development. Curr Top Dev Biol 2016; 120:173-202. [PMID: 27475852 DOI: 10.1016/bs.ctdb.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adult body is estimated to contain several hundred distinct cell types, each with a specialized physiological function. Failure to maintain cell fate can lead to devastating diseases and cancer, but understanding how cell fates are assigned and maintained during animal development provides new opportunities for human health intervention. The mouse is a premier model for evaluating the genetic regulation of cell fate during development because of the wide variety of tools for measuring and manipulating gene expression levels, the ability to access embryos at desired developmental stages, and the similarities between mouse and human development, particularly during the early stages of development. During the first 3 days of mouse development, the preimplantation embryo sets aside cells that will contribute to the extraembryonic tissues. The extraembryonic tissues are essential for establishing pregnancy and ensuring normal fetal development in both mice and humans. Genetic analyses of mouse preimplantation development have permitted identification of genes that are essential for specification of the extraembryonic lineages. In this chapter, we review the tools and concepts of mouse preimplantation development. We describe genes that are essential for cell fate specification during preimplantation stages, and we describe diverse models proposed to account for the mechanisms of cell fate specification during early development.
Collapse
Affiliation(s)
- A A Lokken
- Michigan State University, East Lansing, MI, United States
| | - A Ralston
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
53
|
Liu Y, Wang G, Yang Y, Mei Z, Liang Z, Cui A, Wu T, Liu CY, Cui L. Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner. Oncogene 2016; 35:2789-2800. [PMID: 26387538 DOI: 10.1038/onc.2015.342] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/20/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
Abstract
Dysregulation of the Hippo pathway occurs in a variety of cancers and often correlates with a poor prognosis. To further explore the potential role of Hippo pathway dysregulation in tumor development and progression, we investigated its downstream transcription factor TEAD4 in colorectal cancer (CRC). Increased expression and nuclear localization of TEAD4 were found in a significant portion of CRC tissues, in association with metastasis and a poor prognosis. In CRC cells, TEAD4 knockdown induced the mesenchymal-epithelial transition and decreased cell mobility in vitro and metastasis in vivo. Microarray analysis revealed that TEAD4 promoted cell adhesion and upregulated the epithelial-mesenchymal transition-related transcriptome in CRC cells. Vimentin was identified as a new direct target gene mediating TEAD4 function in CRC cells, whereby forced vimentin expression markedly reversed TEAD4-knockdown-induced cell morphological changes and decreased mobility. Interestingly, rescued expression of both WT TEAD4 and a Y429H mutant can reverse the mesenchymal-epithelial transition and increase vimentin expression, cell mobility and metastatic potential in TEAD4-knockdown CRC cells. The discrepant expression of YAP and TEAD4 in CRC tissues, the rescue ability of TEAD4 mutant defect in YAP binding and no effect on vimentin expression by YAP knockdown in CRC cells, all implicated a YAP-independent manner of TEAD4 function in CRC. Furthermore, vimentin positively correlated and CDH1 reversely correlated with the level of TEAD4 in CRC tissues and xenograft tumors. Our results suggest that TEAD4 nuclear expression can serve as a biomarker for CRC progression and poor prognosis. The transcription factor TEAD4 regulates a pro-metastasis transcription program in a YAP-independent manner in CRC, thus providing a novel mechanism of TEAD4 transcriptional regulation and its oncogenic role in CRC, independently of the Hippo pathway.
Collapse
Affiliation(s)
- Y Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - G Wang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Y Yang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
- Center for Medical Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Z Mei
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Z Liang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - A Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - T Wu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - C-Y Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - L Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| |
Collapse
|
54
|
Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development 2016; 143:1063-74. [DOI: 10.1242/dev.128314] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During mouse preimplantation embryo development, totipotent blastomeres generate the first three cell lineages of the embryo: trophectoderm, epiblast and primitive endoderm. In recent years, studies have shown that this process appears to be regulated by differences in cell-cell interactions, gene expression and the microenvironment of individual cells, rather than the active partitioning of maternal determinants. Precisely how these differences first emerge and how they dictate subsequent molecular and cellular behaviours are key questions in the field. As we review here, recent advances in live imaging, computational modelling and single-cell transcriptome analyses are providing new insights into these questions.
Collapse
Affiliation(s)
- Claire Chazaud
- Université Clermont Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, 1160 Pine Avenue West, rm419, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
55
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
56
|
Abstract
After a spermatozoon enters an oocyte, maternal factors accumulated in the oocyte reprogram the genomes of the terminally differentiated oocyte and spermatozoon epigenetically and turn the zygote into a totipotent cell, with the capacity to differentiate into all types of somatic cells in a highly organized manner and generate the entire organism, a feature referred to as totipotency. Differentiation of the first lineage begins after three cleavages, when the early embryo compacts and becomes polarized, followed by segregation of the first lineages--the inner cell mass (ICM) and the trophectoderm (TE). To date, a full understanding of the molecular mechanisms that underlie the establishment of totipotency and the ICM/TE lineage segregation remains unclear. In this review, we discuss recent findings in the mechanism of transcriptional regulation networks and signaling pathways in the first lineage separation in the totipotent mouse embryo.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
57
|
|
58
|
|
59
|
Leung CY, Zernicka-Goetz M. Mapping the journey from totipotency to lineage specification in the mouse embryo. Curr Opin Genet Dev 2015; 34:71-6. [PMID: 26343010 DOI: 10.1016/j.gde.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Understanding the past is to understand the present. Mammalian life, with all its complexity comes from a humble beginning of a single fertilized egg cell. Achieving this requires an enormous diversification of cellular function, the majority of which is generated through a series of cellular decisions during embryogenesis. The first decisions are made as the embryo prepares for implantation, a process that will require specialization of extra-embryonic lineages while preserving an embryonic one. In this mini-review, we will focus on the mouse as a mammalian model and discuss recent advances in the decision making process of the early embryo.
Collapse
Affiliation(s)
- Chuen Yan Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
60
|
Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 2015; 31:402-10. [PMID: 25999217 DOI: 10.1016/j.tig.2015.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
The first cell fate decisions during mammalian development establish tissues essential for healthy pregnancy. The mouse has served as a valuable model for discovering pathways regulating the first cell fate decisions because of the ease with which early embryos can be recovered and the availability of an arsenal of classical and emerging methods for manipulating gene expression. We summarize the major pathways that govern the first cell fate decisions in mouse development. This knowledge serves as a paradigm for exploring how emergent properties of a self-organizing system can dynamically regulate gene expression and cell fate plasticity. Moreover, it brings to light the processes that establish healthy pregnancy and ES cells. We also describe unsolved mysteries and new technologies that could help to overcome experimental challenges in the field.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
61
|
Sasaki H. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin Cell Dev Biol 2015; 47-48:80-7. [PMID: 25986053 DOI: 10.1016/j.semcdb.2015.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
During the preimplantation stage, mouse embryos establish two cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historical models have proposed that the establishment of these two lineages depends on the cell position within the embryo (e.g., the positional model) or cell polarization along the apicobasal axis (e.g., the polarity model). Recent findings have revealed that the Hippo signaling pathway plays a central role in the cell fate-specification process: active and inactive Hippo signaling in the inner and outer cells promote ICM and TE fates, respectively. Intercellular adhesion activates, while apicobasal polarization suppresses Hippo signaling, and a combination of these processes determines the spatially regulated activation of the Hippo pathway in 32-cell-stage embryos. Therefore, there is experimental evidence in favor of both positional and polarity models. At the molecular level, phosphorylation of the Hippo-pathway component angiomotin at adherens junctions (AJs) in the inner (apolar) cells activates the Lats protein kinase and triggers Hippo signaling. In the outer cells, however, cell polarization sequesters Amot from basolateral AJs and suppresses activation of the Hippo pathway. Other mechanisms, including asymmetric cell division and Notch signaling, also play important roles in the regulation of embryonic development. In this review, I discuss how these mechanisms cooperate with the Hippo signaling pathway during cell fate-specification processes.
Collapse
Affiliation(s)
- Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
62
|
Knott JG, Paul S. Transcriptional regulators of the trophoblast lineage in mammals with hemochorial placentation. Reproduction 2014; 148:R121-36. [PMID: 25190503 DOI: 10.1530/rep-14-0072] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian reproduction is critically dependent on the trophoblast cell lineage, which assures proper establishment of maternal-fetal interactions during pregnancy. Specification of trophoblast cell lineage begins with the development of the trophectoderm (TE) in preimplantation embryos. Subsequently, other trophoblast cell types arise with the progression of pregnancy. Studies with transgenic animal models as well as trophoblast stem/progenitor cells have implicated distinct transcriptional and epigenetic regulators in trophoblast lineage development. This review focuses on our current understanding of transcriptional and epigenetic mechanisms regulating specification, determination, maintenance and differentiation of trophoblast cells.
Collapse
Affiliation(s)
- Jason G Knott
- Developmental Epigenetics LaboratoryDepartment of Animal Science, Michigan State University, East Lansing, Michigan 48824, USADepartment of Pathology and Laboratory MedicineInstitute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Soumen Paul
- Developmental Epigenetics LaboratoryDepartment of Animal Science, Michigan State University, East Lansing, Michigan 48824, USADepartment of Pathology and Laboratory MedicineInstitute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
63
|
Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Cañon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 2014; 30:410-22. [PMID: 25127056 DOI: 10.1016/j.devcel.2014.06.019] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 11/15/2022]
Abstract
The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.
Collapse
Affiliation(s)
- Teresa Rayon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sergio Menchero
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andres Nieto
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | - Miguel Crespo
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Susana Cañon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Hiroshi Sasaki
- Institute of Molecular Embryology and Genetics, Department of Cell Fate Control, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | - Jose Luis de la Pompa
- Cardiovascular Developmental Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Miguel Manzanares
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
64
|
Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 2014; 394:142-55. [PMID: 24997360 DOI: 10.1016/j.ydbio.2014.06.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Specification of the trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst correlates with cell position, as TE derives from outer cells whereas ICM from inner cells. Differences in position are reflected by cell polarization and Hippo signaling. Only in outer cells, the apical-basal cell polarity is established, and Hippo signaling is inhibited in such a manner that LATS1 and 2 (LATS1/2) kinases are prevented from phosphorylating YAP, a key transcriptional co-activator of the TE-specifying gene Cdx2. However, the molecular mechanisms that regulate these events are not fully understood. Here, we showed that inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling and disruption of apical-basal polarity. Embryos treated with ROCK inhibitor Y-27632 exhibited elevated expression of ICM marker NANOG and reduced expression of CDX2 at the blastocyst stage. Y-27632-treated embryos failed to accumulate YAP in the nucleus, although it was rescued by concomitant inhibition of LATS1/2. Segregation between apical and basal polarity regulators, namely PARD6B, PRKCZ, SCRIB, and LLGL1, was dampened by Y-27632 treatment, whereas some of the polarization events at the late 8-cell stage such as compaction and apical localization of p-ERM and tyrosinated tubulin occurred normally. Similar abnormalities of Hippo signaling and apical-basal polarization were also observed in embryos that were treated with RHO GTPases inhibitor. These results suggest that RHO-ROCK signaling plays an essential role in regulating Hippo signaling and cell polarization to enable proper specification of the ICM and TE lineages.
Collapse
|
65
|
Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141:1614-26. [PMID: 24715453 DOI: 10.1242/dev.102376] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies over the past 20 years have defined the Hippo signaling pathway as a major regulator of tissue growth and organ size. Diverse roles for the Hippo pathway have emerged, the majority of which in vertebrates are determined by the transcriptional regulators TAZ and YAP (TAZ/YAP). Key processes regulated by TAZ/YAP include the control of cell proliferation, apoptosis, movement and fate. Accurate control of the levels and localization of these factors is thus essential for early developmental events, as well as for tissue homeostasis, repair and regeneration. Recent studies have revealed that TAZ/YAP activity is regulated by mechanical and cytoskeletal cues as well as by various extracellular factors. Here, I provide an overview of these and other regulatory mechanisms and outline important developmental processes controlled by TAZ and YAP.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Room K-620, Boston, MA 02118, USA
| |
Collapse
|
66
|
The dual roles of geminin during trophoblast proliferation and differentiation. Dev Biol 2014; 387:49-63. [PMID: 24412371 DOI: 10.1016/j.ydbio.2013.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/21/2022]
Abstract
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.
Collapse
|
67
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
68
|
Lanner F. Lineage specification in the early mouse embryo. Exp Cell Res 2013; 321:32-9. [PMID: 24333597 DOI: 10.1016/j.yexcr.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
Before the mammalian embryo is ready to implant in the uterine wall, the single cell zygote must divide and differentiate into three distinct tissues; trophectoderm (prospective placenta), primitive endoderm (prospective yolk sac), and pluripotent epiblast cells which will form the embryo proper. In this review I will discuss our current understanding of how positional information, cell polarization, signaling pathways, and transcription factor networks converge to drive and regulate the progressive segregation of the first three cell types in the mouse embryo.
Collapse
Affiliation(s)
- Fredrik Lanner
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Karolinska Universitetssjukhuset, K 57 CLINTEC, 141 86 Stockholm, Sweden.
| |
Collapse
|