51
|
Carrasco-Garcia E, Moreno-Cugnon L, Garcia I, Borras C, Revuelta M, Izeta A, Lopez-Lluch G, de Pancorbo MM, Vergara I, Vina J, Matheu A. SOX2 expression diminishes with ageing in several tissues in mice and humans. Mech Ageing Dev 2018; 177:30-36. [PMID: 29574045 DOI: 10.1016/j.mad.2018.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
SOX2 (Sex-determining region Y box 2) is a transcription factor expressed in several foetal and adult tissues and its deregulated activity has been linked to chronic diseases associated with ageing. Nevertheless, the level of SOX2 expression in aged individuals at the tissue level has not previously been examined. In this work, we show that SOX2 expression decreases significantly in the brain with ageing, in both humans and rodents. The administration of resveratrol for 6 months in mice partly attenuated this reduction. We also identified an age-related decline in SOX2 mRNA and protein expression in several other organs, namely, the lung, heart, kidney, spleen and liver. Moreover, peripheral blood mononuclear cells (PBMCs) from elderly expressed lower levels of SOX2 than those from young individuals. Mechanistically, SOX2 expression inversely correlates with p16Ink4a levels. Together, these data show a widespread decrease in SOX2 with age, suggesting that the decline in SOX2 expression might be used as a biomarker of ageing.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain; CIBERfes, Madrid, Spain
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; CIBERfes, Madrid, Spain
| | - Consuelo Borras
- FRESHAGE Group, Faculty of Medicine, University of Valencia, INCLIVA, Valencia, Spain
| | - Miren Revuelta
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Guillermo Lopez-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Center for Developmental Biology (CABD), Centre for Biomedical Research on Rare Diseases (CIBERER), Pablo de Olavide University, Seville, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Itziar Vergara
- Primary Care Research Unit Gipuzkoa, Osakidetza, Kronikgune, Health Research in Chronic Diseases and Aging Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Jose Vina
- FRESHAGE Group, Faculty of Medicine, University of Valencia, INCLIVA, Valencia, Spain; CIBERfes, Madrid, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; CIBERfes, Madrid, Spain.
| |
Collapse
|
52
|
Xiao D, Qu Y, Pan L, Li X, Mu D. MicroRNAs participate in the regulation of oligodendrocytes development in white matter injury. Rev Neurosci 2018; 29:151-160. [DOI: 10.1515/revneuro-2017-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
AbstractWhite matter injury (WMI) often results in cognitive impairment, behavioral disorders, and cerebral palsy and thus imposes a tremendous burden on society. The cells in brain white matter mainly comprise oligodendrocytes (OLs), astrocytes, and microglia. The dysregulation of OLs development is the pathological hallmark of WMI. Recent studies have demonstrated that microRNAs (miRNAs or miRs) participate in the regulation of OLs development, and the dysregulation of this process represents the pathogenesis of WMI. This review summarizes the progress made in this field that will help clinicians and researchers understand the molecular etiology of WMI and develop miRNAs as new agents for the prevention and treatment of WMI.
Collapse
|
53
|
Gou Y, Vemaraju S, Sweet EM, Kwon HJ, Riley BB. sox2 and sox3 Play unique roles in development of hair cells and neurons in the zebrafish inner ear. Dev Biol 2018; 435:73-83. [PMID: 29355523 DOI: 10.1016/j.ydbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
Formation of neural and sensory progenitors in the inner ear requires Sox2 in mammals, and in other species is thought to rely on both Sox2 and Sox3. How Sox2 and/or Sox3 promote different fates is poorly understood. Our mutant analysis in zebrafish showed that sox2 is uniquely required for sensory development while sox3 is uniquely required for neurogenesis. Moderate misexpression of sox2 during placodal stages led to development of otic vesicles with expanded sensory and reduced neurogenic domains. However, high-level misexpression of sox2 or sox3 expanded both sensory and neurogenic domains to fill the medial and lateral halves of the otic vesicle, respectively. Disruption of medial factor pax2a eliminated the ability of sox2/3 misexpression to expand sensory but not neurogenic domains. Additionally, mild misexpression of fgf8 during placodal development was sufficient to specifically expand the zone of prosensory competence. Later, cross-repression between atoh1a and neurog1 helps maintain the sensory-neural boundary, but unlike mouse this does not require Notch activity. Together, these data show that sox2 and sox3 exhibit intrinsic differences in promoting sensory vs. neural competence, but at high levels these factors can mimic each other to enhance both states. Regional cofactors like pax2a and fgf8 also modify sox2/3 functions.
Collapse
Affiliation(s)
- Yunzi Gou
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Shruti Vemaraju
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Elly M Sweet
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Hye-Joo Kwon
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Bruce B Riley
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
54
|
Sox2 Is Essential for Oligodendroglial Proliferation and Differentiation during Postnatal Brain Myelination and CNS Remyelination. J Neurosci 2018; 38:1802-1820. [PMID: 29335358 DOI: 10.1523/jneurosci.1291-17.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Abstract
In the CNS, myelination and remyelination depend on the successful progression and maturation of oligodendroglial lineage cells, including proliferation and differentiation of oligodendroglial progenitor cells (OPCs). Previous studies have reported that Sox2 transiently regulates oligodendrocyte (OL) differentiation in the embryonic and perinatal spinal cord and appears dispensable for myelination in the postnatal spinal cord. However, the role of Sox2 in OL development in the brain has yet to be defined. We now report that Sox2 is an essential positive regulator of developmental myelination in the postnatal murine brain of both sexes. Stage-specific paradigms of genetic disruption demonstrated that Sox2 regulated brain myelination by coordinating upstream OPC population supply and downstream OL differentiation. Transcriptomic analyses further supported a crucial role of Sox2 in brain developmental myelination. Consistently, oligodendroglial Sox2-deficient mice developed severe tremors and ataxia, typical phenotypes indicative of hypomyelination, and displayed severe impairment of motor function and prominent deficits of brain OL differentiation and myelination persisting into the later CNS developmental stages. We also found that Sox2 was required for efficient OPC proliferation and expansion and OL regeneration during remyelination in the adult brain and spinal cord. Together, our genetic evidence reveals an essential role of Sox2 in brain myelination and CNS remyelination, and suggests that manipulation of Sox2 and/or Sox2-mediated downstream pathways may be therapeutic in promoting CNS myelin repair.SIGNIFICANCE STATEMENT Promoting myelin formation and repair has translational significance in treating myelin-related neurological disorders, such as periventricular leukomalacia and multiple sclerosis in which brain developmental myelin formation and myelin repair are severely affected, respectively. In this report, analyses of a series of genetic conditional knock-out systems targeting different oligodendrocyte stages reveal a previously unappreciated role of Sox2 in coordinating upstream proliferation and downstream differentiation of oligodendroglial lineage cells in the mouse brain during developmental myelination and CNS remyelination. Our study points to the potential of manipulating Sox2 and its downstream pathways to promote oligodendrocyte regeneration and CNS myelin repair.
Collapse
|
55
|
Chd7 Collaborates with Sox2 to Regulate Activation of Oligodendrocyte Precursor Cells after Spinal Cord Injury. J Neurosci 2017; 37:10290-10309. [PMID: 28931573 DOI: 10.1523/jneurosci.1109-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) act as a reservoir of new oligodendrocytes (OLs) in homeostatic and pathological conditions. OPCs are activated in response to injury to generate myelinating OLs, but the underlying mechanisms remain poorly understood. Here, we show that chromodomain helicase DNA binding protein 7 (Chd7) regulates OPC activation after spinal cord injury (SCI). Chd7 is expressed in OPCs in the adult spinal cord and its expression is upregulated with a concomitant increase in Sox2 expression after SCI. OPC-specific ablation of Chd7 in injured mice leads to reduced OPC proliferation, the loss of OPC identity, and impaired OPC differentiation. Ablation of Chd7 or Sox2 in cultured OPCs shows similar phenotypes to those observed in Chd7 knock-out mice. Chd7 and Sox2 form a complex in OPCs and bind to the promoters or enhancers of the regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) genes, thereby inducing their expression. The expression of Rgcc and PKCθ is reduced in the OPCs of the injured Chd7 knock-out mice. In cultured OPCs, overexpression and knock-down of Rgcc or PKCθ promote and suppress OPC proliferation, respectively. Furthermore, overexpression of both Rgcc and PKCθ rescues the Chd7 deletion phenotypes. Chd7 is thus a key regulator of OPC activation, in which it cooperates with Sox2 and acts via direct induction of Rgcc and PKCθ expression.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to oligodendrocyte (OL) loss and demyelination, along with neuronal death, resulting in impairment of motor or sensory functions. Oligodendrocyte precursor cells (OPCs) activated in response to injury are potential sources of OL replacement and are thought to contribute to remyelination and functional recovery after SCI. However, the molecular mechanisms underlying OPC activation, especially its epigenetic regulation, remain largely unclear. We demonstrate here that the chromatin remodeler chromodomain helicase DNA binding protein 7 (Chd7) regulates the proliferation and identity of OPCs after SCI. We have further identified regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) as novel targets of Chd7 for OPC activation.
Collapse
|
56
|
Gong B, Yue Y, Wang R, Zhang Y, Jin Q, Zhou X. Overexpression of microRNA-194 suppresses the epithelial–mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol 2017; 39:1010428317706217. [PMID: 28618953 DOI: 10.1177/1010428317706217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Baolan Gong
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Yue
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Renxiao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Quanfang Jin
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xi Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
57
|
Reiprich S, Cantone M, Weider M, Baroti T, Wittstatt J, Schmitt C, Küspert M, Vera J, Wegner M. Transcription factor Sox10 regulates oligodendroglial Sox9 levels via microRNAs. Glia 2017; 65:1089-1102. [PMID: 28370559 DOI: 10.1002/glia.23146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
During development of myelin-forming oligodendrocytes in the central nervous system the two closely related transcription factors Sox9 and Sox10 play essential roles that are partly shared and partly unique. Whereas Sox9 primarily functions during oligodendroglial specification, Sox10 is uniquely required to induce terminal differentiation and myelination. During this process, Sox10 protein levels rise substantially. As this coincides with a reciprocal decrease in Sox9, we postulated that Sox10 influences Sox9 amounts in differentiating oligodendrocytes. Here we show that Sox9 levels are indeed inversely coupled to Sox10 levels such that Sox10 deletion in oligodendroglial cells evokes a reciprocal increase in Sox9. We furthermore provide evidence that this coupling involves upregulation of microRNAs miR335 and miR338 as direct transcriptional targets of Sox10. The two microRNAs in turn recognize the 3'-UTR of Sox9 mRNA and may thereby reduce Sox9 protein levels posttranscriptionally in oligodendroglial cells. Such a mechanism may enable oligodendroglial cells to adapt the ratio of both related Sox proteins in a manner required for successful lineage progression and differentiation. Mathematical modeling furthermore shows that the identified regulatory circuit has the potential to convert a transient stimulus into an irreversible switch of cellular properties and may thus contribute to terminal differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Cantone
- Department of Dermatology, Laboratory of Systems Tumor Immunology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Wittstatt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Laboratory of Systems Tumor Immunology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
58
|
Wegener A, Küspert M, Sock E, Philipsen S, Suske G, Wegner M. Sp2 is the only glutamine-rich specificity protein with minor impact on development and differentiation in myelinating glia. J Neurochem 2016; 140:245-256. [PMID: 27889927 DOI: 10.1111/jnc.13908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 02/04/2023]
Abstract
Oligodendrocytes and Schwann cells are the myelinating glia of the vertebrate nervous system and by generation of myelin sheaths allow rapid saltatory conduction. Previous in vitro work had pointed to a role of the zinc finger containing specificity proteins Sp1 and Sp3 as major regulators of glial differentiation and myelination. Here, we asked whether such a role is also evident in vivo using mice with specific deletions of Sp1 or Sp3 in myelinating glia. We also studied glia-specific conditional Sp2- and constitutive Sp4-deficient mice to include all related glutamine-rich Sp factors into our analysis. Surprisingly, we did not detect developmental Schwann cell abnormalities in any of the mutant mice. Oligodendrocyte development and differentiation was also not fundamentally affected as oligodendrocytes were present in all mouse mutants and retained their ability to differentiate and initiate myelin gene expression. The most severe defect we observed was a 50% reduction in Mbp- and proteolipid protein 1 (Plp1)-positive differentiating oligodendrocytes in Sp2 mutants at birth. Unexpectedly, glial development appeared undisturbed even in the joint absence of Sp1 and Sp3. We conclude that Sp2 has a minor effect on the differentiation of myelinating glia, and that glutamine-rich Sp proteins are not essential regulators of the process.
Collapse
Affiliation(s)
- Amélie Wegener
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Guntram Suske
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
59
|
Du C, Shen Z, Zang R, Xie H, Li H, Chen P, Hang B, Xu X, Tang W, Xia Y. Negative feedback circuitry between MIR143HG and RBM24 in Hirschsprung disease. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2127-2136. [PMID: 27565737 DOI: 10.1016/j.bbadis.2016.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022]
Abstract
Hirschsprung disease (HSCR) is a genetic disorder of neural crest development. It is also believed that epigenetic changes plays a role in the progression of this disease. Here we show that the MIR143 host gene (MIR143HG), the precursor of miR-143 and miR-145, decreased cell proliferation and migration and forms a negative feedback loop with RBM24 in HSCR. As RBM24 mRNA is a target of miR-143, upregulation of RBM24 upon an increase in the level of MIR143HG could be attributed to sequestration of miR-143 by MIR143HG (sponge effect). The RBM24 protein was shown to bind to MIR143HG, and subsequently, accelerated its degradation by destabilizing its transcript and facilitating its interaction with Ago2, thus forming a negative feedback between MIR143HG and RBM24. In addition, experiments using siRNA against DROSHA indicated that RBM24 could promote the biogenesis of miR-143. This feedback loop we describe here represents a novel mode of autoregulation, with implications in HSCR pathogenesis.
Collapse
Affiliation(s)
- Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Ziyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Rujin Zang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Pingfa Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Bo Hang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaoqun Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China.
| |
Collapse
|
60
|
Tai A, Cheung M, Huang YH, Jauch R, Bronner ME, Cheah KSE. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution. Sci Rep 2016; 6:34964. [PMID: 27734831 PMCID: PMC5062122 DOI: 10.1038/srep34964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits.
Collapse
Affiliation(s)
- Andrew Tai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong-Heng Huang
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Marianne E Bronner
- Division of Biology 139-74, California Institute of Technology, Pasadena, USA
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
61
|
Garros-Regulez L, Aldaz P, Arrizabalaga O, Moncho-Amor V, Carrasco-Garcia E, Manterola L, Moreno-Cugnon L, Barrena C, Villanua J, Ruiz I, Pollard S, Lovell-Badge R, Sampron N, Garcia I, Matheu A. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin Ther Targets 2016; 20:393-405. [PMID: 26878385 PMCID: PMC4898154 DOI: 10.1517/14728222.2016.1151002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9.
Collapse
Affiliation(s)
| | - Paula Aldaz
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain
| | - Olatz Arrizabalaga
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain
| | - Veronica Moncho-Amor
- c Stem Cell Biology and Developmental Genetics laboratory , The Francis Crick Institute , London , UK
| | | | - Lorea Manterola
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain
| | | | - Cristina Barrena
- b Neuro-Oncology Committee , Donostia Hospital , San Sebastian , Spain
| | - Jorge Villanua
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain.,b Neuro-Oncology Committee , Donostia Hospital , San Sebastian , Spain
| | - Irune Ruiz
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain.,b Neuro-Oncology Committee , Donostia Hospital , San Sebastian , Spain
| | - Steven Pollard
- d Neural Stem Cells and Brain Cancer group , MRC Centre for Regenerative Medicine , Edinburgh , UK
| | - Robin Lovell-Badge
- c Stem Cell Biology and Developmental Genetics laboratory , The Francis Crick Institute , London , UK
| | - Nicolas Sampron
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain.,b Neuro-Oncology Committee , Donostia Hospital , San Sebastian , Spain
| | - Idoia Garcia
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain.,e IKERBASQUE , Basque Foundation for Science , Bilbao , Spain
| | - Ander Matheu
- a Cellular Oncology group , Biodonostia Institute , San Sebastian , Spain.,b Neuro-Oncology Committee , Donostia Hospital , San Sebastian , Spain.,e IKERBASQUE , Basque Foundation for Science , Bilbao , Spain
| |
Collapse
|
62
|
Fu L, Shi YB. The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 2016; 63:58-67. [PMID: 27567710 DOI: 10.1016/j.semcdb.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States.
| |
Collapse
|
63
|
Muth KN, Piefke S, Weider M, Sock E, Hermans-Borgmeyer I, Wegner M, Küspert M. The Dual-specificity phosphatase Dusp15 is regulated by Sox10 and Myrf in Myelinating Oligodendrocytes. Glia 2016; 64:2120-2132. [PMID: 27532821 DOI: 10.1002/glia.23044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/10/2022]
Abstract
Differentiation of oligodendrocytes and myelin production in the vertebrate central nervous system require highly concerted changes in gene expression. The transcription factors Sox10 and Myrf are both central to this process and jointly regulate expression of myelin genes. Here we show that Sox10 and Myrf also cooperate in the activation of the gene coding for the dual specificity protein phosphatase Dusp15 (also known as VHY) during this process. Activation is mediated by the Dusp15 promoter, which is also sufficient to drive oligodendroglial gene expression in vivo. It contains both a functional Sox10 and a functional Myrf binding site. Whereas Sox10 binds as a monomer, Myrf binds as a trimer. Available data furthermore indicate that cooperative activation is not a function of facilitated binding, but occurs at a later step of the activation process. shRNA-mediated knockdown of Dusp15 reduced expression of early and late differentiation markers in CG4 and primary oligodendroglial cells, whereas Dusp15 overexpression increased it transiently. This argues that Dusp15 is not only a joint target of Sox10 and Myrf in oligodendrocytes but may also mediate some of their effects during oligodendrocyte differentiation and myelin formation. GLIA 2016;64:2120-2132.
Collapse
Affiliation(s)
- Katharina N Muth
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Piefke
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Michael Wegner
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
64
|
Cui C, Ye X, Chopp M, Venkat P, Zacharek A, Yan T, Ning R, Yu P, Cui G, Chen J. miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats. Stem Cells Transl Med 2016; 5:1656-1667. [PMID: 27460851 PMCID: PMC5189645 DOI: 10.5966/sctm.2015-0349] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/13/2016] [Indexed: 01/08/2023] Open
Abstract
In rats with type 1 diabetes mellitus (T1DM) subject to stroke, the therapeutic effects and underlying mechanisms of action of bone-marrow stromal cells (BMSCs) derived from T1DM rats (DM-BMSCs) and BMSCs derived from normal rats (Nor-BMSCs) were compared. In vitro and in vivo, DM-BMSCs exhibited decreased miR-145 expression. In T1DM rats, DM-BMSC treatment significantly improved functional outcome and increased vascular and white matter remodeling. However, overexpression of miR-145 in DM-BMSCs attenuates DM-BMSC-induced neurorestorative effects in T1DM stroke rats. In rats with type 1 diabetes (T1DM), the therapeutic effects and underlying mechanisms of action of stroke treatment were compared between bone-marrow stromal cells (BMSCs) derived from T1DM rats (DM-BMSCs) and BMSCs derived from normal rats (Nor-BMSCs). The novel role of microRNA-145 (miR-145) in mediating DM-BMSC treatment-induced benefits was also investigated. T1DM rats (n = 8 per group) underwent 2 hours of middle cerebral artery occlusion (MCAo) and were treated 24 hours later with the one of the following (5 × 106 cells administered i.v.): (a) phosphate-buffered saline (PBS); (b) Nor-BMSCs; (c) DM-BMSCs; (d) DM-BMSCs with miR-145 overexpression (miR-145+/+DM-BMSCs); or (e) Nor-BMSCs with miR-145 knockdown. Evaluation of functional outcome, vascular and white-matter remodeling and microRNA expression was made, and in vitro studies were performed. In vitro, DM-BMSCs exhibited decreased miR-145 expression and increased survival compared with Nor-BMSCs. Capillary tube formation and axonal outgrowth in cultured primary cortical neurons were significantly increased by DM-BMSC-conditioned medium compared with Nor-BMSCs, and significantly decreased by miR-145+/+DM-BMSC-conditioned medium compared with DM-BMSCs. In T1DM rats in which stroke had been induced (T1DM stroke rats), DM-BMSC treatment significantly improved functional outcome, increased vascular and white matter remodeling, decreased serum miR-145 expression, and increased expression of the miR-145 target genes adenosine triphosphate-binding cassette transporter 1 (ABCA1) and insulin-like growth factor 1 receptor (IGFR1), compared with Nor-BMSCs or PBS treatment. However, miR-145+/+DM-BMSCs significantly increased serum miR-145 expression and decreased brain ABCA1 and IGFR1 expression, as well as attenuated DM-BMSC-induced neurorestorative effects in T1DM-MCAo rats. DM-BMSCs exhibited decreased miR-145 expression. In T1DM-MCAo rats, DM-BMSC treatment improved functional outcome and promoted neurorestorative effects. The miR-145/ABCA1/IGFR1 pathway may contribute to the enhanced DM-BMSCs’ functional and neurorestorative effects in T1DM stroke rats. Significance In rats with type 1 diabetes (T1DM), the therapeutic effects and underlying mechanisms of action of stroke treatment were compared between bone-marrow stromal cells (BMSCs) derived from T1DM rats (DM-BMSCs) and BMSCs derived from normal rats (Nor-BMSCs). In vitro, DM-BMSCs and derived exosomes decreased miR-145 expression and increased DM-BMSC survival, capillary tube formation, and axonal outgrowth, compared with Nor-BMSCs; these effects were decreased by DM-BMSCs in which miR-145 was overexpressed. In vivo, compared with Nor-BMSC or phosphate-buffered saline treatment, DM-BMSC treatment improved functional outcome and vascular and white matter remodeling, decreased serum miR-145 expression, and increased expression of the miR-145 target genes ABCA1 and IGFR1. microRNA-145 mediated the benefits induced by DM-BMSC treatment.
Collapse
Affiliation(s)
- Chengcheng Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, People's Republic of China
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ruizhou Ning
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Peng Yu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
65
|
Puligilla C, Kelley MW. Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Dev Neurobiol 2016; 77:3-13. [PMID: 27203669 DOI: 10.1002/dneu.22401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The formation of inner ear sensory epithelia is believed to occur in two steps, initial specification of sensory competent (prosensory) regions followed by determination of specific cell-types, such as hair cells (HCs) and supporting cells. However, studies in which the HC determination factor Atoh1 was ectopically expressed in nonprosensory regions indicated that expression of Atoh1 alone is sufficient to induce HC formation suggesting that prosensory formation may not be a prerequisite for HC development. To test this hypothesis, interactions between Sox2 and Atoh1, which are required for prosensory and HC formation respectively, were examined. Forced expression of Atoh1 in nonprosensory cells resulted in transient expression of Sox2 prior to HC formation, suggesting that expression of Sox2 is required for formation of ectopic HCs. Moreover, Atoh1 overexpression failed to induce HC formation in Sox2 mutants, confirming that Sox2 is required for prosensory competence. To determine whether expression of Sox2 alone is sufficient to induce prosensory identity, Sox2 was transiently activated in a manner that mimicked endogenous expression. Following transient Sox2 activation, nonprosensory cells developed as HCs, a result that was never observed in response to persistent expression of Sox2. These results, suggest a dual role for Sox2 in inner ear formation. Initially, Sox2 is required to specify prosensory competence, but subsequent down-regulation of Sox2 must occur to allow Atoh1 expression, most likely through a direct interaction with the Atoh1 promoter. These results implicate Sox2-mediated changes in prosensory cells as an essential step in their ability to develop as HCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 3-13, 2017.
Collapse
Affiliation(s)
- Chandrakala Puligilla
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20982
| |
Collapse
|
66
|
Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nat Commun 2016; 7:11628. [PMID: 27188978 PMCID: PMC4873968 DOI: 10.1038/ncomms11628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/14/2016] [Indexed: 01/28/2023] Open
Abstract
The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. Postnatal growth of the pons is not well characterized. Here the authors show that growth of the murine pons is fastest during postnatal day 0–4, a period preceding myelination, and is primarily driven by an expansion of the oligodendrocyte population that derive from Sox2+Olig2+ progenitors.
Collapse
|
67
|
Hashimoto R, Hori K, Owa T, Miyashita S, Dewa K, Masuyama N, Sakai K, Hayase Y, Seto Y, Inoue YU, Inoue T, Ichinohe N, Kawaguchi Y, Akiyama H, Koizumi S, Hoshino M. Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor, Sox9. Mech Dev 2016; 140:25-40. [DOI: 10.1016/j.mod.2016.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
|
68
|
Zhao C, Ma D, Zawadzka M, Fancy SPJ, Elis-Williams L, Bouvier G, Stockley JH, de Castro GM, Wang B, Jacobs S, Casaccia P, Franklin RJM. Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS Demyelination and Primes Them for Differentiation during Remyelination. J Neurosci 2015; 35:11482-99. [PMID: 26290228 PMCID: PMC6605237 DOI: 10.1523/jneurosci.3655-14.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 12/16/2022] Open
Abstract
The Sox family of transcription factors have been widely studied in the context of oligodendrocyte development. However, comparatively little is known about the role of Sox2, especially during CNS remyelination. Here we show that the expression of Sox2 occurs in oligodendrocyte progenitor cells (OPCs) in rodent models during myelination and in activated adult OPCs responding to demyelination, and is also detected in multiple sclerosis lesions. In normal adult white matter of both mice and rats, it is neither expressed by adult OPCs nor by oligodendrocytes (although it is expressed by a subpopulation of adult astrocytes). Overexpression of Sox2 in rat OPCs in vitro maintains the cells in a proliferative state and inhibits differentiation, while Sox2 knockout results in decreased OPC proliferation and survival, suggesting that Sox2 contributes to the expansion of OPCs during the recruitment phase of remyelination. Loss of function in cultured mouse OPCs also results in an impaired ability to undergo normal differentiation in response to differentiation signals, suggesting that Sox2 expression in activated OPCs also primes these cells to eventually undergo differentiation. In vivo studies on remyelination following experimental toxin-induced demyelination in mice with inducible loss of Sox2 revealed impaired remyelination, which was largely due to a profound attenuation of OPC recruitment and likely also due to impaired differentiation. Our results reveal a key role of Sox2 expression in OPCs responding to demyelination, enabling them to effectively contribute to remyelination. SIGNIFICANCE STATEMENT Understanding the mechanisms of CNS remyelination is central to developing effective means by which this process can be therapeutically enhanced in chronic demyelinating diseases such as multiple sclerosis. In this study, we describe the role of Sox2, a transcription factor widely implicated in stem cell biology, in CNS myelination and remyelination. We show how Sox2 is expressed in oligodendrocyte progenitor cells (OPCs) preparing to undergo differentiation, allowing them to undergo proliferation and priming them for subsequent differentiation. Although Sox2 is unlikely to be a direct therapeutic target, these data nevertheless provide more information on how OPC differentiation is controlled and therefore enriches our understanding of this important CNS regenerative process.
Collapse
Affiliation(s)
- Chao Zhao
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Dan Ma
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Malgorzata Zawadzka
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Stephen P J Fancy
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Lowri Elis-Williams
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Guy Bouvier
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - John H Stockley
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Glaucia Monteiro de Castro
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Bowei Wang
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Sabrina Jacobs
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Patrizia Casaccia
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| |
Collapse
|
69
|
Küspert M, Wegner M. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Res 2015; 1638:167-182. [PMID: 26232072 DOI: 10.1016/j.brainres.2015.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/26/2022]
Abstract
Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only).
Collapse
Affiliation(s)
- Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| |
Collapse
|
70
|
Fitzpatrick JMK, Anderson RC, McDermott KW. MicroRNA: Key regulators of oligodendrocyte development and pathobiology. Int J Biochem Cell Biol 2015; 65:134-8. [PMID: 26026282 DOI: 10.1016/j.biocel.2015.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs or miRs) are a group of small non-coding RNAs that function through binding to messenger RNA (mRNA) targets and downregulating gene expression. miRNAs have been shown to regulate many cellular functions including proliferation, differentiation, development and apoptosis. Recently, evidence has grown which shows the involvement of miRs in oligodendrocyte (OL) specification and development. In particular, miRs-138, -219, -338, and -9 have been classified as key regulators of OL development, acting at various points in the OL lineage and influencing precursor cell transit into mature myelinating OLs. Many studies have emerged which link miRNAs with OL and myelin pathology in various central nervous system (CNS) diseases including multiple sclerosis (MS), ischemic stroke, spinal cord injury, and adult-onset autosomal dominant leukodystrophy (ADLD).
Collapse
|
71
|
Hernandez M, Casaccia P. Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage. Glia 2015; 63:1357-75. [PMID: 25970296 DOI: 10.1002/glia.22818] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The recent years have been characterized by a surge of studies on the role of transcription factors and histone modifications in regulating the progression of progenitors into oligodendrocytes. This review summarizes this body of evidence and presents an integrated view of transcriptional networks and epigenetic regulators defining proliferating progenitors and their differentiation along the oligodendrocyte lineage. We suggest that transcription factors in proliferating progenitors have direct access to DNA, due to predominantly euchromatic nuclei. As progenitors differentiate, however, transcriptional competence is modulated by the formation of heterochromatin, which modifies the association of DNA with nucleosomal histones and renders the access of transcription factors dependent on the activity of epigenetic modulators. These concepts are delineated within the context of development, and the potential functional implications are discussed.
Collapse
Affiliation(s)
- Marylens Hernandez
- Department of Neuroscience, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Patrizia Casaccia
- Department of Neuroscience, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Genomics and Multiscale Biology, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
72
|
Brg1-dependent chromatin remodelling is not essentially required during oligodendroglial differentiation. J Neurosci 2015; 35:21-35. [PMID: 25568100 DOI: 10.1523/jneurosci.1468-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelinating Schwann cells in the vertebrate peripheral nervous system rely on Brg1 (Smarca4) for terminal differentiation. Brg1 serves as central ATP-hydrolyzing subunit of the chromatin remodelling BAF complexes and is recruited during myelination as part of these complexes by the transcription factor Sox10 in Schwann cells. Here, we analyzed the role of Brg1 during development of myelinating oligodendrocytes in the CNS of the mouse. Following Brg1 deletion in oligodendrocyte precursors, these cells showed normal survival, proliferation, and migration. A mild but significant reduction in the number of oligodendrocytes with myelin gene expression in the absence of Brg1 points to a contribution to oligodendroglial differentiation but also shows that the role of Brg1 is much less prominent than during Schwann cell differentiation. Additionally, we failed to obtain evidence for a genetic interaction between Brg1 and Sox10 comparable with the one in Schwann cells. This argues that similarities exist between the regulatory networks and mechanisms in both types of myelinating glia but that the exact mode of action and the relevance of functional interactions differ, pointing to a surprising degree of variability in the control of myelination.
Collapse
|
73
|
Weider M, Wegener A, Schmitt C, Küspert M, Hillgärtner S, Bösl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet 2015; 11:e1005008. [PMID: 25680202 PMCID: PMC4334169 DOI: 10.1371/journal.pgen.1005008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. Developmental or acquired defects of oligodendrocytes or their myelin sheaths impairs saltatory nerve conduction in the central nervous system and thus leads to severe neurological diseases. Strategies to regenerate or replace these cells require a deeper understanding of the regulatory processes that underlie their generation during development. Here we show in a Sox10 overexpressing mouse model that increase of the levels of a single transcription factor during embryogenesis efficiently converts the already Sox10 expressing satellite glial cells of the peripheral nervous system into oligodendrocyte-like cells by a mechanism that does not simply recapitulate developmental oligodendrogenesis but involves direct Sox10-dependent induction of the oligodendroglial differentiation network. Our study identifies mechanisms that may help to convert other cell types into oligodendrocytes and thus prove eventually useful for therapies of myelin diseases.
Collapse
Affiliation(s)
- Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amélie Wegener
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael R. Bösl
- Experimentelle Biomedizin, Rudolf-Virchow-Zentrum, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Brahim Nait-Oumesmar
- Institut du Cerveau et de la Moelle Epinière, ICM, Inserm U1127, Université Pierre et Marie Curie, Sorbonne Paris Cité, UMR-S1127, CNRS UMR 7225, Paris, France
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
74
|
Arter J, Wegner M. Transcription factors Sox10 and Sox2 functionally interact with positive transcription elongation factor b in Schwann cells. J Neurochem 2015; 132:384-93. [PMID: 25524031 DOI: 10.1111/jnc.13013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022]
Abstract
Sox proteins are mechanistically versatile regulators with established relevance to different developmental processes and crucial impact on chromatin structure, DNA conformation, and transcriptional initiation. Here, we show that Sox2 and Sox10, two Sox proteins important for Schwann cell development, also have the capability to activate transcriptional elongation in a Schwann cell line by recruiting the positive transcription elongation factor b. Recruitment is mediated by physical interaction between the carboxyterminal transactivation domains of the two Sox proteins and the Cyclin T1 subunit of positive transcription elongation factor b, with interaction interfaces for the two Sox proteins being mapped to adjacent regions of the central part of Cyclin T1. Supporting the relevance of this interaction to Schwann cell development, transcription of myelin genes appears regulated at the level of elongation. Our results thus add a new facet to the activity of Sox proteins and expand the functional repertoire of this important group of developmental regulators. Sox transcription factors are important regulators of nervous system development. While they are known to regulate transcription by recruiting and stabilizing the RNA polymerase II preinitiation complex directly or with help of the Mediator complex, this study provides evidence that Sox10 and Sox2 additionally influence transcription in glial cells at the elongation stage by recruiting P-TEFb. Cdk9, cyclin-dependent kinase 9; P-TEFb, positive transcription elongation factor b; Pol II, RNA polymerase II; Sox, Sox2 or Sox10 protein.
Collapse
Affiliation(s)
- Juliane Arter
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
75
|
Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, Rohrer H. Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest-Derived Peripheral Stem Cells. Stem Cells 2015; 33:574-88. [DOI: 10.1002/stem.1880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Marlen Weber
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology; Frankfurt Germany
| | - Galina Apostolova
- Innsbruck Medical University, Institute for Neuroscience; Innsbruck Austria
| | - Darius Widera
- Institute of Cell Biology, University of Bielefeld; Bielefeld Germany
| | | | - Georg Dechant
- Innsbruck Medical University, Institute for Neuroscience; Innsbruck Austria
| | - Barbara Kaltschmidt
- Institute of Cell Biology, University of Bielefeld; Bielefeld Germany
- Molecular Neurobiology; University of Bielefeld; Bielefeld Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology; Frankfurt Germany
| |
Collapse
|
76
|
Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 2015; 6:6121. [PMID: 25607655 PMCID: PMC4302951 DOI: 10.1038/ncomms7121] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/14/2014] [Indexed: 01/17/2023] Open
Abstract
Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development.
Collapse
Affiliation(s)
- Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yiyu Deng
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Kelly R Monk
- 1] Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Yanqin Ying
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sung-Jin Jeong
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Manabu Makinodan
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Allison R Bialas
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bernard S Chang
- Comprehensive Epilepsy Center, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Stevens
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gabriel Corfas
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
77
|
Lahti L, Haugas M, Tikker L, Airavaara M, Voutilainen MH, Anttila J, Kumar S, Inkinen C, Salminen M, Partanen J. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei. Development 2015; 143:516-29. [DOI: 10.1242/dev.129957] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared to the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where postmitotic selector genes Tal1, Gata2, and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Maarja Haugas
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laura Tikker
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Merja H. Voutilainen
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Jenni Anttila
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Suman Kumar
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Caisa Inkinen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Marjo Salminen
- Department of Veterinary Biosciences, Agnes Sjöbergin katu 2, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
78
|
Sun G, Fu L, Wen L, Shi YB. Activation of Sox3 gene by thyroid hormone in the developing adult intestinal stem cell during Xenopus metamorphosis. Endocrinology 2014; 155:5024-32. [PMID: 25211587 PMCID: PMC4239430 DOI: 10.1210/en.2014-1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences (G.S.), Wuhan University, Wuhan 430072, People's Republic of China; and Section on Molecular Morphogenesis (L.F., L.W., Y.-B.S.), Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
79
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
80
|
Svaren J. MicroRNA and transcriptional crosstalk in myelinating glia. Neurochem Int 2014; 77:50-7. [PMID: 24979526 PMCID: PMC4177339 DOI: 10.1016/j.neuint.2014.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022]
Abstract
Several recent studies have addressed the important role of microRNA in regulation of differentiation of myelinating glia. While Schwann cells and oligodendrocytes in the peripheral and central nervous systems, respectively, exhibit significant morphological and regulatory differences, some aspects of transcriptional and microRNA regulation are shared between these two cell types. This review focuses on the intersection of microRNAs with transcriptional regulation in Schwann cell and oligodendrocyte differentiation. In particular, several microRNAs have been shown to modulate expression of critical transcription factors, and in turn, the regulation of microRNA expression is enmeshed within transcriptional networks that coordinate both coding gene and noncoding RNA profiles of myelinating cells. These hubs of regulation control both myelin gene expression as well as the cell cycle transitions of Schwann cells and oligodendrocytes as they terminally differentiate. In addition, some studies have begin to highlight the combinatorial effects of different microRNAs that establish the narrow range of gene regulation required for efficient and stable myelin formation. Overall, the integration of microRNA and transcriptional aspects will help elucidate mechanistic control of the myelination process.
Collapse
Affiliation(s)
- John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
81
|
Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 2014; 9:e111059. [PMID: 25357129 PMCID: PMC4214693 DOI: 10.1371/journal.pone.0111059] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.
Collapse
|
82
|
Chew LJ, DeBoy CA, Senatorov VV. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 2014; 236:125-47. [PMID: 25169049 PMCID: PMC4171043 DOI: 10.1016/j.jneumeth.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, United States.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, United States
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
83
|
Reiprich S, Wegner M. Sox2: A multitasking networker. NEUROGENESIS 2014; 1:e962391. [PMID: 27502481 PMCID: PMC4973596 DOI: 10.4161/23262125.2014.962391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/02/2014] [Indexed: 01/15/2023]
Abstract
The transcription factor Sox2 is best known as a pluripotency factor in stem and precursor cells and its expression generally correlates with an undifferentiated state. Proposed modes of action include those as classical transcription factor and pre-patterning factor with influence on histone modifications and chromatin structure. Recently, we provided the first detailed analysis of Sox2 expression and function during development of oligodendrocytes, the myelin-forming cells of the CNS. Surprisingly, we found evidence for a role of Sox2 as differentiation factor and found it to act through modulation of microRNA levels. Thus, we add new facets to the functional repertoire of Sox2 and throw light on the networking activity of this multitasking developmental regulator.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie; Emil-Fischer-Zentrum; Friedrich-Alexander-Universität Erlangen-Nürnberg ; Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie; Emil-Fischer-Zentrum; Friedrich-Alexander-Universität Erlangen-Nürnberg ; Erlangen, Germany
| |
Collapse
|
84
|
Vue TY, Kim EJ, Parras CM, Guillemot F, Johnson JE. Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord. Development 2014; 141:3721-31. [PMID: 25249462 DOI: 10.1242/dev.105270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glia constitute the majority of cells in the mammalian central nervous system and are crucial for neurological function. However, there is an incomplete understanding of the molecular control of glial cell development. We find that the transcription factor Ascl1 (Mash1), which is best known for its role in neurogenesis, also functions in both astrocyte and oligodendrocyte lineages arising in the mouse spinal cord at late embryonic stages. Clonal fate mapping in vivo reveals heterogeneity in Ascl1-expressing glial progenitors and shows that Ascl1 defines cells that are restricted to either gray matter (GM) or white matter (WM) as astrocytes or oligodendrocytes. Conditional deletion of Ascl1 post-neurogenesis shows that Ascl1 is required during oligodendrogenesis for generating the correct numbers of WM but not GM oligodendrocyte precursor cells, whereas during astrocytogenesis Ascl1 functions in balancing the number of dorsal GM protoplasmic astrocytes with dorsal WM fibrous astrocytes. Thus, in addition to its function in neurogenesis, Ascl1 marks glial progenitors and controls the number and distribution of astrocytes and oligodendrocytes in the GM and WM of the spinal cord.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Euiseok J Kim
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos M Parras
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Francois Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
85
|
Castelo-Branco G, Lilja T, Wallenborg K, Falcão AM, Marques SC, Gracias A, Solum D, Paap R, Walfridsson J, Teixeira AI, Rosenfeld MG, Jepsen K, Hermanson O. Neural stem cell differentiation is dictated by distinct actions of nuclear receptor corepressors and histone deacetylases. Stem Cell Reports 2014; 3:502-15. [PMID: 25241747 PMCID: PMC4266002 DOI: 10.1016/j.stemcr.2014.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023] Open
Abstract
Signaling factors including retinoic acid (RA) and thyroid hormone (T3) promote neuronal, oligodendrocyte, and astrocyte differentiation of cortical neural stem cells (NSCs). However, the functional specificity of transcriptional repressor checkpoints controlling these differentiation programs remains unclear. Here, we show by genome-wide analysis that histone deacetylase (HDAC)2 and HDAC3 show overlapping and distinct promoter occupancy at neuronal and oligodendrocyte-related genes in NSCs. The absence of HDAC3, but not HDAC2, initiated a neuronal differentiation pathway in NSCs. The ablation of the corepressor NCOR or HDAC2, in conjunction with T3 treatment, resulted in increased expression of oligodendrocyte genes, revealing a direct HDAC2-mediated repression of Sox8 and Sox10 expression. Interestingly, Sox10 was required also for maintaining the more differentiated state by repression of stem cell programming factors such as Sox2 and Sox9. Distinct and nonredundant actions of NCORs and HDACs are thus critical for control of lineage progression and differentiation programs in neural progenitors. ChIP-seq reveals distinct and overlapping occupancy of HDAC2 and HDAC3 in NSCs Absence of NCOR promotes oligodendrocyte differentiation of NSCs HDAC2 controls Sox10 expression in OL differentiation via a SOX2-occupied enhancer Sox10 is required for maintaining the differentiated state in late OL precursors
Collapse
Affiliation(s)
- Gonçalo Castelo-Branco
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Tobias Lilja
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karolina Wallenborg
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ana M Falcão
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sueli C Marques
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Aileen Gracias
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Derek Solum
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | - Ricardo Paap
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julian Walfridsson
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ana I Teixeira
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | - Kristen Jepsen
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | - Ola Hermanson
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
86
|
Reiprich S, Wegner M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res 2014; 359:111-24. [PMID: 24894327 DOI: 10.1007/s00441-014-1909-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Neuroepithelial precursor cells of the vertebrate central nervous system either self-renew or differentiate into neurons, oligodendrocytes or astrocytes under the influence of a gene regulatory network that consists in transcription factors, epigenetic modifiers and microRNAs. Sox transcription factors are central to this regulatory network, especially members of the SoxB, SoxC, SoxD, SoxE and SoxF groups. These Sox proteins are widely expressed in neuroepithelial precursor cells and in newly specified, differentiating and mature neurons, oligodendrocytes and astrocytes and influence their identity, survival and development. They exert their effect predominantly at the transcriptional level but also have substantial impact on expression at the epigenetic and posttranscriptional levels with some Sox proteins acting as pioneer factors, recruiting chromatin-modifying and -remodelling complexes or influencing microRNA expression. They interact with a large variety of other transcription factors and influence the expression of regulatory molecules and effector genes in a cell-type-specific and temporally controlled manner. As versatile regulators with context-dependent functions, they are not only indispensable for central nervous system development but might also be instrumental for the development of reprogramming and cell conversion strategies for replacement therapies and for assisted regeneration after injury or degeneration-induced cell loss in the central nervous system.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany,
| | | |
Collapse
|