51
|
Cai Q, Wang W, Gao Y, Yang Y, Zhu Z, Fan Q. Ce-wts-1plays important roles inCaenorhabditis elegansdevelopment. FEBS Lett 2009; 583:3158-64. [DOI: 10.1016/j.febslet.2009.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
52
|
Chen L, McCloskey T, Joshi PM, Rothman JH. ced-4 and proto-oncogene tfg-1 antagonistically regulate cell size and apoptosis in C. elegans. Curr Biol 2008; 18:1025-33. [PMID: 18635357 PMCID: PMC3142714 DOI: 10.1016/j.cub.2008.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cell-size-control systems, coupled with apoptotic- and cell-proliferation-regulatory mechanisms, determine the overall dimensions of organs and organisms, and their dysregulation can lead to tumor formation. The interrelationship between cell-growth-regulatory mechanisms and apoptosis during normal development and cancer is not understood. The TRK-fused gene (TFG) promotes tumorigenesis when present in chromosomal rearrangements from various human-cancer types by unknown mechanisms. Apaf1/CED-4 is essential for apoptosis but has not been shown to function in cell-growth control. RESULTS We found that loss of TFG-1, the TFG ortholog in Caenorhabditis elegans, results in supernumerary apoptotic corpses, whereas its overexpression is sufficient to inhibit developmentally programmed cell death. TFG-1 is also required for cells and nuclei to grow to normal size. Furthermore, we found that CED-4 is required for cell-growth inhibition in animals lacking TFG-1. However, caspases, the downstream effectors of CED-4-mediated apoptosis, are not required in TFG-1- or CED-4-regulated cell-size control. CED-4 acts to inhibit cell growth by antagonizing the effects of other conserved cell-size-regulating proteins, including cAMP response element binding (CREB) protein, translation-initiation factor eIF2B, and the nucleolar p53-interacting protein nucleostemin. CONCLUSIONS These findings show that TFG-1 suppresses apoptosis and is essential for normal cell-size control, suggesting that abnormalities in the cell-growth-promoting and apoptosis-inhibiting functions of TFG might be responsible for its action in tumorigenesis. Also, they reveal that CED-4 plays a pivotal role in activating apoptosis and restricting cell and nuclear size, thereby determining the appropriate overall size of an animal. Thus, these findings reveal links between the control mechanisms for apoptosis and cell growth.
Collapse
Affiliation(s)
- Ling Chen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
53
|
Vashlishan AB, Madison JM, Dybbs M, Bai J, Sieburth D, Ch'ng Q, Tavazoie M, Kaplan JM. An RNAi screen identifies genes that regulate GABA synapses. Neuron 2008; 58:346-61. [PMID: 18466746 DOI: 10.1016/j.neuron.2008.02.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 01/29/2023]
Abstract
GABA synapses play a critical role in many aspects of circuit development and function. For example, conditions that perturb GABA transmission have been implicated in epilepsy. To identify genes that regulate GABA transmission, we performed an RNAi screen for genes whose inactivation increases the activity of C. elegans body muscles, which receive direct input from GABAergic motor neurons. We identified 90 genes, 21 of which were previously implicated in seizure syndromes, suggesting that this screen has effectively identified candidate genes for epilepsy. Electrophysiological recordings and imaging of excitatory and inhibitory synapses indicate that several genes alter muscle activity by selectively regulating GABA transmission. In particular, we identify two humoral pathways and several protein kinases that modulate GABA transmission but have little effect on excitatory transmission at cholinergic neuromuscular junctions. Our data suggest these conserved genes are components of signaling pathways that regulate GABA transmission and consequently may play a role in epilepsy and other cognitive or psychiatric disorders.
Collapse
Affiliation(s)
- Amy B Vashlishan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Tain LS, Lozano E, Sáez AG, Leroi AM. Dietary regulation of hypodermal polyploidization in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2008; 8:28. [PMID: 18366811 PMCID: PMC2275723 DOI: 10.1186/1471-213x-8-28] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 03/12/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. RESULTS Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. CONCLUSION We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.
Collapse
Affiliation(s)
- Luke S Tain
- Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | | | | | | |
Collapse
|
55
|
Aladzsity I, Tóth ML, Sigmond T, Szabó E, Bicsák B, Barna J, Regos A, Orosz L, Kovács AL, Vellai T. Autophagy genes unc-51 and bec-1 are required for normal cell size in Caenorhabditis elegans. Genetics 2007; 177:655-60. [PMID: 17890369 PMCID: PMC2013693 DOI: 10.1534/genetics.107.075762] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we show that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes unc-51/atg1 and bec-1/atg6/beclin1 results in small body size without affecting cell number. Furthermore, loss-of-function mutations in unc-51 and bec-1 suppress the giant phenotype of mutant animals with aberrant insulin-like growth factor-1 (insulin/IGF-1) or transforming growth factor-beta (TGF-beta) signaling. This function for unc-51 and bec-1 in cell size control and their interaction with these two growth modulatory pathways may represent a link between the hormonal and nutritional regulation of cell growth.
Collapse
Affiliation(s)
- István Aladzsity
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mohri-Shiomi A, Garsin DA. Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J Biol Chem 2007; 283:194-201. [PMID: 17951251 DOI: 10.1074/jbc.m707956200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During infection, damage can occur to the host as an outcome of both pathogen virulence mechanisms and host defense strategies. Using aggregation of a model polyglutamine-containing protein as an indicator in Caenorhabditis elegans, we show that protein damage occurs specifically at the site of the host-pathogen interaction, the intestine, in response to various bacterial pathogens. We demonstrate that the insulin signaling pathway and the heat shock transcription factor (HSF-1) influence the amount of aggregation that occurs, in addition to heat shock proteins and oxidative stress enzymes. We also show that addition of the antioxidants epigallocatechin gallate and alpha-lipoic acid reduces polyglutamine aggregation. The influence of oxidative stress enzymes and exogenous antioxidants on protein aggregation suggests that reactive oxygen species produced by the host are a source of protein damage during infection. We propose a model in which heat shock proteins and oxidative stress enzymes regulated by insulin signaling and HSF-1 are required for tissue protection during infection, to minimize the effects of protein damage occurring as a result of host-pathogen interactions.
Collapse
Affiliation(s)
- Akiko Mohri-Shiomi
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030.
| |
Collapse
|
57
|
Fung WY, Fat KFC, Eng CKS, Lau CK. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans. Dev Biol 2007; 311:95-105. [PMID: 17869238 DOI: 10.1016/j.ydbio.2007.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/30/2007] [Accepted: 08/07/2007] [Indexed: 11/23/2022]
Abstract
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.
Collapse
Affiliation(s)
- Wong Yan Fung
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | | | | | | |
Collapse
|
58
|
Watanabe N, Ishihara T, Ohshima Y. Mutants carrying two sma mutations are super small in the nematode C. elegans. Genes Cells 2007; 12:603-9. [PMID: 17535251 DOI: 10.1111/j.1365-2443.2007.01077.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Body size determination is critical for multicellular organisms; however, the mechanisms remain largely unknown. Mutations that alter body size were studied to solve the mechanisms, for example, in mouse, fruit fly and the nematode Caenorhabditis elegans. In C. elegans, a large mutant and several small body size (sma) mutants are known. Of the latter, sma-2, sma-3, sma-4, sma-6, dbl-1 and daf-4 have a mutation in the components of the DBL-1/TGFbeta signal pathway, and sma-5 in a MAP kinase homologue. We have constructed double mutants carrying two of such small body size mutations, sma-5 and sma-4 or sma-2. They are much smaller than either of the parental single mutants, indicating that the sma-5 gene functions independently of the DBL-1/TGFbeta pathway. We show that their body volumes are as small as 1/10 of that of the wild-type, and that the sizes of major organs are much reduced, by the methods previously developed by us. But the numbers of cells are not changed, suggesting that the cells are very small. These results highlight surprising flexibility of body size and cell size in a multicellular organism, which will give a novel insight into the mechanisms of body size control.
Collapse
Affiliation(s)
- Naoharu Watanabe
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Hakozaki, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
59
|
Liang J, Yu L, Yin J, Savage-Dunn C. Transcriptional repressor and activator activities of SMA-9 contribute differentially to BMP-related signaling outputs. Dev Biol 2007; 305:714-25. [PMID: 17397820 DOI: 10.1016/j.ydbio.2007.02.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 01/09/2007] [Accepted: 02/27/2007] [Indexed: 10/25/2022]
Abstract
In the nematode Caenorhabditis elegans, the BMP-related growth factor DBL-1 regulates body size and male tail morphogenesis via a conserved receptor/Smad signaling pathway. Smads are transcription factors, but rely on transcription cofactors for appropriate regulation of target genes in response to TGF-beta- and BMP-related signals. In the DBL-1 pathway, sma-9 encodes multiple zinc finger transcription factors homologous to Drosophila Schnurri, which functions in Dpp/BMP signaling. We have studied the molecular functions of SMA-9 as a model for transcription cofactor-dependent regulation of gene expression. Using SMA-9 fusions to known transcriptional activators and repressors, we demonstrate that SMA-9 acts primarily as a transcriptional repressor in body size regulation in vivo. In contrast, both activator and repressor functions contribute to male tail patterning. We further show that different SMA-9 regions have intrinsic repressor and activator activities using a yeast transcription assay. We use microarray analysis to identify transcriptional target genes in body size regulation. Consistent with the importance of repression in mediating body size regulation, we find more repressed genes than activated genes in this pool. Finally, we identify five transcriptional targets with body size and/or male tail patterning phenotypes, including transcription factors related to Runx and fos and signaling molecules related to hedgehog and patched. Our results thus suggest that SMA-9 products function differentially as transcriptional repressors and activators in DBL-1/BMP pathway regulated body size and male tail morphogenesis.
Collapse
Affiliation(s)
- Jun Liang
- Department of Biology, Queens College, and Biochemistry PhD Program, the Graduate School and University Center, the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | | | | | | |
Collapse
|
60
|
Gumienny TL, MacNeil LT, Wang H, de Bono M, Wrana JL, Padgett RW. Glypican LON-2 is a conserved negative regulator of BMP-like signaling in Caenorhabditis elegans. Curr Biol 2007; 17:159-64. [PMID: 17240342 DOI: 10.1016/j.cub.2006.11.065] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/04/2006] [Accepted: 11/13/2006] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways.
Collapse
Affiliation(s)
- Tina L Gumienny
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
61
|
Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C. elegans. BMC Cell Biol 2007; 8:3. [PMID: 17233914 PMCID: PMC1793994 DOI: 10.1186/1471-2121-8-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 01/18/2007] [Indexed: 01/01/2023] Open
Abstract
Background The four highly homologous human EHD proteins (EHD1-4) form a distinct subfamily of the Eps15 homology domain-containing protein family and are thought to regulate endocytic recycling. Certain members of this family have been studied in different cellular contexts; however, a lack of concurrent analyses of all four proteins has impeded an appreciation of their redundant versus distinct functions. Results Here, we analyzed the four EHD proteins both in mammalian cells and in a cross-species complementation assay using a C. elegans mutant lacking the EHD ortholog RME-1. We show that all human EHD proteins rescue the vacuolated intestinal phenotype of C. elegans rme-1 mutant, are simultaneously expressed in a panel of mammalian cell lines and tissues tested, and variably homo- and hetero-oligomerize and colocalize with each other and Rab11, a recycling endosome marker. Small interfering RNA (siRNA) knock-down of EHD1, 2 and 4, and expression of dominant-negative EH domain deletion mutants showed that loss of EHD1 and 3 (and to a lesser extent EHD4) but not EHD2 function retarded transferrin exit from the endocytic recycling compartment. EH domain deletion mutants of EHD1 and 3 but not 2 or 4, induced a striking perinuclear clustering of co-transfected Rab11. Knock-down analyses indicated that EHD1 and 2 regulate the exit of cargo from the recycling endosome while EHD4, similar to that reported for EHD3 (Naslavsky et al. (2006) Mol. Biol. Cell 17, 163), regulates transport from the early endosome to the recycling endosome. Conclusion Altogether, our studies suggest that concurrently expressed human EHD proteins perform shared as well as discrete functions in the endocytic recycling pathway and lay a foundation for future studies to identify and characterize the molecular pathways involved.
Collapse
|
62
|
Braendle C, Milloz J, Félix MA. Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol 2007; 80:171-207. [PMID: 17950375 DOI: 10.1016/s0070-2153(07)80005-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Tour 43 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
63
|
Lozano E, Sáez AG, Flemming AJ, Cunha A, Leroi AM. Regulation of growth by ploidy in Caenorhabditis elegans. Curr Biol 2006; 16:493-8. [PMID: 16527744 DOI: 10.1016/j.cub.2006.01.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/11/2006] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
Some animals, such as the larvae of Drosophila melanogaster, the larvae of the Appendicularian chordate Oikopleura, and the adults of the nematode Caenorhabditis elegans, are unusual in that they grow largely by increases in cell size. The giant cells of such species are highly polyploid, having undergone repeated rounds of endoreduplication. Since germline polyploid strains tend to have large cells, it is often assumed that endoreduplication drives cell growth, but this remains controversial. We have previously shown that adult growth in C. elegans is associated with the endoreduplication of nuclei in the epidermal syncitium, hyp 7. We show here that this relationship is causal. Manipulation of somatic ploidy both upwards and downwards increases and decreases, respectively, adult body size. We also establish a quantitative relationship between ploidy and body size. Finally, we find that TGF-beta (DBL-1) and cyclin E (CYE-1) regulate body size via endoreduplication. To our knowledge, this is the first experimental evidence establishing a cause-and-effect relationship between somatic polyploidization and body size in a metazoan.
Collapse
Affiliation(s)
- Encarnación Lozano
- Division of Biology, Silwood Park Campus, Imperial College London, Ascot, Berks SL5-7PY, United Kingdom
| | | | | | | | | |
Collapse
|
64
|
Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R. Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla. J Invest Dermatol 2005; 124:1119-26. [PMID: 15955085 DOI: 10.1111/j.0022-202x.2005.23686.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diffuse hair loss ranks among the most frequent and psychologically most distressing adverse effects of systemic therapy with retinoids, which severely limits their therapeutic use even where clinically desired. Since the underlying mechanisms of retinoid-induced effluvium are as yet unknown, we have investigated the influence of the prototypic retinoid all-trans retinoic acid (ATRA, tretinoin) on the growth of human scalp hair follicles (HF) in culture. HF in the anagen VI stage of the hair cycle were cultured in the presence of 10(-8) or 10(-10) M ATRA. Compared with controls, hair shaft elongation declined significantly already after 2 d in the ATRA-treated group, and approximately 80% of the ATRA-treated HF had prematurely entered catagen-like stage at day 6, compared with 30% in the control group. This corresponded to an upregulation of apoptotic and a downregulation of Ki67-positive cells in ATRA-treated HF. Since transforming growth factor (TGF)-beta has been implicated as a key inducer of catagen, we next studied whether ATRA treatment had any effect on follicular expression. TGF-beta2 immunoreactivity was detected in the outer root sheath of anagen VI scalp HF. In catagen follicles, TGF-beta2 was also expressed in the regressing epithelial strand. After 4 d of ATRA treatment, TGF-beta2 was significantly upregulated in anagen HF in the dermal papilla (DP) and the dermal sheath, 7, and TGF-beta neutralizing antibody partially abrogated at RA induced hair growth inhibition. Real-time PCR confirmed a significant upregulation of TGF-beta2 transcripts in ATRA-treated hair bulbs. This study is the first to provide direct evidence that ATRA can indeed induce a catagen-like stage in human HF and suggests that this occurs, at least in part, via upregulation of TGF-beta2 in the DP. Therefore, topical TGF-beta2/TGF-beta receptor II antagonists deserve to be explored for the prevention and management of retinoid-induced hair loss.
Collapse
Affiliation(s)
- Kerstin Foitzik
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | |
Collapse
|
65
|
Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI. Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 2005; 167:161-70. [PMID: 15166144 PMCID: PMC1470864 DOI: 10.1534/genetics.167.1.161] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments.
Collapse
Affiliation(s)
- Aharon Solomon
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
66
|
Nakano Y, Nagamatsu Y, Ohshima Y. cGMP and a germ-line signal control body size in C. elegans through cGMP-dependent protein kinase EGL-4. Genes Cells 2004; 9:773-9. [PMID: 15330854 DOI: 10.1111/j.1365-2443.2004.00771.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mechanisms involved in the control of body size are largely unknown. In the nematode C. elegans, several small body size mutants were isolated, and the responsible genes were reported to encode putative components of a TGFbeta signalling pathway. Recently, mutants in the egl-4 gene encoding cGMP-dependent protein kinases were found to have a larger body size, and it was suggested that EGL-4 down-regulates the TGFbeta/DBL-1 pathway. We show that a permeable cGMP analogue 8-Br-cGMP significantly reduces body size of the wild-type but not that of an egl-4 mutant, indicating that cGMP controls body size through EGL-4. Laser ablation of germ-line cells revealed that a germ-line signal and EGL-4 function in the same pathway. Targeted expression of EGL-4 indicates that EGL-4 can function in hypodermis, neurones and intestine both cell-autonomously and cell-nonautonomously to control organ and body size. We propose a signal cascade for the control of body size that involves a germ-line signal, cGMP, G-kinase EGL-4 and DBL-1/TGFbeta pathway. It is interesting that two important pathways involving cGMP and TGFbeta, respectively, are related. Also, the results suggest a novel mechanism for the control of organ and body size in which hypodermis plays a key role
Collapse
Affiliation(s)
- Yoshiya Nakano
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Hakozaki, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
67
|
Ji YJ, Nam S, Jin YH, Cha EJ, Lee KS, Choi KY, Song HO, Lee J, Bae SC, Ahnn J. RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Dev Biol 2004; 274:402-12. [PMID: 15385167 DOI: 10.1016/j.ydbio.2004.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/18/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
The rnt-1 gene is the only Caenorhabditis elegans homologue of the mammalian RUNX genes. Several lines of molecular biological evidence have demonstrated that the RUNX proteins interact and cooperate with Smads, which are transforming growth factor-beta (TGF-beta) signal mediators. However, the involvement of RUNX in TGF-beta signaling has not yet been supported by any genetic evidence. The Sma/Mab TGF-beta signaling pathway in C. elegans is known to regulate body length and male tail development. The rnt-1(ok351) mutants show the characteristic phenotypes observed in mutants of the Sma/Mab pathway, namely, they have a small body size and ray defects. Moreover, RNT-1 can physically interact with SMA-4 which is one of the Smads in C. elegans, and double mutant animals containing both the rnt-1(ok351) mutation and a mutation in a known Sma/Mab pathway gene displayed synergism in the aberrant phenotypes. In addition, lon-1(e185) mutants was epistatic to rnt-1(ok351) mutants in terms of long phenotype, suggesting that lon-1 is indeed downstream target of rnt-1. Our data reveal that RNT-1 functionally cooperates with the SMA-4 proteins to regulate body size and male tail development in C. elegans.
Collapse
Affiliation(s)
- Yon-Ju Ji
- Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Li JY, Ram G, Gast K, Chen X, Barasch K, Mori K, Schmidt-Ott K, Wang J, Kuo HC, Savage-Dunn C, Garrick MD, Barasch J. Detection of intracellular iron by its regulatory effect. Am J Physiol Cell Physiol 2004; 287:C1547-59. [PMID: 15282194 DOI: 10.1152/ajpcell.00260.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intracellular iron regulates gene expression by inhibiting the interaction of iron regulatory proteins (IRPs) with RNA motifs called iron-responsive elements (IREs). To assay this interaction in living cells we have developed two fluorescent IRE-based reporters that rapidly, reversibly, and specifically respond to changes in cellular iron status as well as signaling that modifies IRP activity. The reporters were also sufficiently sensitive to distinguish apo- from holotransferrin in the medium, to detect the effect of modifiers of the transferrin pathway such as HFE, and to detect the donation or chelation of iron by siderophores bound to the lipocalin neutrophil gelatinase-associated lipocalin (Ngal). In addition, alternative configurations of the IRE motif either enhanced or repressed fluorescence, permitting a ratio analysis of the iron-dependent response. These characteristics make it possible to visualize iron-IRP-IRE interactions in vivo.
Collapse
Affiliation(s)
- Jau-Yi Li
- College of Physicians and Surgeons, Columbia Univ., 630 W 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Nagamatsu Y, Ohshima Y. Mechanisms for the control of body size by a G-kinase and a downstream TGFbeta signal pathway in Caenorhabditis elegans. Genes Cells 2004; 9:39-47. [PMID: 14723706 DOI: 10.1111/j.1356-9597.2004.00700.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently showed that egl-4 mutants in Caenorhabditis elegans have a much larger body size and that the egl-4 gene encodes cyclic GMP-dependent protein kinases (G-kinases). Cell sizes, but not cell numbers, in the major organs are increased in the mutants. Genetic interaction studies suggest that EGL-4 represses the DBL-1/TGFbeta pathway that is known to control body size. To understand the mechanisms of body size control in C. elegans, we analysed sma-2, sma-4 and sma-6 small mutants in the DBL-1 pathway. The volumes of major organs were precisely determined with the method developed by us. They are significantly decreased as compared to those of the wild-type while cell numbers are not, indicating that cell size is decreased. DNA contents in the nuclei of major organs are not significantly changed in the small mutants and in an egl-4 large mutant. Total protein contents are much decreased in the small mutants and slightly increased in the egl-4 mutant. Based on these results, we propose that decreased cell and body size of the small mutants in the DBL-1/TGFbeta pathway is mainly due to decreased levels of protein expression, and that increase in fluid content is a major reason for the increase in cell and body size in egl-4 mutants.
Collapse
Affiliation(s)
- Yasuko Nagamatsu
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Hakozaki, Fukuoka 812-8581, Japan
| | | |
Collapse
|
70
|
Abstract
Cell size is an important determinant of body size. While the genetic mechanisms of cell size regulation have been well studied in yeast, this process has only recently been addressed in multicellular organisms. One recent report by Wang et al. (2002) shows that in the nematode C. elegans, the TGFbeta-like pathway acts in the hypodermis to regulate cell size and consequently body size.1 This finding is an exciting step in discovering the molecular mechanisms that control cell and body size.
Collapse
Affiliation(s)
- Tina L Gumienny
- Department of Molecular Biology and Chemistry, Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
71
|
Savage-Dunn C, Maduzia LL, Zimmerman CM, Roberts AF, Cohen S, Tokarz R, Padgett RW. Genetic screen for small body size mutants in C. elegans reveals many TGFbeta pathway components. Genesis 2003; 35:239-47. [PMID: 12717735 DOI: 10.1002/gene.10184] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the nematode Caenorhabditis elegans, a TGFbeta-related signaling pathway regulates body size and male tail morphogenesis. We sought to identify genes encoding components or modifiers of this pathway in a large-scale genetic screen. Remarkably, this screen was able to identify essentially all core components of the TGFbeta signaling pathway. Among 34 Small mutants, many mutations disrupt genes encoding recognizable components of the TGFbeta pathway: DBL-1 ligand, DAF-4 type II receptor, SMA-6 type I receptor, and SMA-2, SMA-3, and SMA-4 Smads. Moreover, we find that at least 11 additional complementation groups can mutate to the Small phenotype. Four of these 11 genes, sma-9, sma-14, sma-16, and sma-20 affect male tail morphogenesis as well as body size. Two genes, sma-11 and sma-20, also influence regulation of the developmentally arrested dauer larval stage, suggesting a role in a second characterized TGFbeta pathway in C. elegans. Other genes may represent tissue-specific factors or parallel pathways for body size control. Because of the conservation of TGFbeta signaling pathways, homologs of these genes may be involved in tissue specificity and/or crosstalk of TGFbeta pathways in other animals.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | | | |
Collapse
|