51
|
Mondal A, Felipe C, Kolomeisky AB. Nucleosome Breathing Facilitates the Search for Hidden DNA Sites by Pioneer Transcription Factors. J Phys Chem Lett 2023; 14:4096-4103. [PMID: 37125729 DOI: 10.1021/acs.jpclett.3c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transfer of genetic information starts with transcription factors (TFs) binding to specific sites on DNA. But in living cells, DNA is mostly covered by nucleosomes. There are proteins, known as pioneer TFs, that can efficiently reach the DNA sites hidden by nucleosomes, although the underlying mechanisms are not understood. Using the recently proposed idea of interaction-compensation mechanism, we develop a stochastic model for the target search on DNA with nucleosome breathing. It is found that nucleosome breathing can significantly accelerate the search by pioneer TFs in comparison to situations without breathing. We argue that this is the result of the interaction-compensation mechanism that allows proteins to enter the inner nucleosome region through the outer DNA segment. It is suggested that nature optimized pioneer TFs to take advantage of nucleosome breathing. The presented theoretical picture provides a possible microscopic explanation for the successful invasion of nucleosome-buried genes.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Cayke Felipe
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
52
|
Henry Z, Meadows V, Guo GL. FXR and NASH: an avenue for tissue-specific regulation. Hepatol Commun 2023; 7:e0127. [PMID: 37058105 PMCID: PMC10109454 DOI: 10.1097/hc9.0000000000000127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
NASH is within the spectrum of NAFLD, a liver condition encompassing liver steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of NASH-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. There is no Food and Drug Administration (FDA)-approved pharmacological intervention for NASH. The farnesoid X receptor (FXR) is essential in regulating bile acid homeostasis, and dysregulation of bile acids has been implicated in the pathogenesis of NASH. As a result, modulators of FXR that show desirable effects in mitigating key characteristics of NASH have been developed as promising therapeutic approaches. However, global FXR activation causes adverse effects such as cholesterol homeostasis imbalance and pruritus. The development of targeted FXR modulation is necessary for ideal NASH therapeutics, but information regarding tissue-specific and cell-specific FXR functionality is limited. In this review, we highlight FXR activation in the regulation of bile acid homeostasis and NASH development, examine the current literature on tissue-specific regulation of nuclear receptors, and speculate on how FXR regulation will be beneficial in the treatment of NASH.
Collapse
Affiliation(s)
- Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
| |
Collapse
|
53
|
Gibson TJ, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533281. [PMID: 37066406 PMCID: PMC10103944 DOI: 10.1101/2023.03.18.533281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type specific binding and activity. The mechanisms governing pioneer-factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head, and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin, and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J. Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| |
Collapse
|
54
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Jere M, Unkenholz C, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534769. [PMID: 37034687 PMCID: PMC10081210 DOI: 10.1101/2023.03.29.534769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pier V. Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohammad K. Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francisca Nunes de Almeida
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E. Barbieri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
55
|
Sinha K, Bilokapic S, Du Y, Malik D, Halic M. Histone modifications regulate pioneer transcription factor binding and cooperativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532583. [PMID: 36993452 PMCID: PMC10055048 DOI: 10.1101/2023.03.14.532583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Pioneer transcription factors have the ability to access DNA in compacted chromatin. Multiple transcription factors can bind together to a regulatory element in a cooperative way and cooperation between pioneer transcription factors Oct4 and Sox2 is important for pluripotency and reprogramming. However, the molecular mechanisms by which pioneer transcription factors function and cooperate remain unclear. Here we present cryo-EM structures of human Oct4 bound to a nucleosome containing human Lin28B and nMatn1 DNA sequences, which bear multiple binding sites for Oct4. Our structural and biochemistry data reveal that Oct4 binding induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional Oct4 and of Sox2 to their internal binding sites. The flexible activation domain of Oct4 contacts the histone H4 N-terminal tail, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA binding domain of Oct4 engages with histone H3 N-terminal tail, and posttranslational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our data show that the epigenetic landscape can regulate Oct4 activity to ensure proper cell reprogramming.
Collapse
Affiliation(s)
- Kalyan Sinha
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yongming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Deepshikha Malik
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Corresponding author:
| |
Collapse
|
56
|
Single cell epigenomic and transcriptomic analysis uncovers potential transcription factors regulating mitotic/meiotic switch. Cell Death Dis 2023; 14:134. [PMID: 36797258 PMCID: PMC9935506 DOI: 10.1038/s41419-023-05671-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.
Collapse
|
57
|
Hojo H. Emerging RUNX2-Mediated Gene Regulatory Mechanisms Consisting of Multi-Layered Regulatory Networks in Skeletal Development. Int J Mol Sci 2023; 24:ijms24032979. [PMID: 36769300 PMCID: PMC9917854 DOI: 10.3390/ijms24032979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal development is tightly coordinated by chondrocytes and osteoblasts, which are derived from skeletal progenitors, and distinct cell-type gene regulatory programs underlie the specification and differentiation of cells. Runt-related transcription factor 2 (Runx2) is essential to chondrocyte hypertrophy and osteoblast differentiation. Genetic studies have revealed the biological functions of Runx2 and its involvement in skeletal genetic diseases. Meanwhile, molecular biology has provided a framework for our understanding of RUNX2-mediated transactivation at a limited number of cis-regulatory elements. Furthermore, studies using next-generation sequencing (NGS) have provided information on RUNX2-mediated gene regulation at the genome level and novel insights into the multiple layers of gene regulatory mechanisms, including the modes of action of RUNX2, chromatin accessibility, the concept of pioneer factors and phase separation, and three-dimensional chromatin organization. In this review, I summarize the emerging RUNX2-mediated regulatory mechanism from a multi-layer perspective and discuss future perspectives for applications in the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
58
|
Stem cell plasticity, acetylation of H3K14, and de novo gene activation rely on KAT7. Cell Rep 2023; 42:111980. [PMID: 36641753 DOI: 10.1016/j.celrep.2022.111980] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/30/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
In the conventional model of transcriptional activation, transcription factors bind to response elements and recruit co-factors, including histone acetyltransferases. Contrary to this model, we show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac). Examining neural stem cells, we find that KAT7 and H3K14ac are present not only at transcribed genes but also at inactive genes, intergenic regions, and in heterochromatin. KAT7 and H3K14ac were not required for the continued transcription of genes that were actively transcribed at the time of loss of KAT7 but indispensable for the activation of repressed genes. The absence of KAT7 abrogates neural stem cell plasticity, diverse differentiation pathways, and cerebral cortex development. Re-expression of KAT7 restored stem cell developmental potential. Overexpression of KAT7 enhanced neuron and oligodendrocyte differentiation. Our data suggest that KAT7 prepares chromatin for transcriptional activation and is a prerequisite for gene activation.
Collapse
|
59
|
Malaga Gadea FC, Nikolova EN. Structural Plasticity of Pioneer Factor Sox2 and DNA Bendability Modulate Nucleosome Engagement and Sox2-Oct4 Synergism. J Mol Biol 2023; 435:167916. [PMID: 36495920 PMCID: PMC10184184 DOI: 10.1016/j.jmb.2022.167916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Pioneer transcription factors (pTFs) can bind directly to silent chromatin and promote vital transcriptional programs. Here, by integrating high-resolution nuclear magnetic resonance (NMR) spectroscopy with biochemistry, we reveal new structural and mechanistic insights into the interaction of pluripotency pTFs and functional partners Sox2 and Oct4 with nucleosomes. We find that the affinity and conformation of Sox2 for solvent-exposed nucleosome sites depend strongly on their position and DNA sequence. Sox2, which is partially disordered but becomes structured upon DNA binding and bending, forms a super-stable nucleosome complex at superhelical location +5 (SHL+5) with similar affinity and conformation to that with naked DNA. However, at suboptimal internal and end-positioned sites where DNA may be harder to deform, Sox2 favors partially unfolded and more dynamic states that are encoded in its intrinsic flexibility. Importantly, Sox2 structure and DNA bending can be stabilized by synergistic Oct4 binding, but only on adjacent motifs near the nucleosome edge and with the full Oct4 DNA-binding domain. Further mutational studies reveal that strategically impaired Sox2 folding is coupled to reduced DNA bending and inhibits nucleosome binding and Sox2-Oct4 cooperation, while increased nucleosomal DNA flexibility enhances Sox2 association. Together, our findings fit a model where the site-specific DNA bending propensity and structural plasticity of Sox2 govern distinct modes of nucleosome engagement and modulate Sox2-Oct4 synergism. The principles outlined here can potentially guide pTF site selection in the genome and facilitate interaction with other chromatin factors or chromatin opening in vivo.
Collapse
Affiliation(s)
- Fabiana C Malaga Gadea
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Evgenia N Nikolova
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
60
|
Kumar Mishra S, Bhattacherjee A. Understanding the Target Search by Multiple Transcription Factors on Nucleosomal DNA. Chemphyschem 2023; 24:e202200644. [PMID: 36602094 DOI: 10.1002/cphc.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The association of multiple Transcription Factors (TFs) in the cis-regulatory region is imperative for developmental changes in eukaryotes. The underlying process is exceedingly complex, and it is not at all clear what orchestrates the overall search process by multiple TFs. In this study, by developing a theoretical model based on a discrete-state stochastic approach, we investigated the target search mechanism of multiple TFs on nucleosomal DNA. Experimental kinetic rate constants of different TFs are taken as input to estimate the Mean-First-Passage time to recognize the binding motifs by two TFs on a dynamic nucleosome model. The theory systematically analyzes when the TFs search their binding motifs hierarchically and when simultaneously by proceeding via the formation of a protein-protein complex. Our results, validated by extensive Monte Carlo simulations, elucidate the molecular basis of the complex target search phenomenon of multiple TFs on nucleosomal DNA.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
61
|
Yelagandula R, Stecher K, Novatchkova M, Michetti L, Michlits G, Wang J, Hofbauer P, Vainorius G, Pribitzer C, Isbel L, Mendjan S, Schübeler D, Elling U, Brennecke J, Bell O. ZFP462 safeguards neural lineage specification by targeting G9A/GLP-mediated heterochromatin to silence enhancers. Nat Cell Biol 2023; 25:42-55. [PMID: 36604593 PMCID: PMC10038669 DOI: 10.1038/s41556-022-01051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2022] [Indexed: 01/07/2023]
Abstract
ZNF462 haploinsufficiency is linked to Weiss-Kruszka syndrome, a genetic disorder characterized by neurodevelopmental defects, including autism. Though conserved in vertebrates and essential for embryonic development, the molecular functions of ZNF462 remain unclear. We identified its murine homologue ZFP462 in a screen for mediators of epigenetic gene silencing. Here we show that ZFP462 safeguards neural lineage specification of mouse embryonic stem cells (ESCs) by targeting the H3K9-specific histone methyltransferase complex G9A/GLP to silence meso-endodermal genes. ZFP462 binds to transposable elements that are potential enhancers harbouring pluripotency and meso-endoderm transcription factor binding sites. Recruiting G9A/GLP, ZFP462 seeds heterochromatin, restricting transcription factor binding. Loss of ZFP462 in ESCs results in increased chromatin accessibility at target sites and ectopic expression of meso-endodermal genes. Taken together, ZFP462 confers lineage and locus specificity to the broadly expressed epigenetic regulator G9A/GLP. Our results suggest that aberrant activation of lineage non-specific genes in the neuronal lineage underlies ZNF462-associated neurodevelopmental pathology.
Collapse
Affiliation(s)
- Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Karin Stecher
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luca Michetti
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
62
|
Shi K, Liang C, Huang X, Wang S, Chen J, Cheng F, Wang C, Ying L, Pan Z, Zhang Y, Shu J, Yang B, Wang J, Xia K, Zhou X, Li H, Li F, Tao Y, Chen Q. Collagen Niches Affect Direct Transcriptional Conversion toward Human Nucleus Pulposus Cells via Actomyosin Contractility. Adv Healthc Mater 2023; 12:e2201824. [PMID: 36165230 DOI: 10.1002/adhm.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Indexed: 02/03/2023]
Abstract
Cellular niches play fundamental roles in regulating cellular behaviors. However, the effect of niches on direct converted cells remains unexplored. In the present study, the specific combination of transcription factors is first identified to directly acquire induced nucleus pulposus-like cells (iNPLCs). Next, tunable physical properties of collagen niches are fabricated based on various crosslinking degrees. Collagen niches significantly affect actomyosin cytoskeleton and then influence the maturation of iNPLCs. Using gain- and loss of function approaches, the appropriate physical states of collagen niches are found to significantly enhance the maturation of iNPLCs through actomyosin contractility. Moreover, in a rat model of degenerative disc diseases, iNPLCs with collagen niches are transplanted into the lesion to achieve significant improvements. As a result, overexpression of transcription factors in human dermal fibroblasts are efficiently converted into iNPLCs and the optimal collagen niches affect cellular cytoskeleton and then facilitate iNPLCs maturation toward human nucleus pulposus cells. These findings encourage more in-depth studies toward the interactions of niches and direct conversion, which would contribute to the development of direct conversion.
Collapse
Affiliation(s)
- Kesi Shi
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Shaoke Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Feng Cheng
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Liwei Ying
- Department of Orthopedics Surgery, Taizhou Hospital Affiliated of Wenzhou Medical University, Linhai, Zhejiang Province, 317000, P. R. China
| | - Zhaoqi Pan
- The School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Yuang Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiawei Shu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Biao Yang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kaishun Xia
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Hao Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
63
|
Abstract
The control of gene expression in eukaryotes relies on how transcription factors and RNA polymerases manipulate the structure of chromatin. These interactions are especially important in development as gene expression programs change. Chromatin generally limits the accessibility of DNA, and thus exposing sequences at regulatory elements is critical for gene expression. However, it is challenging to understand how transcription factors manipulate chromatin structure and the sequence of regulatory events. The Drosophila embryo has provided a powerful setting to directly observe the establishment and elaboration of chromatin features and experimentally test the causality of transcriptional events that are shared among many metazoans. The large embryo is tractable by live imaging, and a variety of well-developed tools allow the manipulation of factors during early development. The early embryo develops as a syncytium with rapid nuclear divisions and no zygotic transcription, with largely featureless chromatin. Thus, studies in this system have revealed the progression of genome activation triggered by pioneer factors that initiate DNA exposure at regulatory elements and the establishment of chromatin domains, including heterochromatin, the nucleolus, and nuclear bodies. The de novo emergence of nuclear structures in the early embryo reveals features of chromatin dynamics that are likely to be central to transcriptional regulation in all cells.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
64
|
Czerny CC, Borschel A, Cai M, Otto M, Hoyer-Fender S. FOXA1 is a transcriptional activator of Odf2/Cenexin and regulates primary ciliation. Sci Rep 2022; 12:21468. [PMID: 36509813 PMCID: PMC9744847 DOI: 10.1038/s41598-022-25966-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are sensory organelles essential for embryonic and postnatal development, and tissue homeostasis in adulthood. They are generated in a cell cycle-dependent manner and found on most cells of the body. Although cilia formation is intensively investigated virtually nothing is known about the transcriptional regulation of primary ciliation. We used here Odf2/Cenexin, encoding a protein of the mother centriole and the basal body that is mandatory for primary cilia formation, as the target gene for the identification of transcriptional activators. We identified a consensus binding site for Fox transcription factors (TFs) in its promoter region and focused here on the Fox family. We found transcriptional activation of Odf2 neither by FOXO TFs nor by the core TF for multiciliation, FOXJ1. However, we identified FOXA1 as a transcriptional activator of Odf2 by reporter gene assays and qRT-PCR, and showed by qWB that Foxa1 knockdown caused a decrease in ODF2 and CP110 proteins. We verified the binding sequence of FOXA1 in the Odf2 promoter by ChIP. Finally, we demonstrated that knockdown of FOXA1 affected primary cilia formation. We, thus, showed for the first time, that FOXA1 regulates primary ciliation by transcriptional activation of ciliary genes.
Collapse
Affiliation(s)
- Christian Carl Czerny
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Anett Borschel
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Mingfang Cai
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Madeline Otto
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany ,grid.424957.90000 0004 0624 9165Present Address: Thermo Fisher Scientific GENEART, Regensburg, Germany
| | - Sigrid Hoyer-Fender
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| |
Collapse
|
65
|
Mondal A, Mishra SK, Bhattacherjee A. Nucleosome breathing facilitates cooperative binding of pluripotency factors Sox2 and Oct4 to DNA. Biophys J 2022; 121:4526-4542. [PMID: 36321206 PMCID: PMC9748375 DOI: 10.1016/j.bpj.2022.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Critical lineage commitment events are staged by multiple transcription factors (TFs) binding to their cognate motifs, often positioned at nucleosome-enriched regions of chromatin. The underlying mechanism remains elusive due to difficulty in disentangling the heterogeneity in chromatin states. Using a novel coarse-grained model and molecular dynamics simulations, here we probe the association of Sox2 and Oct4 proteins that show clustered binding at the entry-exit region of a nucleosome. The model captures the conformational heterogeneity of nucleosome breathing dynamics that features repeated wrap-unwrap transitions of a DNA segment from one end of the nucleosome. During the dynamics, DNA forms bulges that diffuse stochastically and may regulate the target search dynamics of a protein by nonspecifically interacting with it. The overall search kinetics of the TF pair follows a "dissociation-compensated-association" mechanism, where Oct4 binding is facilitated by the association of Sox2. The cooperativity stems from a change in entropy caused by an alteration in the nucleosome dynamics upon TF binding. The binding pattern is consistent with a live-cell single-particle tracking experiment, suggesting the mechanism observed for clustered binding of a TF pair, which is a hallmark of cis-regulatory elements, has broader implications in understanding gene regulation in a complex chromatin environment.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
66
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
67
|
Newman SA. Inherency and agency in the origin and evolution of biological functions. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Although discussed by 20th century philosophers in terms drawn from the sciences of non-living systems, in recent decades biological function has been considered in relationship to organismal capability and purpose. Bringing two phenomena generally neglected in evolutionary theory (i.e. inherency and agency) to bear on questions of function leads to a rejection of the adaptationist ‘selected effects’ notion of biological function. I review work showing that organisms such as the placozoans can thrive with almost no functional embellishments beyond those of their constituent cells and physical properties of their simple tissues. I also discuss work showing that individual tissue cells and their artificial aggregates exhibit agential behaviours that are unprecedented in the histories of their respective lineages. I review findings on the unique metazoan mechanism of developmental gene expression that has recruited, during evolution, inherent ancestral cellular functionalities into specialized cell types and organs of the different animal groups. I conclude that most essential functions in animal species are inherent to the cells from which they evolved, not selected effects, and that many of the others are optional ‘add-ons’, a status inimical to fitness-based models of evolution positing that traits emerge from stringent cycles of selection to meet external challenges.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology & Anatomy, New York Medical College , Valhalla, NY 10595 , USA
| |
Collapse
|
68
|
Hojo H, Saito T, He X, Guo Q, Onodera S, Azuma T, Koebis M, Nakao K, Aiba A, Seki M, Suzuki Y, Okada H, Tanaka S, Chung UI, McMahon AP, Ohba S. Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep 2022; 40:111315. [PMID: 36070691 PMCID: PMC9510047 DOI: 10.1016/j.celrep.2022.111315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator Runx2 (runt-related transcription factor 2) has essential but distinct roles in osteoblasts and chondrocytes in skeletal development. However, Runx2-mediated regulatory mechanisms underlying the distinctive programming of osteoblasts and chondrocytes are not well understood. Here, we perform an integrative analysis to investigate Runx2-DNA binding and chromatin accessibility ex vivo using neonatal osteoblasts and chondrocytes. We find that Runx2 engages with cell-type-distinct chromatin-accessible regions, potentially interacting with different combinations of transcriptional regulators, forming cell-type-specific hotspots, and potentiating chromatin accessibility. Genetic analysis and direct cellular reprogramming studies suggest that Runx2 is essential for establishment of chromatin accessibility in osteoblasts. Functional enhancer studies identify an Sp7 distal enhancer driven by Runx2-dependent binding and osteoblast-specific chromatin accessibility, contributing to normal osteoblast differentiation. Our findings provide a framework for understanding the regulatory landscape encompassing Runx2-mediated and cell-type-distinct enhancer networks that underlie the specification of osteoblasts. Hojo et al. investigate the gene-regulatory landscape underlying specification of skeletal cell types in neonatal mice. Runx2, an osteoblast determinant, engages with cell-type-distinct chromatin-accessible regions and is essential for establishment of chromatin accessibility in osteoblasts. The study provides insights into enhancer networks in skeletal development.
Collapse
Affiliation(s)
- Hironori Hojo
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Taku Saito
- Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ung-Il Chung
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Shinsuke Ohba
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; Department of Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
69
|
Lalli M, Yen A, Thopte U, Dong F, Moudgil A, Chen X, Milbrandt J, Dougherty JD, Mitra RD. Measuring transcription factor binding and gene expression using barcoded self-reporting transposon calling cards and transcriptomes. NAR Genom Bioinform 2022; 4:lqac061. [PMID: 36062164 PMCID: PMC9428926 DOI: 10.1093/nargab/lqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Calling cards technology using self-reporting transposons enables the identification of DNA-protein interactions through RNA sequencing. Although immensely powerful, current implementations of calling cards in bulk experiments on populations of cells are technically cumbersome and require many replicates to identify independent insertions into the same genomic locus. Here, we have drastically reduced the cost and labor requirements of calling card experiments in bulk populations of cells by introducing a DNA barcode into the calling card itself. An additional barcode incorporated during reverse transcription enables simultaneous transcriptome measurement in a facile and affordable protocol. We demonstrate that barcoded self-reporting transposons recover in vitro binding sites for four basic helix-loop-helix transcription factors with important roles in cell fate specification: ASCL1, MYOD1, NEUROD2 and NGN1. Further, simultaneous calling cards and transcriptional profiling during transcription factor overexpression identified both binding sites and gene expression changes for two of these factors. Lastly, we demonstrated barcoded calling cards can record binding in vivo in the mouse brain. In sum, RNA-based identification of transcription factor binding sites and gene expression through barcoded self-reporting transposon calling cards and transcriptomes is an efficient and powerful method to infer gene regulatory networks in a population of cells.
Collapse
Affiliation(s)
- Matthew Lalli
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allen Yen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Urvashi Thopte
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fengping Dong
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Arnav Moudgil
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
70
|
Lyu Y, Guan Y, Deliu L, Humphrey E, Frontera JK, Yang YJ, Zamler D, Kim KH, Mohanty V, Jin K, Mohanty V, Liu V, Dou J, Veillon LJ, Kumar SV, Lorenzi PL, Chen Y, McAndrews KM, Grivennikov S, Song X, Zhang J, Xi Y, Wang J, Chen K, Nagarajan P, Ge Y. KLF5 governs sphingolipid metabolism and barrier function of the skin. Genes Dev 2022; 36:gad.349662.122. [PMID: 36008138 PMCID: PMC9480852 DOI: 10.1101/gad.349662.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023]
Abstract
Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lisa Deliu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ericka Humphrey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joanna K Frontera
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Youn Joo Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daniel Zamler
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kevin Jin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Vakul Mohanty
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Virginia Liu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lucas J Veillon
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sergei Grivennikov
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
71
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
72
|
Fuglerud BM, Drissler S, Lotto J, Stephan TL, Thakur A, Cullum R, Hoodless PA. SOX9 reprograms endothelial cells by altering the chromatin landscape. Nucleic Acids Res 2022; 50:8547-8565. [PMID: 35904801 PMCID: PMC9410909 DOI: 10.1093/nar/gkac652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/08/2023] Open
Abstract
The transcription factor SOX9 is activated at the onset of endothelial-to-mesenchymal transition (EndMT) during embryonic development and in pathological conditions. Its roles in regulating these processes, however, are not clear. Using human umbilical vein endothelial cells (HUVECs) as an EndMT model, we show that SOX9 expression alone is sufficient to activate mesenchymal genes and steer endothelial cells towards a mesenchymal fate. By genome-wide mapping of the chromatin landscape, we show that SOX9 displays features of a pioneer transcription factor, such as opening of chromatin and leading to deposition of active histone modifications at silent chromatin regions, guided by SOX dimer motifs and H2A.Z enrichment. We further observe highly transient and dynamic SOX9 binding, possibly promoted through its eviction by histone phosphorylation. However, while SOX9 binding is dynamic, changes in the chromatin landscape and cell fate induced by SOX9 are persistent. Finally, our analysis of single-cell chromatin accessibility indicates that SOX9 opens chromatin to drive EndMT in atherosclerotic lesions in vivo. This study provides new insight into key molecular functions of SOX9 and mechanisms of EndMT and highlights the crucial developmental role of SOX9 and relevance to human disease.
Collapse
Affiliation(s)
- Bettina M Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Cell and Developmental Biology Program, University of British Columbia V6T 1Z3, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
73
|
Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors. Nat Cell Biol 2022; 24:1114-1128. [PMID: 35817961 PMCID: PMC7613098 DOI: 10.1038/s41556-022-00947-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2022] [Indexed: 01/13/2023]
Abstract
The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.
Collapse
|
74
|
Hilliard S, Tortelote G, Liu H, Chen CH, El-Dahr SS. Single-Cell Chromatin and Gene-Regulatory Dynamics of Mouse Nephron Progenitors. J Am Soc Nephrol 2022; 33:1308-1322. [PMID: 35383123 PMCID: PMC9257825 DOI: 10.1681/asn.2021091213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND We reasoned that unraveling the dynamic changes in accessibility of genomic regulatory elements and gene expression at single-cell resolution will inform the basic mechanisms of nephrogenesis. METHODS We performed single-cell ATAC-seq and RNA-seq both individually (singleomes; Six2GFP cells) and jointly in the same cells (multiomes; kidneys) to generate integrated chromatin and transcriptional maps in mouse embryonic and neonatal nephron progenitor cells. RESULTS We demonstrate that singleomes and multiomes are comparable in assigning most cell states, identification of new cell type markers, and defining the transcription factors driving cell identity. However, multiomes are more precise in defining the progenitor population. Multiomes identified a "pioneer" bHLH/Fox motif signature in nephron progenitor cells. Moreover, we identified a subset of Fox factors exhibiting high chromatin activity in podocytes. One of these Fox factors, Foxp1, is important for nephrogenesis. Key nephrogenic factors are distinguished by strong correlation between linked gene regulatory elements and gene expression. CONCLUSION Mapping the regulatory landscape at single-cell resolution informs the regulatory hierarchy of nephrogenesis. Paired single-cell epigenomes and transcriptomes of nephron progenitors should provide a foundation to understand prenatal programming, regeneration after injury, and ex vivo nephrogenesis.
Collapse
Affiliation(s)
- Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Giovane Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hongbing Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chao-Hui Chen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
75
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
76
|
Castaneda M, den Hollander P, Mani SA. Forkhead Box Transcription Factors: Double-Edged Swords in Cancer. Cancer Res 2022; 82:2057-2065. [PMID: 35315926 PMCID: PMC9258984 DOI: 10.1158/0008-5472.can-21-3371] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023]
Abstract
A plethora of treatment options exist for cancer therapeutics, but many are limited by side effects and either intrinsic or acquired resistance. The need for more effective targeted cancer treatment has led to the focus on forkhead box (FOX) transcription factors as possible drug targets. Forkhead factors such as FOXA1 and FOXM1 are involved in hormone regulation, immune system modulation, and disease progression through their regulation of the epithelial-mesenchymal transition. Forkhead factors can influence cancer development, progression, metastasis, and drug resistance. In this review, we discuss the various roles of forkhead factors in biological processes that support cancer as well as their function as pioneering factors and their potential as targetable transcription factors in the fight against cancer.
Collapse
Affiliation(s)
- Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Sendurai A. Mani, Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Suite 910, Houston, TX 77030-3304. Phone: 713-792-9638; E-mail:
| |
Collapse
|
77
|
Lemma RB, Fleischer T, Martinsen E, Ledsaak M, Kristensen V, Eskeland R, Gabrielsen OS, Mathelier A. Pioneer transcription factors are associated with the modulation of DNA methylation patterns across cancers. Epigenetics Chromatin 2022; 15:13. [PMID: 35440061 PMCID: PMC9016969 DOI: 10.1186/s13072-022-00444-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesised that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer types. We performed emQTL (expression-methylation quantitative trait loci) analyses independently in each cancer type and identified 13 TFs whose expression levels are correlated with local DNA methylation patterns around their binding sites in at least 2 cancer types. The 13 TFs are mainly associated with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulating chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation is precluded across cancers at CpGs lying in genomic regions enriched for TF binding signatures associated with SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals were derived from both cancer and tumor-infiltrating cells. As a case example, we experimentally confirmed that FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. Finally, we reported physical interactions between FOXA1 with TET1 and TET2 both in an in vitro setup and in vivo at physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local demethylation in cancer cells.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Emily Martinsen
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Ledsaak
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
78
|
Khouri-Farah N, Guo Q, Morgan K, Shin J, Li JYH. Integrated single-cell transcriptomic and epigenetic study of cell state transition and lineage commitment in embryonic mouse cerebellum. SCIENCE ADVANCES 2022; 8:eabl9156. [PMID: 35363520 PMCID: PMC10938588 DOI: 10.1126/sciadv.abl9156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Recent studies using single-cell RNA-sequencing have revealed cellular heterogeneity in the developing mammalian cerebellum, yet the regulatory logic underlying this cellular diversity remains to be elucidated. Using integrated single-cell RNA and ATAC analyses, we resolved developmental trajectories of cerebellar progenitors and identified putative trans- and cis-elements that control cell state transition. We reverse engineered gene regulatory networks (GRNs) of each cerebellar cell type. Through in silico simulations and in vivo experiments, we validated the efficacy of GRN analyses and uncovered the molecular control of a posterior transitory zone (PTZ), a distinct progenitor zone residing immediately anterior to the morphologically defined rhombic lip (RL). We showed that perturbing cell fate specification in the PTZ and RL causes posterior cerebellar vermis hypoplasia, the most common cerebellar birth defect in humans. Our study provides a foundation for comprehensive studies of developmental programs of the mammalian cerebellum.
Collapse
Affiliation(s)
- Nagham Khouri-Farah
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Kerry Morgan
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Jihye Shin
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y. H. Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
79
|
Kreimer A, Ashuach T, Inoue F, Khodaverdian A, Deng C, Yosef N, Ahituv N. Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation. Nat Commun 2022; 13:1504. [PMID: 35315433 PMCID: PMC8938438 DOI: 10.1038/s41467-022-28659-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Gene regulatory elements play a key role in orchestrating gene expression during cellular differentiation, but what determines their function over time remains largely unknown. Here, we perform perturbation-based massively parallel reporter assays at seven early time points of neural differentiation to systematically characterize how regulatory elements and motifs within them guide cellular differentiation. By perturbing over 2,000 putative DNA binding motifs in active regulatory regions, we delineate four categories of functional elements, and observe that activity direction is mostly determined by the sequence itself, while the magnitude of effect depends on the cellular environment. We also find that fine-tuning transcription rates is often achieved by a combined activity of adjacent activating and repressing elements. Our work provides a blueprint for the sequence components needed to induce different transcriptional patterns in general and specifically during neural differentiation. How gene regulatory elements regulate gene expression during cellular differentiation remains largely unknown. Here the authors use perturbation-based massively parallel reporter assays at early time points of neural differentiation to systematically characterize how regulatory elements and motifs within them guide different transcriptional patterns.
Collapse
|
80
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
81
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
82
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
83
|
Bellec M, Dufourt J, Hunt G, Lenden-Hasse H, Trullo A, Zine El Aabidine A, Lamarque M, Gaskill MM, Faure-Gautron H, Mannervik M, Harrison MM, Andrau JC, Favard C, Radulescu O, Lagha M. The control of transcriptional memory by stable mitotic bookmarking. Nat Commun 2022; 13:1176. [PMID: 35246556 PMCID: PMC8897465 DOI: 10.1038/s41467-022-28855-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 01/23/2023] Open
Abstract
To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - George Hunt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Hélène Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marie Lamarque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marissa M Gaskill
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Heloïse Faure-Gautron
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Ovidiu Radulescu
- LPHI, UMR CNRS 5235, University of Montpellier, Place E. Bataillon - Bât. 24 cc 107, Montpellier, 34095, Cedex 5, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France.
| |
Collapse
|
84
|
Miao L, Tang Y, Bonneau AR, Chan SH, Kojima ML, Pownall ME, Vejnar CE, Gao F, Krishnaswamy S, Hendry CE, Giraldez AJ. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Mol Cell 2022; 82:986-1002.e9. [PMID: 35182480 PMCID: PMC9327391 DOI: 10.1016/j.molcel.2022.01.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.
Collapse
Affiliation(s)
- Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Yin Tang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ashley R Bonneau
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark E Pownall
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Caroline E Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
85
|
Ben-David Y, Gajendran B, Sample KM, Zacksenhaus E. Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cell Mol Life Sci 2022; 79:163. [PMID: 35412146 PMCID: PMC11072361 DOI: 10.1007/s00018-022-04160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on normal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and their potential clinical applications is discussed.
Collapse
Affiliation(s)
- Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, Max Bell Research Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
86
|
Zheng L, Liu J, Niu L, Kamran M, Yang AWH, Jolma A, Dai Q, Hughes TR, Patel DJ, Zhang L, Prasanth SG, Yu Y, Ren A, Lai EC. Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes Dev 2022; 36:225-240. [PMID: 35144965 PMCID: PMC8887127 DOI: 10.1101/gad.348993.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.
Collapse
Affiliation(s)
- Luqian Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingjing Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijie Niu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mohammad Kamran
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ally W H Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Arttu Jolma
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Qi Dai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Long Zhang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
87
|
Tsuda S, Pipkin ME. Transcriptional Control of Cell Fate Determination in Antigen-Experienced CD8 T Cells. Cold Spring Harb Perspect Biol 2022; 14:a037945. [PMID: 34127445 PMCID: PMC8805646 DOI: 10.1101/cshperspect.a037945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Robust immunity to intracellular infections is mediated by antigen-specific naive CD8 T cells that become activated and differentiate into phenotypically and functionally diverse subsets of effector cells, some of which terminally differentiate and others that give rise to memory cells that provide long-lived protection. This developmental system is an outstanding model with which to elucidate how regulation of chromatin structure and transcriptional control establish gene expression programs that govern cell fate determination, insights from which are likely to be useful for informing the design of immunotherapeutic approaches to engineer durable immunity to infections and tumors. A unifying framework that describes how naive CD8 T cells develop into memory cells is still outstanding. We propose a model that incorporates a common early linear path followed by divergent paths that slowly lose capacity to interconvert and discuss classical and contemporary observations that support these notions, focusing on insights from transcriptional control and chromatin regulation.
Collapse
Affiliation(s)
- Shanel Tsuda
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
88
|
Komatsu M, Mannen H, Taniguchi M, Oshima K. Expression and differential posttranscriptional regulation of the elongation factor 1 alpha 1 gene in endometrial caruncle and intercaruncle of Japanese Black cattle at early and mid-gestation stages. Anim Sci J 2022; 93:e13746. [PMID: 35791676 DOI: 10.1111/asj.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The elongation factor 1 alpha 1 (EEF1A1), an isoform of EEF1A, is one of the most abundant cytoplasmic proteins and an important component of the translational machinery. We investigated the relative expression, alternative polyadenylation (APA), and changes in poly(A) tail length of EEF1A1 mRNA in the endometrial caruncle (CAR) and intercaruncle (ICAR) at early and mid-gestation in Japanese Black cattle. The relative EEF1A1 mRNA expression levels in the CAR were the highest on Gestation day 20 and were significantly decreased at mid-gestation. The expression levels in the ICAR were significantly higher than those in the CAR, and the gestation stage had no significant impact. Four different EEF1A1 transcripts with distinct 3' untranslated regions (UTRs) (proximal and distal types) and poly(A) tails (medium and short types) of different lengths were identified. The EEF1A1 mRNAs with distal 3' UTR and medium-length poly(A) tails were specific from the CAR of uterus horn at early gestation. RNA-sequencing data analyses revealed that the HSF1, MZF1, E47, SRF, GATA2, GATA3, GATA6, HNF-3 beta (FOXA2), CPSF1, and Ataxin-2 genes might affect the EEF1A1 gene expression or poly(A) length.
Collapse
Affiliation(s)
- Masanori Komatsu
- Komatsu Laboratory of Computational Biology for Domestic Animals, Ryugasaki, Japan.,Division of Tear-Round Grazing Research, Western Region Agricultural Research Center, NARO, Oda, Japan
| | - Hideyuki Mannen
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masaaki Taniguchi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture Food Research Organization (NARO), Tsukuba, Japan
| | - Kazunaga Oshima
- Division of Tear-Round Grazing Research, Western Region Agricultural Research Center, NARO, Oda, Japan
| |
Collapse
|
89
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
90
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
|
91
|
Karr JP, Ferrie JJ, Tjian R, Darzacq X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication. Genes Dev 2022; 36:7-16. [PMID: 34969825 PMCID: PMC8763055 DOI: 10.1101/gad.349160.121] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How distal cis-regulatory elements (e.g., enhancers) communicate with promoters remains an unresolved question of fundamental importance. Although transcription factors and cofactors are known to mediate this communication, the mechanism by which diffusible molecules relay regulatory information from one position to another along the chromosome is a biophysical puzzle-one that needs to be revisited in light of recent data that cannot easily fit into previous solutions. Here we propose a new model that diverges from the textbook enhancer-promoter looping paradigm and offer a synthesis of the literature to make a case for its plausibility, focusing on the coactivator p300.
Collapse
Affiliation(s)
- Jonathan P Karr
- University of California at Berkeley, Berkeley, California 94720, USA
| | - John J Ferrie
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Robert Tjian
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Xavier Darzacq
- University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
92
|
Singh H, Seruggia D, Madha S, Saxena M, Nagaraja AK, Wu Z, Zhou J, Huebner AJ, Maglieri A, Wezenbeek J, Hochedlinger K, Orkin SH, Bass AJ, Hornick JL, Shivdasani RA. Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes Dev 2021; 36:38-52. [PMID: 34969824 PMCID: PMC8763054 DOI: 10.1101/gad.348983.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Here, Singh et al. show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy. Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach–intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.
Collapse
Affiliation(s)
- Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Davide Seruggia
- Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Madhurima Saxena
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ankur K Nagaraja
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Aaron J Huebner
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Adrianna Maglieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Juliette Wezenbeek
- Hubretch Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, Netherlands
| | - Konrad Hochedlinger
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Stuart H Orkin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jason L Hornick
- Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
93
|
Mondal A, Mishra SK, Bhattacherjee A. Kinetic origin of nucleosome invasion by pioneer transcription factors. Biophys J 2021; 120:5219-5230. [PMID: 34757077 DOI: 10.1016/j.bpj.2021.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/14/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Recently, a cryo-electron microscopy study has captured different stages of nucleosome breathing dynamics that show partial unwrapping of DNA from histone core to permit transient access to the DNA sites by transcription factors. In practice, however, only a subset of transcription factors named pioneer factors can invade nucleosomes and bind to specific DNA sites to trigger essential DNA metabolic processes. We propose a discrete-state stochastic model that considers the interplay of nucleosome breathing and protein dynamics explicitly and estimate the mean time to search the target DNA sites. It is found that the molecular principle governing the search process on nucleosome is very different compared to that on naked DNA. The pioneer factors minimize their search times on nucleosomal DNA by compensating their nucleosome association rates by dissociation rates. A fine balance between the two presents a tradeoff between their nuclear mobility and error associated with the search process.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
94
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
95
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|
96
|
McClay DR, Croce JC, Warner JF. Reprint of: Conditional specification of endomesoderm. Cells Dev 2021; 168:203731. [PMID: 34610899 DOI: 10.1016/j.cdev.2021.203731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, USA.
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Villefranche-sur-Mer, France.
| | - Jacob F Warner
- Department of Biology, University of North Carolina, Wilmington, NC, USA.
| |
Collapse
|
97
|
Thulabandu V, Nehila T, Ferguson JW, Atit RP. Dermal EZH2 orchestrates dermal differentiation and epidermal proliferation during murine skin development. Dev Biol 2021; 478:25-40. [PMID: 34166654 PMCID: PMC8384472 DOI: 10.1016/j.ydbio.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skin development and patterning is dependent on factors that regulate the stepwise differentiation of dermal fibroblasts concomitant with dermal-epidermal reciprocal signaling, two processes that are poorly understood. Here we show that dermal EZH2, the methyltransferase enzyme of the epigenetic Polycomb Repressive Complex 2 (PRC2), is a new coordinator of both these processes. Dermal EZH2 activity is present during dermal fibroblast differentiation and is required for spatially restricting Wnt/β-catenin signaling to reinforce dermal fibroblast cell fate. Later in development, dermal EZH2 regulates the expression of reticular dermal markers and initiation of secondary hair follicles. Embryos lacking dermal Ezh2 have elevated epidermal proliferation and differentiation that can be rescued by small molecule inhibition of retinoic acid (RA) signaling. Together, our study reveals that dermal EZH2 is acting like a rheostat to control the levels of Wnt/β-catenin and RA signaling to impact fibroblast differentiation cell autonomously and epidermal keratinocyte development non-cell autonomously, respectively.
Collapse
Affiliation(s)
| | - Timothy Nehila
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA; Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Dept. of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
98
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
99
|
Abstract
Neural crest stem/progenitor cells arise early during vertebrate embryogenesis at the border of the forming central nervous system. They subsequently migrate throughout the body, eventually differentiating into diverse cell types ranging from neurons and glia of the peripheral nervous system to bones of the face, portions of the heart, and pigmentation of the skin. Along the body axis, the neural crest is heterogeneous, with different subpopulations arising in the head, neck, trunk, and tail regions, each characterized by distinct migratory patterns and developmental potential. Modern genomic approaches like single-cell RNA- and ATAC-sequencing (seq) have greatly enhanced our understanding of cell lineage trajectories and gene regulatory circuitry underlying the developmental progression of neural crest cells. Here, we discuss how genomic approaches have provided new insights into old questions in neural crest biology by elucidating transcriptional and posttranscriptional mechanisms that govern neural crest formation and the establishment of axial level identity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| |
Collapse
|
100
|
Dong A, Cheung TH. Deciphering the chromatin organization and dynamics for muscle stem cell function. Curr Opin Cell Biol 2021; 73:124-132. [PMID: 34534837 DOI: 10.1016/j.ceb.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
The chromatin landscape represents a critical regulatory layer for precise transcriptional control. Chromosome architecture restrains the physical access to the DNA elements and is one of the determinants that specifies cell identity. Adult stem cells possess the unique ability to differentiate into a specific lineage. One of the underexplored areas in skeletal muscle biology is the molecular mechanism guiding the chromatin organization changes in muscle stem cell specification, myogenic determination, and differentiation. In this review, we focus on the regulatory network guiding the progression of muscle stem cells to differentiated progeny. We summarize recent findings regarding the mechanisms directing myogenic cell fate decision and differentiation, with a particular focus on three-dimensional chromosome architecture and long noncoding RNA-associated chromatin accessibility changes.
Collapse
Affiliation(s)
- Anqi Dong
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|