51
|
Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System. Stem Cells Int 2018; 2018:7834175. [PMID: 30123293 PMCID: PMC6079388 DOI: 10.1155/2018/7834175] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/04/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
Epigenetics classically refers to the inheritable changes of hereditary information without perturbing DNA sequences. Understanding mechanisms of how epigenetic factors contribute to inheritable phenotype changes and cell identity will pave the way for us to understand diverse biological processes. In recent years, the emergence of CRISPR/Cas9 technology has provided us with new routes to the epigenetic field. In this review, novel epigenetic techniques utilizing the CRISPR/Cas9 system are the main contents to be discussed, including epigenome editing, temporal and spatial control of epigenetic effectors, noncoding RNA manipulation, chromatin in vivo imaging, and epigenetic element screening.
Collapse
|
52
|
Ferreccio A, Mathieu J, Detraux D, Somasundaram L, Cavanaugh C, Sopher B, Fischer K, Bello T, M Hussein A, Levy S, Cook S, Sidhu SB, Artoni F, Palpant NJ, Reinecke H, Wang Y, Paddison P, Murry C, Jayadev S, Ware C, Ruohola-Baker H. Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. Cell Cycle 2018; 17:535-549. [PMID: 29466914 DOI: 10.1080/15384101.2018.1442621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To easily edit the genome of naïve human embryonic stem cells (hESC), we introduced a dual cassette encoding an inducible Cas9 into the AAVS1 site of naïve hESC (iCas9). The iCas9 line retained karyotypic stability, expression of pluripotency markers, differentiation potential, and stability in 5iLA and EPS pluripotency conditions. The iCas9 line induced efficient homology-directed repair (HDR) and non-homologous end joining (NHEJ) based mutations through CRISPR-Cas9 system. We utilized the iCas9 line to study the epigenetic regulator, PRC2 in early human pluripotency. The PRC2 requirement distinguishes between early pluripotency stages, however, what regulates PRC2 activity in these stages is not understood. We show reduced H3K27me3 and pluripotency markers in JARID2 2iL-I-F hESC mutants, indicating JARID2 requirement in maintenance of hESC 2iL-I-F state. These data suggest that JARID2 regulates PRC2 in 2iL-I-F state and the lack of PRC2 function in 5iLA state may be due to lack of sufficient JARID2 protein.
Collapse
Affiliation(s)
- Amy Ferreccio
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Julie Mathieu
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Damien Detraux
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Logeshwaran Somasundaram
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Christopher Cavanaugh
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Bryce Sopher
- d Department of Neurobiology , University of Washington , Seattle , WA 98109 , USA
| | - Karin Fischer
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Thomas Bello
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,e Department of Molecular and Cellular Biology , University of Washington , Seattle , WA , 98109 , USA
| | - Abdiasis M Hussein
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Shiri Levy
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Savannah Cook
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Sonia B Sidhu
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Filippo Artoni
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Nathan J Palpant
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,f Department of Pathology , University of Washington , Seattle , WA 98109 , USA
| | - Hans Reinecke
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,f Department of Pathology , University of Washington , Seattle , WA 98109 , USA
| | - Yuliang Wang
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,g Paul G. Allen School of Computer Science & Engineering
| | - Patrick Paddison
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,h Human Biology Division , Fred Hutchinson Cancer Research Center , Seattle , WA 98109 , USA
| | - Charles Murry
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,f Department of Pathology , University of Washington , Seattle , WA 98109 , USA.,i Center for Cardiovascular Biology , University of Washington School of Medicine , Seattle , Washington , 98109 , USA.,j Department of Bioengineering , University of Washington , Seattle , WA 98195 , USA.,k Department of Medicine/Cardiology , University of Washington , Seattle , WA 98195 , USA
| | - Suman Jayadev
- d Department of Neurobiology , University of Washington , Seattle , WA 98109 , USA
| | - Carol Ware
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Hannele Ruohola-Baker
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,e Department of Molecular and Cellular Biology , University of Washington , Seattle , WA , 98109 , USA.,j Department of Bioengineering , University of Washington , Seattle , WA 98195 , USA
| |
Collapse
|
53
|
Bertero A, Yiangou L, Brown S, Ortmann D, Pawlowski M, Vallier L. Conditional Manipulation of Gene Function in Human Cells with Optimized Inducible shRNA. ACTA ACUST UNITED AC 2018; 44:5C.4.1-5C.4.48. [PMID: 29512130 DOI: 10.1002/cpsc.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The difficulties involved in conditionally perturbing complex gene expression networks represent major challenges toward defining the mechanisms controlling human development, physiology, and disease. We developed an OPTimized inducible KnockDown (OPTiKD) platform that addresses the limitations of previous approaches by allowing streamlined, tightly-controlled, and potent loss-of-function experiments for both single and multiple genes. The method relies on single-step genetic engineering of the AAVS1 genomic safe harbor with an optimized tetracycline-responsive cassette driving one or more inducible short hairpin RNAs (shRNAs). OPTiKD provides homogeneous, dose-responsive, and reversible gene knockdown. When implemented in human pluripotent stem cells (hPSCs), the approach can be then applied to a broad range of hPSC-derived mature cell lineages that include neurons, cardiomyocytes, and hepatocytes. Generation of OPTiKD hPSCs in commonly used culture conditions is simple (plasmid based), rapid (two weeks), and highly efficient (>95%). Overall, this method facilitates the functional annotation of the human genome in health and disease. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Washington, Seattle, Washington
| | - Loukia Yiangou
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Brown
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Ortmann
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Pawlowski
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
54
|
Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los Mozos IR, Sadée C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L. The SMAD2/3 interactome reveals that TGFβ controls m 6A mRNA methylation in pluripotency. Nature 2018; 555:256-259. [PMID: 29489750 PMCID: PMC5951268 DOI: 10.1038/nature25784] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Stephanie Brown
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Pedro Madrigal
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Daniel Ortmann
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Juned Kadiwala
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Nina C Hubner
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Igor Ruiz de Los Mozos
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Christoph Sadée
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - An-Sofie Lenaerts
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Shota Nakanoh
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rodrigo Grandy
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Edward Farnell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jernej Ule
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Sasha Mendjan
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
55
|
Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, Lea R, Elder K, Wamaitha SE, Kim D, Maciulyte V, Kleinjung J, Kim JS, Wells D, Vallier L, Bertero A, Turner JMA, Niakan KK. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 2017; 550:67-73. [PMID: 28953884 PMCID: PMC5815497 DOI: 10.1038/nature24033] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.
Collapse
Affiliation(s)
- Norah M E Fogarty
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kirsten E Snijders
- NIHR Cambridge Biomedical Research Centre hIPSC Core Facility, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK
| | - Benjamin E Powell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nada Kubikova
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Sissy E Wamaitha
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Daesik Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Jens Kleinjung
- Bioinformatics Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34047, South Korea
| | - Dagan Wells
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ludovic Vallier
- NIHR Cambridge Biomedical Research Centre hIPSC Core Facility, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alessandro Bertero
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
56
|
Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes. Stem Cell Reports 2017; 8:803-812. [PMID: 28344001 PMCID: PMC5390118 DOI: 10.1016/j.stemcr.2017.02.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs has compromised efficiencies of forward programming approaches. We have systematically optimized inducible gene expression in hPSCs using a dual genomic safe harbor gene-targeting strategy. This approach provides a powerful platform for the generation of human cell types by forward programming. We report robust and deterministic reprogramming of hPSCs into neurons and functional skeletal myocytes. Finally, we present a forward programming strategy for rapid and highly efficient generation of human oligodendrocytes. Dual genomic safe harbor targeting of the Tet-ON system Optimized inducible transgene expression in human pluripotent stem cells Deterministic forward programming into neurons, myocytes, and oligodendrocytes
Collapse
|
57
|
Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat Protoc 2017; 12:814-827. [PMID: 28333915 DOI: 10.1038/nprot.2017.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The difficulty in isolating and propagating functional primary cholangiocytes is a major limitation in the study of biliary disorders and the testing of novel therapeutic agents. To overcome this problem, we have developed a platform for the differentiation of human pluripotent stem cells (hPSCs) into functional cholangiocyte-like cells (CLCs). We have previously reported that our 26-d protocol closely recapitulates key stages of biliary development, starting with the differentiation of hPSCs into endoderm and subsequently into foregut progenitor (FP) cells, followed by the generation of hepatoblasts (HBs), cholangiocyte progenitors (CPs) expressing early biliary markers and mature CLCs displaying cholangiocyte functionality. Compared with alternative protocols for biliary differentiation of hPSCs, our system does not require coculture with other cell types and relies on chemically defined conditions up to and including the generation of CPs. A complex extracellular matrix is used for the maturation of CLCs; therefore, experience in hPSC culture and 3D organoid systems may be necessary for optimal results. Finally, the capacity of our platform for generating large amounts of disease-specific functional cholangiocytes will have broad applications for cholangiopathies, in disease modeling and for screening of therapeutic compounds.
Collapse
|
58
|
Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome 2017; 28:348-364. [PMID: 28303292 PMCID: PMC5569153 DOI: 10.1007/s00335-017-9684-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The advent of human-induced pluripotent stem cell (hiPSC) technology has provided a unique opportunity to establish cellular models of disease from individual patients, and to study the effects of the underlying genetic aberrations upon multiple different cell types, many of which would not normally be accessible. Combining this with recent advances in genome editing techniques such as the clustered regularly interspaced short palindromic repeat (CRISPR) system has provided an ability to repair putative causative alleles in patient lines, or introduce disease alleles into a healthy “WT” cell line. This has enabled analysis of isogenic cell pairs that differ in a single genetic change, which allows a thorough assessment of the molecular and cellular phenotypes that result from this abnormality. Importantly, this establishes the true causative lesion, which is often impossible to ascertain from human genetic studies alone. These isogenic cell lines can be used not only to understand the cellular consequences of disease mutations, but also to perform high throughput genetic and pharmacological screens to both understand the underlying pathological mechanisms and to develop novel therapeutic agents to prevent or treat such diseases. In the future, optimising and developing such genetic manipulation technologies may facilitate the provision of cellular or molecular gene therapies, to intervene and ultimately cure many debilitating genetic disorders.
Collapse
Affiliation(s)
- Andrew R Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|