51
|
Abstract
Endoglin is a homodimeric cell membrane glycoprotein receptor for transforming growth factor β and bone morphogenetic proteins. Endoglin is essential for angiogenesis, being densely expressed on proliferating endothelial cells and upregulated during hypoxia. Its expression is implicated in development of resistance to vascular endothelial growth factor (VEGF) inhibition. TRC105 is an antibody that binds endoglin and prevents endothelial cell activation. Targeting endoglin and the VEGF pathway concurrently improves treatment in vitro and appears to reverse resistance to bevacizumab in some refractory cancer patients. Randomized trials are under way to assess the clinical benefit of adding TRC105 therapy to bevacizumab therapy. Further trials are under way to assess the activity of TRC105 with small-molecule inhibitors of the VEGF pathway in renal cell carcinoma, hepatocellular carcinoma, and soft tissue sarcoma. Stratification of soft tissue sarcomas based on endoglin expression levels is proposed to identify patients most likely to benefit from TRC105 treatment. The development of a TRC105 antibody-drug conjugate is also described.
Collapse
Affiliation(s)
- Lee S Rosen
- Hematology-Oncology, UCLA Medical Center Santa Monica, 2020 Santa Monica Blvd, Ste 600, Santa Monica, CA, 90404, USA,
| | | | | | | |
Collapse
|
52
|
Farsaci B, Donahue RN, Coplin MA, Grenga I, Lepone LM, Molinolo AA, Hodge JW. Immune consequences of decreasing tumor vasculature with antiangiogenic tyrosine kinase inhibitors in combination with therapeutic vaccines. Cancer Immunol Res 2014; 2:1090-102. [PMID: 25092771 DOI: 10.1158/2326-6066.cir-14-0076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study investigated the effects on the tumor microenvironment (TME) of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in two murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using three endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the TME, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can, thus, have a dramatic impact on the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Michael A Coplin
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
53
|
Shen F, Degos V, Chu PL, Han Z, Westbroek EM, Choi EJ, Marchuk D, Kim H, Lawton MT, Maze M, Young WL, Su H. Endoglin deficiency impairs stroke recovery. Stroke 2014; 45:2101-6. [PMID: 24876084 DOI: 10.1161/strokeaha.114.005115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Endoglin deficiency causes hereditary hemorrhagic telangiectasia-1 and impairs myocardial repair. Pulmonary arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia-1 are associated with a high incidence of paradoxical embolism in the cerebral circulation and ischemic brain injury. We hypothesized that endoglin deficiency impairs stroke recovery. METHODS Eng heterozygous (Eng+/-) and wild-type mice underwent permanent distal middle cerebral artery occlusion (pMCAO). Pial collateral vessels were quantified before pMCAO. Infarct/atrophic volume, vascular density, and macrophages were quantified in various days after pMCAO, and behavioral function was assessed using corner and adhesive removal tests on days 3, 15, 30, and 60 after pMCAO. The association between ENG 207G>A polymorphism and brain arteriovenous malformation rupture and surgery outcome was analyzed using logistic regression analysis in 256 ruptured and 157 unruptured patients. RESULTS After pMCAO, Eng+/- mice showed larger infarct/atrophic volumes at all time points (P<0.05) and showed worse behavior performance (P<0.05) at 15, 30, and 60 days when compared with wild-type mice. Eng+/- mice had fewer macrophages on day 3 (P=0.009) and more macrophages on day 60 (P=0.02) in the peri-infarct region. Although Eng+/- and wild-type mice had similar numbers of pial collateral vessels before pMCAO, Eng+/- mice had lower vascular density in the peri-infarct region (P=0.05) on day 60 after pMCAO. In humans, ENG 207A allele has been associated with worse outcomes after arteriovenous malformation rupture or surgery of patients with unruptured arteriovenous malformation. CONCLUSIONS Endoglin deficiency impairs brain injury recovery. Reduced angiogenesis, impaired macrophage homing, and delayed inflammation resolution could be the underlying mechanism.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Behavior, Animal/physiology
- Disease Models, Animal
- Endoglin
- Humans
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracranial Arteriovenous Malformations/genetics
- Intracranial Arteriovenous Malformations/metabolism
- Intracranial Arteriovenous Malformations/surgery
- Mice
- Mice, Knockout
- Polymorphism, Genetic/genetics
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recovery of Function/genetics
- Recovery of Function/physiology
- Time Factors
Collapse
Affiliation(s)
- Fanxia Shen
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Vincent Degos
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Pei-Lun Chu
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Zhenying Han
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Erick M Westbroek
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Eun-Jung Choi
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Douglas Marchuk
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Helen Kim
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Michael T Lawton
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Mervyn Maze
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - William L Young
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Hua Su
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.).
| |
Collapse
|
54
|
Soluble endoglin, transforming growth factor-Beta 1 and soluble tumor necrosis factor alpha receptors in different clinical manifestations of preeclampsia. PLoS One 2014; 9:e97632. [PMID: 24851923 PMCID: PMC4031102 DOI: 10.1371/journal.pone.0097632] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/22/2014] [Indexed: 01/20/2023] Open
Abstract
Background Despite intensive research, the etiopathogenesis of preeclampsia (PE) remains uncertain. Inflammatory and angiogenic factors are thought to play considerable roles in this disease. The objective of this study was to investigate the association between soluble endoglin (sEng), transforming growth factor beta-1 (TGF-β1) and tumor necrosis factor alpha soluble receptors (sTNF-Rs) and the clinical manifestations of PE. Methods Plasma levels of sEng, TGF-β1 and sTNF-Rs were determined by ELISA in 23 non-pregnant, 21 normotensive pregnant and 43 PE women. PE women were stratified into subgroups according to the severity [mild (n = 12) and severe (n = 31)] and onset-time of the disease [early (n = 19) and late (n = 24)]. Results Pregnancy was associated with higher levels of sEng, sTNF-R1 and sTNF-R2 than the non-pregnant state. Moreover, PE women had higher levels of sEng and sTNF-R1 than normotensive pregnant women. No difference was found in TGF-β1 levels, comparing the three study groups. Late PE had higher levels of sTNF-R1 and sTNF-R2 than early PE. No significant differences were found in sEng and TGF-β1 comparing early and late PE. sEng levels were higher in severe PE than in mild PE and no difference was found for TGF-β1, sTNF-R1 and sTNF-R2 levels. There was a positive correlation among sEng, TNF-R1 and sTNF-2 levels. Logistic regression analysis revealed that primiparity and sEng levels are independently associated with the development of PE. Furthermore, sEng levels are independently associated with the disease severity. Conclusions These results suggest that pregnancy is a condition associated with higher levels of anti-angiogenic and pro-inflammatory factors than the non-pregnant state and that PE is associated with an imbalance of these factors in the maternal circulation.
Collapse
|
55
|
Sievert W, Tapio S, Breuninger S, Gaipl U, Andratschke N, Trott KR, Multhoff G. Adhesion molecule expression and function of primary endothelial cells in benign and malignant tissues correlates with proliferation. PLoS One 2014; 9:e91808. [PMID: 24632811 PMCID: PMC3954738 DOI: 10.1371/journal.pone.0091808] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/14/2014] [Indexed: 12/03/2022] Open
Abstract
Background Comparative analysis of the cellular biology of the microvasculature in different tissues requires the availability of viable primary endothelial cells (ECs). This study describes a novel method to isolate primary ECs from healthy organs, repair blastemas and tumors as examples of non-proliferating and proliferating benign and malignant tissues and their functional characterization. Methodology/Principal Findings Single cell suspensions from hearts, lungs, repair blastemas and tumors were incubated consecutively with an anti-CD31 antibody and magnetic micro-beads, coupled to a derivative of biotin and streptavidin, respectively. Following magnetic bead separation, CD31-positive ECs were released by biotin-streptavidin competition. In the absence of micro-beads, ECs became adherent to plastic surfaces. ECs from proliferating repair blastemas and tumors were larger and exhibited higher expression densities of CD31, CD105 and CD102 compared to those from non-proliferating normal tissues such as heart and lung. The expression density of CD34 was particularly high in tumor-derived ECs, and that of CD54 and CD144 in ECs of repair blastemas. Functionally, ECs of non-proliferating and proliferating tissues differed in their capacity to form tubes in matrigel and to align under flow conditions. Conclusions/Significance This method provides a powerful tool to generate high yields of viable, primary ECs of different origins. The results suggest that an altered expression of adhesion molecules on ECs in proliferating tissues contribute to loss of EC function that might cause a chaotic tumor vasculature.
Collapse
Affiliation(s)
- Wolfgang Sievert
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Soile Tapio
- Department of Radiation Biology, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Stephanie Breuninger
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Udo Gaipl
- Department of Radiation Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Klaus-Rüdiger Trott
- Department of Oncology, Imperial University College London, London, United Kingdom
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
56
|
Paschoal JP, Bernardo V, Canedo NHS, Ribeiro OD, Caroli-Bottino A, Pannain VL. Microvascular density of regenerative nodule to small hepatocellular carcinoma by automated analysis using CD105 and CD34 immunoexpression. BMC Cancer 2014; 14:72. [PMID: 24507660 PMCID: PMC3923987 DOI: 10.1186/1471-2407-14-72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/03/2014] [Indexed: 02/07/2023] Open
Abstract
Background Angiogenesis is a proliferative process resulting in the development of new blood vessels from existing endothelial cells and is considered crucial for tumor growth and metastasis. Tumor angiogenesis can be quantified by microvascular density (MVD), which is evaluated in highly vascularized tumor areas (hot spots) by immunohistochemical assays using CD34 and CD31 pan-endothelial antibodies. More recently, CD105 has been successfully used for some tumor types because it could discriminate neovascularization. The expression of CD34 and CD105 in hepatocellular carcinomas (HCC) and hepatic precancerous lesions has been reported—although the results for CD105 are controversial—but to the best our knowledge, CD105 has not been previously investigated in dysplastic nodules (DN). We investigated and compared MVD-CD34 and MVD-CD105 immunoexpression in tissues containing different stages of hepatocarcinogenesis, including DN. Methods A total of 31 regenerative nodules (RN), 26 DN and 25 small HCC from explants were used for immunohistochemical tests with CD34 and CD105 antibodies. Antibody expression was quantified by computerized image analysis measurement of MVD, areas containing highly positive endothelial cells within the nodules. Results The median MVD for CD34 was higher in HCC than in DN and RN (p < 0.01), and was higher in DN compared with RN (p = 0.033). In contrast, MVD with CD105 was higher in RN, and the difference was significant in RN and DN compared with HCC (p = 0.019 and p = 0.012, respectively). When MVD with CD34 and CD105 were compared within a single group, there was a significant predominance of CD105 in RN and DN (p < 0.01). In addition, MVD-C34 in HCC predominated compared with MVD-CD105, but the difference was not statistically significant (p = 0.128). Conclusions This study identified a close relationship between CD105 and liver cirrhosis, and that CD34 antibody is a good endothelial marker for hepatic carcinogenesis. There was no difference between the use of CD105 and CD34 antibodies in preneoplastic lesions.
Collapse
Affiliation(s)
| | | | | | | | | | - Vera Lucia Pannain
- Department of Pathology/University Hospital, Federal University of Rio de Janeiro, Rua Prof, Rodolpho Paulo Rocco, 255, Cidade Universitária, CEP: 21941-913 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
57
|
Masuyama H, Hiramatsu Y. Angiogenic proteins and adipocytokines as markers for prediction of preeclampsia. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
58
|
Huang Y, Zitta K, Bein B, Steinfath M, Albrecht M. An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells. Dis Model Mech 2013; 6:1507-14. [PMID: 24046359 PMCID: PMC3820273 DOI: 10.1242/dmm.013078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff) generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage). Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and reversibly induce hypoxic conditions in vitro without unwanted interference of the hypoxia-inducing agent on the cultured cells. The system could help to further unravel hypoxia-associated mechanisms that are clinically relevant in various tissues and organs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein Schwanenweg 21, 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
59
|
Yun JH, Lee HM, Lee EH, Park JW, Cho CH. Hypoxia reduces endothelial Ang1-induced Tie2 activity in a Tie1-dependent manner. Biochem Biophys Res Commun 2013; 436:691-7. [DOI: 10.1016/j.bbrc.2013.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
60
|
Paauwe M, ten Dijke P, Hawinkels LJAC. Endoglin for tumor imaging and targeted cancer therapy. Expert Opin Ther Targets 2013; 17:421-35. [PMID: 23327677 DOI: 10.1517/14728222.2013.758716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although cancer treatment has evolved substantially in the past decades, cancer-related mortality rates are still increasing. Therapies targeting tumor angiogenesis, crucial for the growth of solid tumors, mainly target vascular endothelial growth factor (VEGF) and have been clinically applied during the last decade. However, these therapies have not met high expectations, which were based on therapeutic efficacy in animal models. This can partly be explained by the upregulation of alternative angiogenic pathways. Therefore, additional therapies targeting other pro-angiogenic pathways are needed. AREAS COVERED The transforming growth factor (TGF)-β signaling pathway plays an important role in (tumor) angiogenesis. Therefore, components of this pathway are interesting candidates for anti-angiogenic therapy. Endoglin, a co-receptor for various TGF-β family members, is specifically overexpressed in tumor vessels and endoglin expression is associated with metastasis and patient survival. Therefore, endoglin might be a good candidate for anti-angiogenic therapy. In this review, we discuss the potential of using endoglin to target the tumor vasculature for imaging and therapeutic purposes. EXPERT OPINION Considering the promising results from various in vitro studies, in vivo animal models and the first clinical trial targeting endoglin, we are convinced that endoglin is a valuable tool for the diagnosis, visualization and ultimately treatment of solid cancers.
Collapse
Affiliation(s)
- Madelon Paauwe
- Cancer Genomics Centre Netherlands and Centre for BioMedical Genetics, Department of Molecular Cell Biology, Leiden University Medical Center, Building-2, S1-P, PO-box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
61
|
Beiroa D, Romero-Picó A, Langa C, Bernabeu C, López M, López-Novoa JM, Nogueiras R, Diéguez C. Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet. PLoS One 2013; 8:e54591. [PMID: 23336009 PMCID: PMC3545959 DOI: 10.1371/journal.pone.0054591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022] Open
Abstract
Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Daniel Beiroa
- Department of Physiology, School of Medicine-CIMUS – Instituto de Investigaciones Sanitarias (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Amparo Romero-Picó
- Department of Physiology, School of Medicine-CIMUS – Instituto de Investigaciones Sanitarias (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Carmen Langa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel López
- Department of Physiology, School of Medicine-CIMUS – Instituto de Investigaciones Sanitarias (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - José M. López-Novoa
- Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca and Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), Campus Miguel de Unamuno, Salamanca, Spain
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CIMUS – Instituto de Investigaciones Sanitarias (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Carlos Diéguez
- Department of Physiology, School of Medicine-CIMUS – Instituto de Investigaciones Sanitarias (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
62
|
Qin B, Xiao B, Liang D, Li Y, Jiang T, Yang H. MicroRNA let-7c inhibits Bcl-xl expression and regulates ox-LDL-induced endothelial apoptosis. BMB Rep 2012; 45:464-9. [PMID: 22917031 DOI: 10.5483/bmbrep.2012.45.8.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. MiRNA let-7 family is known to be involved in the regulation of cell apoptosis. However, the function of let-7 in ox-LDL induced ECs apoptosis and atherosclerosis is still unknown. Here, we show that let-7c expression was markedly up-regulated in ox-LDL induced apoptotic human umbilical cord vein endothelial cells (HUVECs). Let-7c over-expression enhanced apoptosis in ECs whereas inhibition of let-7c could partly alleviate apoptotic cell death mediated by ox-LDL. Searching for how let-7c affected apoptosis, we discovered that antiapoptotic protein Bcl-xl was a direct target of let-7c in ECs. Our data suggest that let-7c contributes to endothelial apoptosis through suppression of Bcl-xl.
Collapse
Affiliation(s)
- Bing Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
63
|
Park J, Park HH, Choi H, Kim YS, Yu HJ, Lee KY, Lee YJ, Kim SH, Koh SH. Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals. Brain Res 2012; 1478:64-73. [PMID: 23046589 DOI: 10.1016/j.brainres.2012.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 12/17/2022]
Abstract
Recanalization and secondary prevention are the main therapeutic strategies for acute ischemic stroke. Neuroprotective therapies have also been investigated despite unsuccessful clinical results. Coenzyme Q10 (CoQ10), which is an essential cofactor for electron transport in mitochondria, is known to have an antioxidant effect. We investigated the protective effects of CoQ10 against hypoxia in neural stem cells (NSCs). We measured cell viability and levels of intracellular signaling proteins after treatment with several concentrations of CoQ10 under hypoxia-reperfusion. CoQ10 protected NSCs against hypoxia-reperfusion in a concentration-dependent manner by reducing growth inhibition and inhibiting free radical formation. It increased the expression of a number of survival-related proteins such as phosphorylated Akt (pAkt), phosphorylated glycogen synthase kinase 3-β (pGSK3-β), and B-cell lymphoma 2 (Bcl-2) in NSCs injured by hypoxia-reperfusion and reduced the expression of death-related proteins such as cleaved caspase-3. We conclude that CoQ10 has effects against hypoxia-reperfusion induced damage to NSCs by enhancing survival signals and decreasing death signals.
Collapse
Affiliation(s)
- Jinse Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma. Acta Neuropathol 2012; 124:99-110. [PMID: 22311740 PMCID: PMC3377898 DOI: 10.1007/s00401-012-0952-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/19/2012] [Accepted: 01/29/2012] [Indexed: 12/18/2022]
Abstract
Paediatric high grade glioma (pHGG) (World Health Organisation astrocytoma grades III and IV) remains poor prognosis tumours, with a median survival of only 15 months following diagnosis. Current investigation of anti-angiogenic strategies has focused on adult glioblastoma multiforme (GBM) with phase III trials targeting vascular endothelial growth factor continuing. In this study we investigated whether the degree of vascularity correlated with prognosis in a large cohort of pHGG (n = 150) and whether different vessel markers carried different prognostic value. We found that CD105 (endoglin) had a strongly significant association with poor prognosis on multivariate analysis (p = <0.001). Supervised hierarchical clustering of genome wide gene expression data identified 13 genes associated with differential degrees of vascularity in the cohort. The novel angiogenesis-associated genes identified in this analysis (including MIPOL-1 and ENPP5) were validated by realtime polymerase chain reaction. We also demonstrate that CD105 positive blood vessels associate with CD133 positive tumour cells and that a proportion of CD105 positive vessel cells demonstrates co-positivity for CD133, suggesting that the recently described phenomenon of vasculogenic mimicry occurs in pHGG. Together, the data suggest that targeting angiogenesis, and in particular CD105, is a valid therapeutic strategy for pHGG.
Collapse
|
65
|
Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, Malina S, Sochanik A, Szala S. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 2012; 20:262-73. [PMID: 22495576 DOI: 10.1038/gt.2012.28] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapy targeting tumor blood vessels ought to inhibit tumor growth. However, tumors become refractory to antiangiogenic drugs. Therefore, therapeutic solutions should be sought to address cellular resistance to antiangiogenic therapy. In this regard, reversal of the proangiogenic and immunosuppressive phenotype of cancer cells, and the shift of the tumor microenvironment towards more antiangiogenic and immune-stimulating phenotype may hold some promise. In our study, we sought to validate the effects of a combination therapy aimed at reducing tumor blood vessels, coupled with the abrogation of the immunosuppressive state. To achieve this, we developed an oral DNA vaccine against endoglin. This antigen was carried by an attenuated Salmonella Typhimurium and applied before or after tumor cell inoculation into immunocompetent mice. Our results show that this DNA vaccine effectively inhibited tumor growth, in both the prophylactic and therapeutic settings. It also activated both specific and nonspecific immune responses in immunized mice. Activated cytotoxic T-lymphocytes were directed specifically against endothelial and tumor cells overexpressing endoglin. The DNA vaccine inhibited angiogenesis but did not affect wound healing. In combination with interleukin-12-mediated gene therapy, or with cyclophosphamide administration, the DNA vaccine resulted in reduced microvessel density and lowered the level of Treg lymphocytes in the experimental tumors. This effectively inhibited tumor growth and prolonged survival of the treated animals. Polarization of tumor milieu, from proangiogenic and immunosuppressive, towards an immunostimulatory and antiangiogenic profile represents a promising avenue in anticancer therapy.
Collapse
Affiliation(s)
- M Jarosz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Li X, van der Meer JJ, van der Loos CM, Ploegmakers HJP, de Boer OJ, de Winter RJ, van der Wal AC. Microvascular endoglin (CD105) expression correlates with tissue markers for atherosclerotic plaque vulnerability in an ageing population with multivessel coronary artery disease. Histopathology 2012; 61:88-97. [PMID: 22463585 DOI: 10.1111/j.1365-2559.2011.04166.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Vulnerable atherosclerotic plaques are lesions with a high propensity to develop plaque disruption and superimposed thrombosis. No systematic studies have been carried out on tissue markers for plaque vulnerability throughout the entire coronary artery system at the end stages of coronary atherosclerosis. METHODS AND RESULTS Nine autopsied patients (mean age 77 years) with angiographically severe trivascular coronary atherosclerosis were selected for this study. All visible lesions in postmortem coronary angiograms (n = 125) were histologically and immunohistochemically screened for the presence of intraplaque haemorrhages (activated) microvessels and inflammatory infiltrates. Intraplaque haemorrhages were observed in 76/125 plaques (61%). Chronic inflammation was found superficially in 59/125 plaques (47%) and deeply inside the plaque tissue in 103/125 plaques (83%). Microvessels were found in 100/125 lesions (80%), of which 58% showed endothelial expression of the vascular activation marker CD105. Moreover, microvascular CD105 positivity correlated positively with plaque haemorrhage and deeply seated plaque inflammation. CONCLUSIONS Plaque inflammation and haemorrhages can be found at a high frequency throughout the coronary artery system of elderly patients with multivessel coronary atherosclerosis. Microvascular expression of endoglin (CD105), which correlates positively with both of these features of plaque vulnerability, can serve as a marker of the risk of developing coronary thrombotic complications.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Pathology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
67
|
Endoglin - a marker of vascular endothelial cell proliferation in cancer. Contemp Oncol (Pozn) 2012; 16:68-71. [PMID: 23788858 PMCID: PMC3687377 DOI: 10.5114/wo.2012.27340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/26/2011] [Accepted: 12/02/2011] [Indexed: 11/17/2022] Open
Abstract
Endoglin (CD105) is an accessory receptor of transforming growth factor B. The highest synthesis, as well as expression, of endoglin has been found in vascular endothelial cells. The involvement of endoglin in angiogenesis and in angiogenesis-dependent processes has been observed. Endoglin promotes angiogenesis not only by activation of vascular endothelial cell proliferation but also by induction of the antiapoptotic pathway in hypoxic endothelial cells. The potential application of endoglin as a tumour angiogenesis marker, useful for cancer diagnostics and clinical application, is anticipated. Endoglin expression may be useful as an indicator of disease progression and helpful for estimation of recurrence and metastasis risk.
Collapse
|
68
|
Costa AF, Tasso MG, Mariano FV, Soares AB, Chone CT, Crespo AN, Fresno MF, Llorente JL, Suárez C, de Araújo VC, Hermsen M, Altemani A. Levels and patterns of expression of hypoxia-inducible factor-1α, vascular endothelial growth factor, glucose transporter-1 and CD105 in adenoid cystic carcinomas with high-grade transformation. Histopathology 2012; 60:816-25. [PMID: 22320429 DOI: 10.1111/j.1365-2559.2011.04128.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS To compare the expression of proteins regulated by hypoxia between adenoid cystic carcinoma (ACC) with and without high-grade transformation (HGT). METHODS AND RESULTS In eight ACC-HGT and 18 ACC without HGT, expression of hypoxia-inducible factor-1 (HIF-1α), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and microvascular density (MVD) by CD105 (a hypoxia-inducible protein expressed in angiogenic endothelial cells) was determined. Expression levels of HIF-1α and VEGF as well as CD105-MVD did not differ significantly between: (i) transformed and conventional areas (TA and CA, respectively) of ACC-HGT, (ii) CA and ordinary ACC. HIF-1α was detected in 100% of cases and presented a diffuse expression pattern. No significant association was found between levels of HIF-1α expression and tumour size, metastasis and recurrence. GLUT-1 showed a prostromal expression pattern and was observed exclusively in TA (three of six cases) and in only three of 14 ACC. CONCLUSIONS Both the absence of significant alterations in levels of expression of HIF-1α, VEGF and CD105 and the patterns of expression of HIF-1α and GLUT-1 suggest that hypoxia may not play a key role in the process of high-grade transformation of ACC. Although HIF-1α expression is a common finding in ACC, it cannot be used as a marker of tumour aggressiveness.
Collapse
Affiliation(s)
- Ana F Costa
- Department of Pathology, University of Campinas/UNICAMP, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M, Landen CN. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 2011; 18:869-81. [PMID: 22142828 DOI: 10.1158/1078-0432.ccr-11-2188] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Within heterogeneous tumors, subpopulations often labeled cancer stem cells (CSC) have been identified that have enhanced tumorigenicity and chemoresistance in ex vivo models. However, whether these populations are more capable of surviving chemotherapy in de novo tumors is unknown. EXPERIMENTAL DESIGN We examined 45 matched primary/recurrent tumor pairs of high-grade ovarian adenocarcinomas for expression of CSC markers ALDH1A1, CD44, and CD133 using immunohistochemistry. Tumors collected immediately after completion of primary therapy were then laser capture microdissected and subjected to a quantitative PCR array examining stem cell biology pathways (Hedgehog, Notch, TGF-β, and Wnt). Select genes of interest were validated as important targets using siRNA-mediated downregulation. RESULTS Primary samples were composed of low densities of ALDH1A1, CD44, and CD133. Tumors collected immediately after primary therapy were more densely composed of each marker, whereas samples collected at first recurrence, before initiating secondary therapy, were composed of similar percentages of each marker as their primary tumor. In tumors collected from recurrent platinum-resistant patients, only CD133 was significantly increased. Of stem cell pathway members examined, 14% were significantly overexpressed in recurrent compared with matched primary tumors. Knockdown of genes of interest, including endoglin/CD105 and the hedgehog mediators Gli1 and Gli2, led to decreased ovarian cancer cell viability, with Gli2 showing a novel contribution to cisplatin resistance. CONCLUSIONS These data indicate that ovarian tumors are enriched with CSCs and stem cell pathway mediators, especially at the completion of primary therapy. This suggests that stem cell subpopulations contribute to tumor chemoresistance and ultimately recurrent disease.
Collapse
Affiliation(s)
- Adam D Steg
- Department of Obstetrics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Valluru M, Staton CA, Reed MWR, Brown NJ. Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing. Front Physiol 2011; 2:89. [PMID: 22164144 PMCID: PMC3230065 DOI: 10.3389/fphys.2011.00089] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer.
Collapse
Affiliation(s)
- Manoj Valluru
- Department of Oncology, Microcirculation Research Group, Faculty of Medicine, Dentistry and Health, University of Sheffield Sheffield, UK
| | | | | | | |
Collapse
|
71
|
Zakrzewski PK, Cygankiewicz AI, Mokrosiński J, Nowacka-Zawisza M, Semczuk A, Rechberger T, Krajewska WM. Expression of endoglin in primary endometrial cancer. Oncology 2011; 81:243-50. [PMID: 22116456 DOI: 10.1159/000334240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/04/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Alterations in the transforming growth factor-β (TGF-β) signaling cascade are engaged in the development of human neoplasms through the deregulation of proliferation, differentiation and migration. However, in endometrial cancer, the role of endoglin, which acts as an accessory receptor in the TGF-β pathway, is still unknown. The aim of our study was the evaluation of endoglin mRNA and protein expression levels in endometrial cancer as compared to normal endometrium. TGF-β(1) and TGF-β type II receptor were involved in the investigation since they directly cooperate with endoglin during signal propagation. Obtained results were correlated with clinicopathological parameters of studied material to determine endoglin contribution to tumor development and progression. METHODS mRNA level assessment was performed using real-time technique, whereas protein expression was determined by ELISA assay. RESULTS The endoglin mRNA level was not significantly altered in cancerous samples as compared to normal tissue, whereas its protein level demonstrated significant upregulation (p < 0.001) associated with increased tumor malignancy, assessed by histological grade and myometrium infiltration. CONCLUSIONS An increase in endoglin protein expression level may interfere with the oncogenic potential of TGF-β(1) and TGF-β type II receptor in endometrial cancer. Correlation of the endoglin level with pronounced cancer malignancy suggests that it may be regarded as a potential prognostic marker of primary endometrial cancer.
Collapse
|
72
|
Angiogenesis regulation by TGFβ signalling: clues from an inherited vascular disease. Biochem Soc Trans 2011; 39:1659-66. [DOI: 10.1042/bst20110664] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies of rare genetic diseases frequently reveal genes that are fundamental to life, and the familial vascular disorder HHT (hereditary haemorrhagic telangiectasia) is no exception. The majority of HHT patients are heterozygous for mutations in either the ENG (endoglin) or the ACVRL1 (activin receptor-like kinase 1) gene. Both genes are essential for angiogenesis during development and mice that are homozygous for mutations in Eng or Acvrl1 die in mid-gestation from vascular defects. Recent development of conditional mouse models in which the Eng or Acvrl1 gene can be depleted in later life have confirmed the importance of both genes in angiogenesis and in the maintenance of a normal vasculature. Endoglin protein is a co-receptor and ACVRL1 is a signalling receptor, both of which are expressed primarily in endothelial cells to regulate TGFβ (transforming growth factor β) signalling in the cardiovasculature. The role of ACVRL1 and endoglin in TGFβ signalling during angiogenesis is now becoming clearer as interactions between these receptors and additional ligands of the TGFβ superfamily, as well as synergistic relationships with other signalling pathways, are being uncovered. The present review aims to place these recent findings into the context of a better understanding of HHT and to summarize recent evidence that confirms the importance of endoglin and ACVRL1 in maintaining normal cardiovascular health.
Collapse
|
73
|
Mungrue IN, Zhao P, Yao Y, Meng H, Rau C, Havel JV, Gorgels TGMF, Bergen AAB, MacLellan WR, Drake TA, Boström KI, Lusis AJ. Abcc6 deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler Thromb Vasc Biol 2011; 31:2806-12. [PMID: 21979437 DOI: 10.1161/atvbaha.111.237420] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE ABCC6 genetic deficiency underlies pseudoxanthoma elasticum (PXE) in humans, characterized by ectopic calcification, and early cardiac disease. The spectrum of PXE has been noted in Abcc6-deficient mice, including dystrophic cardiac calcification. We tested the role of Abcc6 in response to cardiac ischemia-reperfusion (I/R) injury. METHODS AND RESULTS To determine the role of Abcc6 in cardioprotection, we induced ischemic injury in mice in vivo by occluding the left anterior descending artery (30 minutes) followed by reperfusion (48 hours). Infarct size was increased in Abcc6-deficient mice compared with wild-type controls. Additionally, an Abcc6 transgene significantly reduced infarct size on the background of a naturally occurring Abcc6 deficiency. There were no differences in cardiac calcification following I/R, but increased cardiac apoptosis was noted in Abcc6-deficient mice. Previous studies have implicated the bone morphogenetic protein (BMP) signaling pathway in directing calcification, and here we showed that the BMP responsive transcription factors pSmad1/5/8 were increased in hearts of Abcc6 mice. Consistent with this finding, BMP4 and BMP9 were increased and activin receptor-like kinase-2 and endoglin were downregulated in cardiac extracts from Abcc6-deficient mice versus controls. CONCLUSIONS These data identify Abcc6 as a novel modulator of cardiac myocyte survival after I/R. This cardioprotective mechanism may involve inhibition of the BMP signaling pathway, which modulates apoptosis.
Collapse
Affiliation(s)
- Imran N Mungrue
- Division of Cardiology and Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Levi B, Wan DC, Glotzbach JP, Hyun J, Januszyk M, Montoro D, Sorkin M, James AW, Nelson ER, Li S, Quarto N, Lee M, Gurtner GC, Longaker MT. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. J Biol Chem 2011; 286:39497-509. [PMID: 21949130 DOI: 10.1074/jbc.m111.256529] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clinically available sources of bone for repair and reconstruction are limited by the accessibility of autologous grafts, infectious risks of cadaveric materials, and durability of synthetic substitutes. Cell-based approaches for skeletal regeneration can potentially fill this need, and adipose tissue represents a promising source for development of such therapies. Here, we enriched for an osteogenic subpopulation of cells derived from human subcutaneous adipose tissue utilizing microfluidic-based single cell transcriptional analysis and fluorescence-activated cell sorting (FACS). Statistical analysis of single cell transcriptional profiles demonstrated that low expression of endoglin (CD105) correlated with a subgroup of adipose-derived cells with increased osteogenic gene expression. FACS-sorted CD105(low) cells demonstrated significantly enhanced in vitro osteogenic differentiation and in vivo bone regeneration when compared with either CD105(high) or unsorted cells. Evaluation of the endoglin pathway suggested that enhanced osteogenesis among CD105(low) adipose-derived cells is likely due to identification of a subpopulation with lower TGF-β1/Smad2 signaling. These findings thus highlight a potential avenue to promote osteogenesis in adipose-derived mesenchymal cells for skeletal regeneration.
Collapse
Affiliation(s)
- Benjamin Levi
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abaci HE, Truitt R, Tan S, Gerecht S. Unforeseen decreases in dissolved oxygen levels affect tube formation kinetics in collagen gels. Am J Physiol Cell Physiol 2011; 301:C431-40. [PMID: 21543738 DOI: 10.1152/ajpcell.00074.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The availability of oxygen (O(2)) is a critical parameter affecting vascular tube formation. In this study, we hypothesize that dissolved oxygen (DO) levels in collagen gels change during the three-dimensional (3D) culture of human umbilical vein endothelial cells (HUVECs) in atmospheric conditions and that such changes affect the kinetics of tube formation through the production of reactive oxygen species (ROS). We demonstrate a decrease in O(2) tension during 3D cultures of HUVECs. Noninvasive measurements of DO levels during culture under atmospheric conditions revealed a profound decrease that reached as low as 2% O(2) at the end of 24 h. After media replacement, DO levels rose rapidly and equilibrated at ∼15% O(2), creating a reoxygenated environment. To accurately estimate DO gradients in 3D collagen gels, we developed a 3D mathematical model and determined the Michaelis-Menten parameters, V(max) and K(m), of HUVECs in collagen gels. We detected an increase in ROS levels throughout the culture period. Using diphenyliodonium to inhibit ROS production resulted in the complete inhibition of tube formation. Interference RNA studies further showed that hypoxia-inducible factors (HIFs)-1α and -2α are not involved in the formation of 3D tubes in collagen gels. We conclude that ROS affect the tubulogenesis process through HIFα-independent pathways, where the levels of ROS are influenced by the uncontrolled variations in DO levels. This study is the first demonstration of the critical and unexpected role of O(2) during 3D in vitro culture models of tubulogenesis in atmospheric conditions.
Collapse
Affiliation(s)
- Hasan Erbil Abaci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
76
|
Gaebel R, Furlani D, Sorg H, Polchow B, Frank J, Bieback K, Wang W, Klopsch C, Ong LL, Li W, Ma N, Steinhoff G. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One 2011; 6:e15652. [PMID: 21347366 PMCID: PMC3037376 DOI: 10.1371/journal.pone.0015652] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/20/2010] [Indexed: 12/12/2022] Open
Abstract
The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC) derived from umbilical cord blood (CB), adipose tissue (AT) or bone marrow (BM) for the treatment of myocardial infarction (MI) remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal) intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105(+)-CB treated groups compared to CB and nontreated MI group (MI-C). Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105(+) hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function.
Collapse
Affiliation(s)
- Ralf Gaebel
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Dario Furlani
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Heiko Sorg
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bianca Polchow
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Johannes Frank
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany
| | - Weiwei Wang
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Christian Klopsch
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Lee-Lee Ong
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Wenzhong Li
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
- * E-mail: (WL); (NM)
| | - Nan Ma
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
- * E-mail: (WL); (NM)
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| |
Collapse
|
77
|
López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 2010; 299:H959-74. [PMID: 20656886 DOI: 10.1152/ajpheart.01251.2009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endoglin (CD105) is an integral membrane glycoprotein that serves as a coreceptor for members of the transforming growth factor-β superfamily of proteins. A major role for endoglin in regulating transforming growth factor-β-dependent vascular remodeling and angiogenesis has been postulated based on the following: 1) endoglin is the gene mutated in hereditary hemorrhagic telangiectasia type 1, a disease characterized by vascular malformations; 2) endoglin knockout mice die at midgestation because of defective angiogenesis; 3) endoglin is overexpressed in neoangiogenic vessels, during inflammation, and in solid tumors; and 4) endoglin regulates the expression and activity of endothelial nitric oxide synthase, which is involved in angiogenesis and vascular tone. Besides the predominant form of the endoglin receptor (long endoglin isoform), two additional forms of endoglin have been recently reported to play a role in the vascular pathology and homeostasis: the alternatively spliced short endoglin isoform and a soluble endoglin form that is proteolytically cleaved from membrane-bound endoglin. The purpose of this review is to underline the role that the different forms of endoglin play in regulating angiogenesis, vascular remodeling, and vascular tone, as well as to analyze the molecular and cellular mechanisms supporting these effects.
Collapse
Affiliation(s)
- José M López-Novoa
- Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiologia y Farmacologia, Universidad de Salamanca, and Red de Investigación Renal, Instituto de Salud Carlos III, Salamanca, Spain.
| | | |
Collapse
|
78
|
Tskitishvili E, Sharentuya N, Temma-Asano K, Mimura K, Kinugasa-Taniguchi Y, Kanagawa T, Fukuda H, Kimura T, Tomimatsu T, Shimoya K. Oxidative stress-induced S100B protein from placenta and amnion affects soluble Endoglin release from endothelial cells. Mol Hum Reprod 2010; 16:188-199. [DOI: 10.1093/molehr/gap104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
79
|
Abaci HE, Truitt R, Luong E, Drazer G, Gerecht S. Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol 2010; 298:C1527-37. [PMID: 20181925 DOI: 10.1152/ajpcell.00484.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia plays an important role in vascular development through hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation and downstream pathway activation. We sought to explore the in vitro response of cultures of human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), human endothelial progenitor cells (hEPCs), and human umbilical cord vein endothelial cells (HUVECs) to normoxic and hypoxic oxygen tensions. We first measured dissolved oxygen (DO) in the media of adherent cultures in atmospheric (21% O(2)), physiological (5% O(2)), and hypoxic oxygen conditions (1% O(2)). In cultures of both hEPCs and HUVECs, lower oxygen consumption was observed when cultured in 1% O(2). At each oxygen tension, feeder-free cultured hESCs and iPSCs were found to consume comparable amounts of oxygen. Transport analysis revealed that the oxygen uptake rate (OUR) of hESCs and iPSCs decreased distinctly as DO availability decreased, whereas the OUR of all cell types was found to be low when cultured in 1% O(2), demonstrating cell adaptation to lower oxygen tensions by limiting oxygen consumption. Next, we examined HIF-1alpha accumulation and the expression of target genes, including VEGF and angiopoietins (ANGPT; angiogenic response), GLUT-1 (glucose transport), BNIP3, and BNIP3L (autophagy and apoptosis). Accumulations of HIF-1alpha were detected in all four cell lines cultured in 1% O(2). Corresponding upregulation of VEGF, ANGPT2, and GLUT-1 was observed in response to HIF-1alpha accumulation, whereas upregulation of ANGPT1 was detected only in hESCs and iPSCs. Upregulation of BNIP3 and BNIP3L was detected in all cells after 24-h culture in hypoxic conditions, whereas apoptosis was not detectable using flow cytometry analysis, suggesting that BNIP3 and BNIP3L can lead to cell autophagy rather than apoptosis. These results demonstrate adaptation of all cell types to hypoxia but different cellular responses, suggesting that continuous measurements and control over oxygen environments will enable us to guide cellular responses.
Collapse
Affiliation(s)
- Hasan Erbil Abaci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
80
|
Bozas G, Terpos E, Gika D, Karadimou A, Dimopoulos MA, Bamias A. Prechemotherapy Serum Levels of CD105, Transforming Growth Factor β2, and Vascular Endothelial Growth Factor Are Associated With Prognosis in Patients With Advanced Epithelial Ovarian Cancer Treated With Cytoreductive Surgery and Platinum-Based Chemotherapy. Int J Gynecol Cancer 2010; 20:248-54. [DOI: 10.1111/igc.0b013e3181cc25c3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
81
|
Zvrko E, Mikic A, Vuckovic L. Clinicopathologic significance of CD105-assessed microvessel density in glottic laryngeal squamous cell carcinoma. Auris Nasus Larynx 2010; 37:77-83. [DOI: 10.1016/j.anl.2009.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 05/11/2009] [Accepted: 05/20/2009] [Indexed: 02/01/2023]
|
82
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
83
|
Eleno N, Düwel A, Muñoz A, Paz-Bouza J, López-Novoa JM, Lozano F. Endoglin as a marker in cervical paragangliomas. Head Neck 2009; 32:737-43. [PMID: 19827102 DOI: 10.1002/hed.21248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Endoglin is expressed on endothelium and is implicated in the control of angiogenesis. This study compares the expression of endoglin with vascular endothelial growth factor (VEGF), commonly used as a marker for neoangiogenesis in cervical paragangliomas (CPG). METHODS The CPG were surgically obtained from 5 patients and compared with nontumoral lung obtained from patients subjected to pulmonary resection. Detection with specific antibodies was used to determine the expression of the proteins VEGF and endoglin. The expressions of hypoxia-inducible factor (HIF) and vascular cell adhesion molecule-1 (VCAM-1) were used to determine the degree of hypoxia and capillarization, respectively. RESULTS Endoglin is located at the plasma membrane of endothelial cells. The relative expression of endoglin is significantly higher in CPG respect to lung (p < .02), whereas that of VEGF is similar. CONCLUSION Endoglin expression in CPG is significantly superior to that of VEGF and correlates with tumor vascularization.
Collapse
Affiliation(s)
- Nélida Eleno
- Instituto Reina Sofía de Investigación Nefrológica & Departamento de Fisiología y Farmacología, Universidad de Salamanca, Campus Miguel de Unamuno, Spain
| | | | | | | | | | | |
Collapse
|
84
|
Zhao F, Sellgren K, Ma T. Low-oxygen pretreatment enhances endothelial cell growth and retention under shear stress. Tissue Eng Part C Methods 2009; 15:135-46. [PMID: 19072661 DOI: 10.1089/ten.tec.2008.0321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxygen (O(2)) tension is an important factor that regulates endothelial cell (EC) growth and adhesion. We hypothesized that low-O(2) treatment of ECs improves the endothelialization and cell retention upon physiologically relevant perfusion flow, due to enhanced cell proliferation and extracellular matrix (ECM) secretion. We assessed the effects of a low-O(2) tension of 5% O(2) upon growth and ECM production of human umbilical vein ECs (HUVECs), in comparison to their counterparts at 20% O(2) on poly(ethylene terephthalate) (PET) films. Low-O(2) pretreatment at 5% O(2) promoted HUVEC proliferation, ECM secretion, and intercellular adhesion. Cell retentions of the endothelialized PET films formed under 5% and 20% O(2) were analyzed by applying shear stress in the range of 5-20 dyn/cm(2) for up to 24 h under the O(2) of 12% and 20%, mimicking arterial and conventional experimental O(2), respectively. The 5% O(2)-pretreated samples exhibited significantly higher cell retention than their normoxic counterparts at high cell density (>30 x 10(3) cells/cm(2)) over extended exposure time (>12 h) when perfused under both 12% and 20% O(2). The endothelium formed under 5% O(2) maintained its ability to respond to perfusion flow by upregulating nitric oxide and prostacyclin production under both O(2) perfusion conditions. The results indicate that pretreatment at 5% O(2) is an effective strategy to enhance endothelialization of vascular grafts by promoting endothelium formation, cell retention, and function.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
85
|
Fonsatti E, Nicolay HJM, Altomonte M, Covre A, Maio M. Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 2009; 86:12-9. [PMID: 19812043 DOI: 10.1093/cvr/cvp332] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endoglin/CD105 is well acknowledged as being the most reliable marker of proliferation of endothelial cells, and it is overexpressed on tumour neovasculature. Our current knowledge of its structure, physiological role, and tissue distribution suggests that targeting of endoglin/CD105 is a novel and powerful diagnostic and therapeutic strategy in human malignancies, through the imaging of tumour-associated angiogenesis and the inhibition of endothelial cell functions related to tumour angiogenesis. Among biotherapeutic agents, monoclonal antibodies have shown a major impact on the clinical course of human malignancies of different histotypes. Along this line, the potential efficacy of anti-endoglin/CD105 antibodies and their derivatives for clinical purposes in cancer is supported by a large body of available pre-clinical in vitro and in vivo data. In this review, the main findings supporting the translation of antibody-based endoglin/CD105 targeting from pre-clinical studies to clinical applications in human cancer are summarized and discussed.
Collapse
Affiliation(s)
- Ester Fonsatti
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
86
|
Cimpean AM, Saptefrati L, Ceausu R, Raica M. Characterization of endoglin and Ki-67 expression in endothelial cells from benign and malignant lesions of the uterine cervix. Pathol Int 2009; 59:695-700. [PMID: 19788614 DOI: 10.1111/j.1440-1827.2009.02431.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of endothelial cells is often associated with the cellular proliferation in vitro. CD105 is a more specific marker of activated endothelial cells from tumor vessels and Ki-67 is used to assess the proliferation status of both tumor and endothelial cells. The aim of the present study was to evaluate the status of endothelial cells using CD105 and Ki-67 immunohistochemistry in benign and malignant lesions of the uterine cervix. Double stain for CD105/Ki-67 in benign and malignant lesions of the uterine cervix showed that these two markers had divergent expression on endothelial cells from associated tumor blood vessels dependent on lesion type and proliferation status of tumor cells. Absence of CD105/Ki-67 coexpression in endothelial cells was correlated with histopathology of the uterine cervix lesions and tumor proliferative status. The present findings suggest that CD105 expression is an early event, specific for premalignant lesions of the uterine cervix, while endothelial proliferation assessed on Ki-67 combined with the lack of CD105 expression is often associated with invasive cervical carcinoma.
Collapse
Affiliation(s)
- Anca M Cimpean
- Department of Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.
| | | | | | | |
Collapse
|
87
|
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta Mol Basis Dis 2009; 1792:954-73. [PMID: 19607914 DOI: 10.1016/j.bbadis.2009.07.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 12/23/2022]
Abstract
The transforming growth factor beta (TGF-beta) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-beta coreceptors endoglin and betaglycan are emerging as modulators of the TGF-beta response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain.
| | | | | |
Collapse
|
88
|
Lu Q, Patel B, Harrington EO, Rounds S. Transforming growth factor-beta1 causes pulmonary microvascular endothelial cell apoptosis via ALK5. Am J Physiol Lung Cell Mol Physiol 2009; 296:L825-38. [PMID: 19270180 DOI: 10.1152/ajplung.90307.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that transforming growth factor (TGF)-beta1 protected against main pulmonary artery endothelial cell (PAEC) apoptosis induced by serum deprivation and VEGF receptor blockade through a mechanism associated with ALK5-mediated Bcl-2 upregulation. In the current study, we investigated the effect of TGF-beta1 on pulmonary microvascular endothelial cell (PMVEC) apoptosis. We found that, in contrast to the results seen in conduit PAEC, TGF-beta1 caused apoptosis of PMVEC, an effect that was also dependent on ALK5 activity. We noted that non-SMAD signaling pathways did not play a role in TGF-beta1-induced apoptosis. Both SMAD2 and SMAD1/5 were activated upon exposure to TGF-beta1. TGF-beta1-induced activation of SMAD2, but not SMAD1/5, was abolished by ALK5 inhibition, an effect that associated with prevention of TGF-beta1-induced apoptosis. These results suggest that SMAD2 is important in TGF-beta1-induced apoptosis of PMVEC. While caspase-12 activity was not altered, caspase-8 was activated by TGF-beta1, an effect that correlated with a reduction of cFLIP protein levels. Additionally, TGF-beta1 decreased Bcl-2 protein levels and induced cytochrome c cytosolic redistribution. These results suggest that TGF-beta1 caused apoptosis of PMVEC likely through both caspase-8-dependent extrinsic pathway and mitochondria-mediated intrinsic pathway. We noted that inhibition of ALK5 attenuated serum deprivation-induced apoptosis, an effect that correlated with increased expression and activation of CREB and its potential target genes, Bcl-2 and cFLIP. These results suggest that CREB may be important in mediating apoptosis resistance of PMVEC upon ALK5 inhibition perhaps through upregulation of Bcl-2 and cFLIP. Finally, we noted that SMAD1/5 were activated upon ALK5 inhibition in the presence of low levels of TGF-beta1, an effect associated with enhanced endothelial proliferation. We speculate that imbalance of ALK1 and ALK5 may contribute to the development of pulmonary artery hypertension.
Collapse
Affiliation(s)
- Qing Lu
- Providence VA Medical Center, Research Services, Providence, RI 02908, USA.
| | | | | | | |
Collapse
|
89
|
Mong PY, Wang Q. Activation of Rho kinase isoforms in lung endothelial cells during inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 182:2385-94. [PMID: 19201893 DOI: 10.4049/jimmunol.0802811] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rho kinase (ROCK) is a downstream effector of Rho family GTPases, and two highly homologous isoforms, ROCK1 and ROCK2, are similarly inhibited by the widely used pharmacologic inhibitors. In endothelial cells (ECs), activation of ROCK regulates myosin L chain (MLC) phosphorylation, stress fiber formation and permeability increases during inflammation. This study examined isoform-specific ROCK activation in lung ECs in vitro using human pulmonary microvascular ECs and ex vivo using freshly isolated lung ECs from mice. In unstimulated human as well as mouse lung ECs, ROCK2 activity was greater than ROCK1 activity. TNF-alpha stimulation induced activation of both ROCK1 and ROCK2 in cultured human ECs. Studies using lung ECs freshly isolated from mice showed that intratracheal instillation of LPS induced ROCK activation in lung ECs that was inhibited by treating animals with fasudil, a pharmacologic ROCK inhibitor, and that both ROCK1 and ROCK2 were activated. Small interference RNA targeting ROCK1 or ROCK2 was used to examine their functions in regulating MLC phosphorylation and permeability increases induced by TNF-alpha in human ECs. TNF-alpha-induced MLC phosphorylation required ROCK activation. Inhibition of ROCK1 alone was not sufficient to prevent TNF-alpha-induced MLC phosphorylation, whereas inhibition of ROCK2 prevented TNF-alpha-induced late MLC phosphorylation at 24 h. Although ROCK1 was dispensable for TNF-alpha-induced MLC phosphorylation, ROCK1 was required for TNF-alpha-induced early permeability increases. Therefore, ROCK1 and ROCK2 are both activated by TNF-alpha and can be functionally separated in the signaling pathways leading to TNF-alpha-induced MLC phosphorylation and permeability increases.
Collapse
Affiliation(s)
- Phyllus Y Mong
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Department of Surgery, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
90
|
Randall LM, Monk BJ, Darcy KM, Tian C, Burger RA, Liao SY, Peters WA, Stock RJ, Fruehauf JP. Markers of angiogenesis in high-risk, early-stage cervical cancer: A Gynecologic Oncology Group study. Gynecol Oncol 2009; 112:583-9. [PMID: 19110305 PMCID: PMC2858218 DOI: 10.1016/j.ygyno.2008.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To determine whether markers of tumor angiogenesis were associated with progression-free survival (PFS) and overall survival (OS) in women with high-risk, early-stage cervical cancer treated on a phase III trial. METHODS One hundred seventy-three tumor specimens were analyzed by semi-quantitative immunohistochemical (IHC) staining for vascular endothelial growth factor (VEGF, pro-angiogenesis factor), thrombospondin-1 (TSP-1, anti-angiogenesis factor), CD31 (non-specific endothelial marker), and CD105 (tumor-specific endothelial marker). Tumoral histoscores (HS) were calculated for VEGF using the formula: [% cells positivex(intensity+1)]. TSP-1 specimens were categorized as negative or positive. CD31 and CD105 microvessel density (MVD) "hotspots" were counted in three 20x high-power fields. Associations between angiogenesis markers and survival were evaluated. RESULTS TSP-1 expression was observed in 65% of cases while 66% expressed high VEGF (>or=200), 34% exhibited high CD31 (CD31>or=110) and 66% displayed high CD105 (CD105>or=28). In univariate analyses CD31 MVD, but not tumor TSP-1, was associated with improved PFS (HR=0.37; 95% CI=0.18-0.76; p=0.007) and OS (HR=0.37; 95% CI=0.17-0.79; p=0.010). After adjusting for prognostic clinical covariates, high CD31 MVD, but not TSP-1, VEGF or CD105 MVD, was an independent prognostic factor for PFS (HR=0.36; 95% CI=0.17-0.75; p=0.006) and OS (HR=0.36; 95% CI=0.17-0.79; p=0.010). CONCLUSIONS Tumor angiogenesis measured by CD31 MVD is an independent prognostic factor for both PFS and OS in high-risk, early-stage cervical cancer. We hypothesize that this finding may be explained by improved treatment response in well-vascularized, well-oxygenated tumors.
Collapse
Affiliation(s)
- Leslie M Randall
- Chao Family Comprehensive Cancer Center, University of California-Irvine Medical Center, Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res 2009; 19:116-27. [PMID: 19114994 DOI: 10.1038/cr.2008.326] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-beta family members are multifunctional cytokines that elicit their effects on cells, including endothelial and mural cells, via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. Knock-out mouse models for TGF-beta family signaling pathway components have revealed their critical importance in proper yolk sac angiogenesis. Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular syndromes such as hereditary hemorrhagic telangiectasia, primary pulmonary hypertension and Marfan syndrome. In this review, we present recent advances in our understanding of the role of TGF-beta receptor signaling in vascular biology and disease, and discuss how this may be applied for therapy.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
92
|
Gilbert JS, Gilbert SAB, Arany M, Granger JP. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension 2009; 53:399-403. [PMID: 19075097 PMCID: PMC2692089 DOI: 10.1161/hypertensionaha.108.123513] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/20/2008] [Indexed: 11/16/2022]
Abstract
Recent clinical studies indicate that an excess of angiostatic factors, such as soluble endoglin (sEng), is related to the occurrence of preeclampsia. Although recent clinical studies report that sEng is increased in preeclamptic women, the mechanisms underlying its overexpression remain unclear. Evidence suggests that hypoxia and induction of heme oxygenase-1 have opposing effects on sEng expression, the former stimulatory and the latter inhibitory. Hence, we hypothesized that placental ischemia because of reduced uterine perfusion pressure (RUPP) in the pregnant rat would increase sEng expression and decrease heme oxygenase-1. Mean arterial pressure was obtained via arterial catheter, and serum and placental proteins were measured by Western blot. Mean arterial pressure was increased (132+/-3 mm Hg versus 102+/-2 mm Hg; P<0.001), and fetal (2.35+/-0.05 g versus 1.76+/-0.08 g; P<0.001) and placental weight were decreased (0.47+/-0.04 g versus 0.58+/-0.03 g; P<0.01) in the RUPP compared with normal pregnant controls. Serum sEng (0.10+/-0.02 arbitrary pixel units [apu] versus 0.05+/-0.01 apu; P<0.05) and placental endoglin (4.7+/-2.3 apu versus 1.45+/-0.42 apu; P<0.05) were increased along with placental hypoxia inducible factor-1 alpha (1.42+/-0.25 apu versus 0.68+/-0.09 apu; P<0.05) expression in the RUPP versus the normal pregnant dams. Placental HO-1 (1.4+/-0.3 apu versus 2.5+/-0.1 apu; P<0.05) expression decreased in the RUPP compared with normal pregnant dams. The present findings support our hypothesis that placental ischemia because of RUPP increases the expression of sEng and shifts the balance of angiogenic factors in the maternal circulation toward an angiostatic state. The present study provides further evidence that placental ischemia is a strong in vivo stimulus of angiostatic factors during pregnancy.
Collapse
Affiliation(s)
- Jeffrey S Gilbert
- Department of Physiology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
93
|
Kucharzewska P, Welch JE, Svensson KJ, Belting M. The polyamines regulate endothelial cell survival during hypoxic stress through PI3K/AKT and MCL-1. Biochem Biophys Res Commun 2009; 380:413-8. [PMID: 19250631 DOI: 10.1016/j.bbrc.2009.01.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Hypoxia-dependent angiogenesis is an inherent feature of solid tumors, and a better understanding of the molecular mechanisms of hypoxic cell-death should provide additional targets for cancer therapy. Here, we show a novel role of the polyamines in endothelial cell (EC) survival during hypoxia. Polyamine depletion by specific inhibition of ornithine decarboxylase was shown to protect ECs from hypoxia-induced apoptosis. Inhibition of the polyamines resulted in a significant induction of PI3K/AKT and its down-stream target MCL-1, i.e. an anti-apoptotic member of the BCL-2 family. Specific inhibitors of PI3K reversed the decrease of hypoxia-induced apoptosis as well as the induction of MCL-1 in polyamine-deprived cells. Moreover, siRNA-mediated down-regulation of MCL-1 was found to counter-act the protective effect of polyamine inhibition. We conclude that the polyamines regulate hypoxia-induced apoptosis in ECs through PI3K/AKT and MCL-1 dependent pathways. Our results may have important implications for the modulation of hypoxia-driven neovascularization.
Collapse
Affiliation(s)
- Paulina Kucharzewska
- Department of Clinical Sciences, Section of Oncology, Lund University, Barngatan 2:1, 221 85 Lund, Sweden
| | | | | | | |
Collapse
|
94
|
Kelly JA, Lucia MS, Lambert JR. p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density, DNA damage and hypoxia through diverse mechanisms. Cancer Lett 2008; 277:38-47. [PMID: 19100681 DOI: 10.1016/j.canlet.2008.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 01/02/2023]
Abstract
The p53 tumor suppressor modulates cellular response to stress through both transcriptional and post-transcriptional mechanisms. Elucidation of the downstream targets of p53 following cell stress will aid in our understanding of the pathways involved in cellular adaptation to stressful stimuli. Here, we demonstrate that the TGF-beta superfamily member, and putative tumor suppressor, prostate-derived factor (PDF)/NSAID-activated gene (NAG)-1/macrophage inhibitory cytokine (MIC)-1 is induced in LNCaP human prostate cancer cells following treatment with the DNA-damaging agent, doxorubicin, culture under hypoxic conditions and by the hypoxia mimetic, cobalt chloride. Additionally, PDF expression was induced by increasing cell density. Expression of dominant negative p53 in LNCaP cells blocked induction of PDF mRNA and protein demonstrating the requirement for functional p53 in PDF induction by these stimuli. DNA damage and hypoxia resulted in increased p53 protein accumulation indicating that PDF expression may be controlled by cellular levels of p53. We also show the requirement for de novo protein synthesis in PDF induction by hypoxia and DNA damage. Increased PDF mRNA stability in response to hypoxia and cobalt chloride, but not doxorubicin, indicates that p53-dependent induction of PDF expression occurs via diverse mechanisms. Thus, PDF may represent a novel target of p53 in response to cell stress.
Collapse
Affiliation(s)
- Julie A Kelly
- Department of Pathology, University of Colorado-Denver, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
95
|
Gilbert JS, Nijland MJ, Knoblich P. Placental ischemia and cardiovascular dysfunction in preeclampsia and beyond: making the connections. Expert Rev Cardiovasc Ther 2008; 6:1367-77. [PMID: 19018690 PMCID: PMC2650232 DOI: 10.1586/14779072.6.10.1367] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypertensive disorders of pregnancy continue to be a significant source of maternal and fetal morbidity and mortality, and recent evidence suggests that the incidence of preeclampsia (PE) is increasing. Recent epidemiological studies indicate that the effects of PE may persist long after pregnancy, in both the mother and the offspring, as increased incidence of cardiovascular disease. The last decade has produced new insights into the pathogenesis of PE. The initiating event in PE appears to be impaired placental perfusion and subsequent placental ischemia, which results in the elaboration of numerous factors. Factors such as soluble fms-like tyrosine kinase-1, soluble endoglin and the angiotensin II type-1 receptor autoantibodies contribute to maternal endothelial and cardiovascular dysfunction, marked by increased reactive oxygen species and decreased bioavailable VEGF, nitric oxide and prostacyclin. However, the importance of the various endothelial and humoral factors that mediate these changes during PE remain to be elucidated.
Collapse
Affiliation(s)
- Jeffrey S Gilbert
- Department of Physiology and Pharmacology, University of Minnesota Medical School-Duluth and Duluth Medical Research Institute, Duluth, MN 55812, USA.
| | | | | |
Collapse
|
96
|
Blanco FJ, Grande MT, Langa C, Oujo B, Velasco S, Rodriguez-Barbero A, Perez-Gomez E, Quintanilla M, López-Novoa JM, Bernabeu C. S-endoglin expression is induced in senescent endothelial cells and contributes to vascular pathology. Circ Res 2008; 103:1383-92. [PMID: 18974388 DOI: 10.1161/circresaha.108.176552] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Senescence of endothelial cells (ECs) may contribute to age-associated cardiovascular diseases, including atherosclerosis and hypertension. The functional and gene expression changes associated with cellular senescence are poorly understood. Here, we have analyzed the expression, during EC senescence, of 2 different isoforms (L, long; S, short) of endoglin, an auxiliary transforming growth factor (TGF)-beta receptor involved in vascular remodeling and angiogenesis. As evidenced by RT-PCR, the S/L ratio of endoglin isoforms was increased during senescence of human ECs in vitro, as well as during aging of mice in vascularized tissues. Next, the effect of S-endoglin protein on the TGF-beta receptor complex was studied. As revealed by coimmunoprecipitation assays, S-endoglin was able to interact with both TGF-beta type I receptors, ALK5 and ALK1, although the interaction with ALK5 was stronger than with ALK1. S-endoglin conferred a lower proliferation rate to ECs and behaved differently from L-endoglin in relation to TGF-beta-responsive reporters with ALK1 or ALK5 specificities, mimicking the behavior of the endothelial senescence markers Id1 and plasminogen activator inhibitor-1. In situ hybridization studies demonstrated the expression of S-endoglin in the endothelium from human arteries. Transgenic mice overexpressing S-endoglin in ECs showed hypertension, decreased hypertensive response to NO inhibition, decreased vasodilatory response to TGF-beta(1) administration, and decreased endothelial nitric oxide synthase expression in lungs and kidneys, supporting the involvement of S-endoglin in the NO-dependent vascular homeostasis. Taken together, these results suggest that S-endoglin is induced during endothelial senescence and may contribute to age-dependent vascular pathology.
Collapse
Affiliation(s)
- Francisco J Blanco
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Costa AF, Demasi APD, Bonfitto VLL, Bonfitto JFL, Furuse C, Araújo VC, Metze K, Altemani A. Angiogenesis in salivary carcinomas with and without myoepithelial differentiation. Virchows Arch 2008; 453:359-67. [PMID: 18795324 DOI: 10.1007/s00428-008-0664-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 01/05/2023]
Abstract
To investigate whether salivary carcinomas with and without myoepithelial differentiation could present differences regarding degree of angiogenesis, we compared tumor vascularization between adenoid cystic (31 cases) and epithelial-myoepithelial carcinomas (14) versus mucoepidermoid (37) carcinoma. The expression of peroxiredoxin I was also studied to verify the potential relationship between cellular metabolism and microvascular density. Microvascular density for CD34 and CD105 were significantly lower in carcinomas with myoepithelial differentiation. However, no correlation was found between degree of angiogenesis and amounts of myoepithelial cells. High-grade peroxiredoxin I expression was found in 73.7% of mucoepidermoid carcinomas, whereas 85.1% of carcinomas with myoepithelial differentiation presented low-grade expression. In conclusion, carcinomas with myoepithelial differentiation, regardless of the amounts of myoepithelial cells, are associated to a significantly lower vascular density. The reasons for this lower angiogenic activity remain to be determined but could be related to metabolic characteristics of the cancer cells.
Collapse
Affiliation(s)
- A F Costa
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 2008; 14:1931-7. [PMID: 18381930 DOI: 10.1158/1078-0432.ccr-07-4478] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endoglin (CD105) is an accessory protein of the transforming growth factor-beta receptor system expressed on vascular endothelial cells. Mutation of the endoglin gene is associated with hereditary hemorrhagic telangiectasias, or Osler-Weber-Rendu syndrome, and has been studied extensively in the context of this disease. The expression of endoglin is elevated on the endothelial cells of healing wounds, developing embryos, inflammatory tissues, and solid tumors. Endoglin is a marker of activated endothelium, and its vascular expression is limited to proliferating cells. Recent studies identified endoglin expression in several solid tumor types, with the level of expression correlating with various clinicopathologic factors including decreased survival and presence of metastases. Attempts to target endoglin and the cells that express this protein in tumor-bearing mice have yielded promising results.
Collapse
Affiliation(s)
- Nikolaos A Dallas
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77230-1402, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Lu Q. Transforming growth factor-beta1 protects against pulmonary artery endothelial cell apoptosis via ALK5. Am J Physiol Lung Cell Mol Physiol 2008; 295:L123-33. [PMID: 18456797 DOI: 10.1152/ajplung.00402.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta1 has been reported to cause endothelial cell apoptosis. However, conflicting data have also demonstrated that TGF-beta1 promotes endothelial cell survival. In this study, the effect of TGF-beta1 on apoptosis of cultured bovine pulmonary artery endothelial cells (PAEC) induced by multiple stimuli was investigated. TGF-beta1 protected against apoptosis of bovine PAEC induced by serum deprivation or the VEGF receptor inhibitor SU-5416, but not by UV light exposure or TNFalpha. Neither caspase-8 nor caspase-12 was activated by serum deprivation or the VEGF receptor blocker. However, blockade of VEGF receptors activated caspase-9, an effect that was abolished by TGF-beta1. Furthermore, serum deprivation and inhibition of VEGF receptors significantly decreased the protein level of Bcl-2, an effect that was also abrogated by TGF-beta1. In addition, the baseline level of Bcl-2 was enhanced by TGF-beta1 and reduced by inhibition of activin receptor-like kinase 5 (ALK5), a TGF-beta1 type I receptor. Furthermore, inhibition of ALK5 caused apoptosis of bovine PAEC. These results suggest that TGF-beta1 signaling is critical for maintenance of bovine PAEC survival. Finally, the protective effects of TGF-beta1 on bovine PAEC apoptosis and Bcl-2 reduction were abolished by ALK5 inhibition, but not by inhibition of non-SMAD signaling pathways. Also, TGF-beta1 activated SMAD2 and SMAD1/5, an effect that was abolished by ALK5 inhibition. The results of this study suggest that TGF-beta1 protects against bovine PAEC apoptosis, possibly through ALK5-mediated Bcl-2 induction and subsequent inhibition of the mitochondria-mediated intrinsic pathway of apoptosis. Understanding the mechanism by which TGF-beta1 promotes endothelial cell survival may provide a better treatment for apoptosis-dependent vascular diseases, such as emphysema.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island 02908, USA.
| |
Collapse
|
100
|
Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 2008; 11:121-40. [PMID: 18327686 DOI: 10.1007/s10456-008-9107-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 02/25/2008] [Indexed: 12/18/2022]
Abstract
Angiogenesis is mostly an adaptive response to tissue hypoxia, which occurs under a wide variety of situations ranging from embryonic development to tumor growth. In general, angiogenesis is dependent on the accumulation of hypoxia inducible factors (HIFs), which are heterodimeric transcription factors of alpha and beta subunits. Under normoxia, HIF heterodimers are not abundantly present due to oxygen dependent hydroxylation, polyubiquitination, and proteasomal degradation of alpha subunits. Under hypoxia, however, alpha subunits are stabilized and form heterodimers with HIF-1beta which is not subject to oxygen dependent regulation. The accumulation of HIFs under hypoxia allows them to activate the expression of many angiogenic genes and therefore initiates the angiogenic process. In recent years, however, it has become clear that various other mechanisms also participate in fine tuning angiogenesis. In this review, I discuss the relationship between hypoxia and angiogenesis under five topics: (1) regulation of HIF-alpha abundance and activity by oxygen tension and other conditions including oxygen independent mechanisms; (2) hypoxia-regulated expression of angiogenic molecules by HIFs and other transcription factors; (3) responses of vascular cells to hypoxia; (4) angiogenic phenotypes due to altered HIF signaling in mice; and (5) role of the HIF pathway in pathological angiogenesis. Studies discussed under these topics clearly indicate that while mechanisms of oxygen-regulated HIF-alpha stability provide exciting opportunities for the development of angiogenesis or anti-angiogenesis therapies, it is also highly important to consider various other mechanisms for the optimization of these procedures.
Collapse
Affiliation(s)
- Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3501, USA.
| |
Collapse
|