51
|
Abstract
Wilms' tumour (WT) is an embryonal cancer of childhood and is thought to be derived from embryonic kidney precursor cells. The Knudson two hit model was initially thought to occur in WT, but findings emerging from genetic and cytogenetic studies in the past two decades have implicated several genetic events. Recent techniques in genetic analysis have improved our ability to characterise changes in genes involved in WT which include WT1, CTNNB1, IGF2 and WTX. These genetic events have not only provided insight into the pathobiology of this malignancy, but the recognition of these candidate genes may offer potential targets for novel therapies. In this review, we will provide an overview of the pathological, genetic and cytogenetic characteristics of WT.
Collapse
|
52
|
Crystal structure of the armadillo repeat domain of adenomatous polyposis coli which reveals its inherent flexibility. Biochem Biophys Res Commun 2011; 412:732-6. [PMID: 21871439 DOI: 10.1016/j.bbrc.2011.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022]
Abstract
The conserved armadillo repeat (ARM) domain of adenomatous polyposis coli (APC) protein plays an important role in the recognition of its binding partners. In this study, we report the crystal structure of APC-ARM (residues 407-775), which was determined to 2.9 Å resolution. Our structure shows that the seven armadillo repeats of APC-ARM fold together into a compact domain, with Arm2 and Arm5 presenting some deviations from canonical armadillo repeats. There is a positively charged groove on the surface of APC-ARM, which might be the recognition site for APC-binding partners. Comparison of this structure with our previously reported structure of APC (407-751), together with normal mode analysis, reveals that the APC-ARM domain possesses a limited intrinsic flexibility. We propose that this intrinsic flexibility might be an inherent property of ARM domains in general.
Collapse
|
53
|
Moisan A, Rivera MN, Lotinun S, Akhavanfard S, Coffman EJ, Cook EB, Stoykova S, Mukherjee S, Schoonmaker JA, Burger A, Kim WJ, Kronenberg HM, Baron R, Haber DA, Bardeesy N. The WTX tumor suppressor regulates mesenchymal progenitor cell fate specification. Dev Cell 2011; 20:583-596. [PMID: 21571217 DOI: 10.1016/j.devcel.2011.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/11/2011] [Accepted: 03/09/2011] [Indexed: 12/14/2022]
Abstract
WTX is an X-linked tumor suppressor targeted by somatic mutations in Wilms tumor, a pediatric kidney cancer, and by germline inactivation in osteopathia striata with cranial sclerosis, a bone overgrowth syndrome. Here, we show that Wtx deletion in mice causes neonatal lethality, somatic overgrowth, and malformation of multiple mesenchyme-derived tissues, including bone, fat, kidney, heart, and spleen. Inactivation of Wtx at different developmental stages and in primary mesenchymal progenitor cells (MPCs) reveals that bone mass increase and adipose tissue deficiency are due to altered lineage fate decisions coupled with delayed terminal differentiation. Specification defects in MPCs result from aberrant β-catenin activation, whereas alternative pathways contribute to the subsequently delayed differentiation of lineage-restricted cells. Thus, Wtx is a regulator of MPC commitment and differentiation with stage-specific functions in inhibiting canonical Wnt signaling. Furthermore, the constellation of anomalies in Wtx null mice suggests that this tumor suppressor broadly regulates MPCs in multiple tissues.
Collapse
Affiliation(s)
- Annie Moisan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sara Akhavanfard
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Erik J Coffman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Edward B Cook
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Svetlana Stoykova
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | | | - Jesse A Schoonmaker
- Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Alexa Burger
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Woo Jae Kim
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | | | - Roland Baron
- Endocrine Unit, Harvard Medical School, Boston, MA 02114, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
54
|
Affiliation(s)
- Yannik Regimbald-Dumas
- The FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
55
|
Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, Behrens J. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1). J Biol Chem 2011; 286:19204-14. [PMID: 21498506 DOI: 10.1074/jbc.m111.224881] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amer1/WTX binds to the tumor suppressor adenomatous polyposis coli and acts as an inhibitor of Wnt signaling by inducing β-catenin degradation. We show here that Amer1 directly interacts with the armadillo repeats of β-catenin via a domain consisting of repeated arginine-glutamic acid-alanine (REA) motifs, and that Amer1 assembles the β-catenin destruction complex at the plasma membrane by recruiting β-catenin, adenomatous polyposis coli, and Axin/Conductin. Deletion or specific mutations of the membrane binding domain of Amer1 abolish its membrane localization and abrogate negative control of Wnt signaling, which can be restored by artificial targeting of Amer1 to the plasma membrane. In line, a natural splice variant of Amer1 lacking the plasma membrane localization domain is deficient for Wnt inhibition. Knockdown of Amer1 leads to the activation of Wnt target genes, preferentially in dense compared with sparse cell cultures, suggesting that Amer1 function is regulated by cell contacts. Amer1 stabilizes Axin and counteracts Wnt-induced degradation of Axin, which requires membrane localization of Amer1. The data suggest that Amer1 exerts its negative regulatory role in Wnt signaling by acting as a scaffold protein for the β-catenin destruction complex and promoting stabilization of Axin at the plasma membrane.
Collapse
Affiliation(s)
- Kristina Tanneberger
- Nikolaus-Fiebiger-Center, Biology Department, University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Zhou MN, Kunttas-Tatli E, Zimmerman S, Zhouzheng F, McCartney BM. Cortical localization of APC2 plays a role in actin organization but not in Wnt signaling in Drosophila. J Cell Sci 2011; 124:1589-600. [PMID: 21486956 DOI: 10.1242/jcs.073916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor Adenomatous polyposis coli (APC) has roles in both Wnt signaling and in actin and microtubule organization. Within the cell, APC proteins have been reported to localize in the cytoplasm, at the cell cortex and in the nucleus. How these localizations relate to the functions of the protein is an aspect of APC biology that is poorly understood. Using Drosophila S2 cells, we have dissected the structural and functional requirements for the cortical localization of Drosophila APC2. Here, we show that both the Armadillo repeats and a novel C-terminal domain are necessary for the cortical localization of APC2 in S2 cells and in the embryo, and that neither domain alone is sufficient for this localization. Furthermore, we show that the Armadillo repeats mediate self-association of APC2 molecules. To test the function of the cortical localization of APC2, we asked whether an APC2 protein deleted for the C-terminal localization domain could rescue APC mutant defects in Wnt signaling and actin organization in the Drosophila embryo. We show that although cortical localization is required for the APC2 function in organizing actin, cortical localization is dispensable for its role in regulating Wnt signaling.
Collapse
Affiliation(s)
- Meng-Ning Zhou
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
57
|
Amer1/WTX couples Wnt-induced formation of PtdIns(4,5)P2 to LRP6 phosphorylation. EMBO J 2011; 30:1433-43. [PMID: 21304492 DOI: 10.1038/emboj.2011.28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3β (GSK3β) and casein kinase 1γ (CK1γ) is a key step in Wnt/β-catenin signalling, which requires Wnt-induced formation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Here, we show that adenomatous polyposis coli membrane recruitment 1 (Amer1) (also called WTX), a membrane associated PtdIns(4,5)P(2)-binding protein, is essential for the activation of Wnt signalling at the LRP6 receptor level. Knockdown of Amer1 reduces Wnt-induced LRP6 phosphorylation, Axin translocation to the plasma membrane and formation of LRP6 signalosomes. Overexpression of Amer1 promotes LRP6 phosphorylation, which requires interaction of Amer1 with PtdIns(4,5)P(2). Amer1 translocates to the plasma membrane in a PtdIns(4,5)P(2)-dependent manner after Wnt treatment and is required for LRP6 phosphorylation stimulated by application of PtdIns(4,5)P(2). Amer1 binds CK1γ, recruits Axin and GSK3β to the plasma membrane and promotes complex formation between Axin and LRP6. Fusion of Amer1 to the cytoplasmic domain of LRP6 induces LRP6 phosphorylation and stimulates robust Wnt/β-catenin signalling. We propose a mechanism for Wnt receptor activation by which generation of PtdIns(4,5)P(2) leads to recruitment of Amer1 to the plasma membrane, which acts as a scaffold protein to stimulate phosphorylation of LRP6.
Collapse
|
58
|
Abstract
Genes identified as being mutated in Wilms' tumour include TP53, a classic tumour suppressor gene (TSG); CTNNB1 (encoding β-catenin), a classic oncogene; WTX, which accumulating data indicate is a TSG; and WT1, which is inactivated in some Wilms' tumours, similar to a TSG. However, WT1 does not always conform to the TSG label, and some data indicate that WT1 enhances cell survival and proliferation, like an oncogene. Is WT1 a chameleon, functioning as either a TSG or an oncogene, depending on cellular context? Are these labels even appropriate for describing and understanding the function of WT1?
Collapse
Affiliation(s)
- Vicki Huff
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
59
|
Functional characterization of Wilms tumor-suppressor WTX and tumor-associated mutants. Oncogene 2010; 30:832-42. [PMID: 20956941 DOI: 10.1038/onc.2010.452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The WTX, Wilms tumor-associated tumor-suppressor gene, is present on the X chromosome and a single WTX mutation may be sufficient to promote carcinogenesis. Unlike the WT1 tumor suppressor, a transcription factor, WTX lacks conserved functional protein domains. To study the function of WTX, we constructed inducible cell lines expressing WTX and tumor-associated WTX mutants. Induction of WTX inhibited cell growth and caused G(1)/G(0) arrest. In contrast, a short, tumor-associated truncation mutant of WTX358 only slightly inhibited cell growth without a significant cell-cycle arrest, although expression of a longer truncation mutant WTX565 led to the growth inhibition and cell-cycle arrest to a similar extent as wild-type WTX. Like WT1, WTX slowed growth and caused cell-cycle arrest through p21 induction. Gene expression profiling showed that these two tumor-suppressors regulated genes in similar pathways, including those implicated in control of the cellular growth, cell cycle, cell death, cancer and cardiovascular system development. When gene expression changes mediated by wild-type WTX were compared with those affected by mutant forms, WTX565 showed a 55% overlap (228 genes) in differentially regulated genes, whereas WTX358 regulated only two genes affected by wild-type WTX, implying that amino-acid residues 358-561 are critical for WTX function.
Collapse
|
60
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
61
|
Boutet A, Comai G, Schedl A. The WTX/AMER1 gene family: evolution, signature and function. BMC Evol Biol 2010; 10:280. [PMID: 20843316 PMCID: PMC2949870 DOI: 10.1186/1471-2148-10-280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND WTX is a novel gene mutated in a proportion of Wilms' tumors and in patients suffering from sclerosing bone dysplasia. On the molecular level WTX has been shown to act as an antagonist of canonical Wnt/β-catenin signaling in fish and mammals thus linking it to an essential pathway involved in normal development and cancer formation. Interestingly, WTX seems to also localize to an intranuclear component called paraspeckles. In spite of the growing interest of molecular biologists in WTX, little is known about its paralogs and its phylogenetic history. RESULTS Using the amino-acid sequence of WTX/AMER1 as a tool for the assignment of orthology and paralogy, we here identify two novel proteins, AMER2 and AMER3, as "WTX" related. This Amer gene family is present in all currently available vertebrate genome sequences, but not invertebrate genomes and is characterized by six conserved blocks of sequences. The phylogenetic analysis suggests that the protoAmer gene originated early in the vertebrate lineage and was then duplicated due to whole genome duplications (WGD) giving rise to the three different Amer genes. CONCLUSION Our study represents the first phylogenetic analysis of Amer genes and reveals a new vertebrate specific gene family that is likely to have played an important role in the evolution of this subphylum. Divergent and conserved molecular functions of Wtx/Amer1, Amer2 and Amer3 are discussed.
Collapse
Affiliation(s)
- Agnès Boutet
- INSERM, U636, F-06108 Nice, France
- Université de Nice-Sophia Antipolis, Laboratoire de génétique du développement Normal et Pathologique, F-06108 Nice, France
| | - Glenda Comai
- INSERM, U636, F-06108 Nice, France
- Université de Nice-Sophia Antipolis, Laboratoire de génétique du développement Normal et Pathologique, F-06108 Nice, France
| | - Andreas Schedl
- INSERM, U636, F-06108 Nice, France
- Université de Nice-Sophia Antipolis, Laboratoire de génétique du développement Normal et Pathologique, F-06108 Nice, France
| |
Collapse
|
62
|
Scheel SK, Porzner M, Pfeiffer S, Ormanns S, Kirchner T, Jung A. Mutations in the WTX-gene are found in some high-grade microsatellite instable (MSI-H) colorectal cancers. BMC Cancer 2010; 10:413. [PMID: 20696052 PMCID: PMC2928794 DOI: 10.1186/1471-2407-10-413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 08/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetically, colorectal cancers (CRCs) can be subdivided into tumors with chromosomal instability (CIN) or microsatellite instability (MSI). In both types of CRCs genes that are involved in the degradation of beta-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli) is affected in most cases, high grade MSI (MSI-H) CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (beta-CATENIN) gene itself. Recently in Wilms tumors, WTX (Wilms tumor gene on the X-chromosome) was discovered as another gene involved in the destruction of beta-CATENIN. As the WTX-gene harbors a short T6-microsatellite in its N-terminal coding region, we hypothesized that frameshift-mutations might occur in MSI-H CRCs in the WTX gene, thus additionally contributing to the stabilization of beta-CATENIN in human CRCs. METHODS DNA was extracted from 632 formalin-fixed, paraffin-embedded metastatic CRCs (UICCIV) and analyzed for MSI-H by investigating the stability of the highly sensitive microsatellite markers BAT25 and BAT26 applying fluorescence capillary electrophoresis (FCE). Then, in the MSI-H cases, well described mutational hot spot regions from the APC-, AXIN2- and CTNNBI genes were analyzed for genomic alterations by didesoxy-sequencing while the WTX T6-microsatellite was analyzed by fragment analysis. Additionally, the PCR products of T5-repeats were subcloned and mutations were validated using didesoxy-sequencing. Furthermore, the KRAS and the BRAF proto-oncogenes were analyzed for the most common activating mutations applying pyro-sequencing. mRNA expression of WTX from MSI-H and MSS cases and a panel of colorectal cancer cell lines was investigated using reverse transcription (RT-) PCR and FCE. RESULTS In our cohort of 632 metastatic CRCs (UICCIV) we identified 41 MSI-H cases (6.5%). Two of the 41 MSI-H cases (4.8%) displayed a frameshift mutation in the T6-repeat resulting in a T5 sequence. Only one case, a male patient, expressed the mutated WTX gene while being wild type for all other investigated genes. CONCLUSION Mutations in the WTX-gene might compromise the function of the beta-CATENIN destruction complex in only a small fraction of MSI-H CRCs thus contributing to the process of carcinogenesis.
Collapse
Affiliation(s)
- Silvio K Scheel
- Pathologisches Institut der Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, 80337 Munich, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Harris ES, Nelson WJ. Adenomatous polyposis coli regulates endothelial cell migration independent of roles in beta-catenin signaling and cell-cell adhesion. Mol Biol Cell 2010; 21:2611-23. [PMID: 20519433 PMCID: PMC2912348 DOI: 10.1091/mbc.e10-03-0235] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 12/28/2022] Open
Abstract
Adenomatous polyposis coli (APC), a tumor suppressor commonly mutated in cancer, is a cytoskeletal organizer for cell migration and a scaffold for GSK3 beta/CKI-mediated phosphorylation and degradation of the Wnt effector beta-catenin. It remains unclear whether these different APC functions are coupled, or independently regulated and localized. In primary endothelial cells, we show that GSK3 beta/CKI-phosphorylated APC localizes to microtubule-dependent clusters at the tips of membrane extensions. Loss of GSK3 beta/CKI-phosphorylated APC from these clusters correlates with a decrease in cell migration. GSK3 beta/CKI-phosphorylated APC and beta-catenin at clusters is degraded rapidly by the proteasome, but inhibition of GSK3 beta/CKI does not increase beta-catenin-mediated transcription. GSK3 beta/CKI-phosphorylated and -nonphosphorylated APC also localize along adherens junctions, which requires actin and cell-cell adhesion. Significantly, inhibition of cell-cell adhesion results in loss of lateral membrane APC and a concomitant increase in GSK3 beta/CKI-phosphorylated APC in clusters. These results uncouple different APC functions and show that GSK3 beta/CKI phosphorylation regulates APC clusters and cell migration independently of cell-cell adhesion and beta-catenin transcriptional activity.
Collapse
Affiliation(s)
| | - W. James Nelson
- Departments of *Biology, and
- Molecular and Cellular Physiology, The James H. Clark Center, Bio-X Program, Stanford University, Stanford, CA 94305
| |
Collapse
|
64
|
Comai G, Boutet A, Neirijnck Y, Schedl A. Expression patterns of the Wtx/Amer gene family during mouse embryonic development. Dev Dyn 2010; 239:1867-78. [PMID: 20503382 DOI: 10.1002/dvdy.22313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
WTX/AMER1 is a novel negative regulator of the WNT/beta-catenin pathway with mutations detected in Wilms' tumors and an X-linked sclerosing bone dysplasia. WTX/AMER1 (Fam123b) shares several domains of homology with two other recently identified proteins: AMER2 (Fam123a) and AMER3 (Fam123c). Here, we describe an in-depth expression analysis of all three members of this gene family during mouse embryonic development. All genes were strongly expressed in the central as well as the peripheral nervous system, thus suggesting important roles of this gene family during neurogenesis. Specific expression was found in the retina, inner ear, and nasal epithelium. Outside of the nervous system Wtx/Amer1 showed the broadest expression domains including cephalic and limb mesenchyme, skeletal muscle, bladder, gonads, lung bud, salivary glands, and the kidneys. The widespread expression pattern of Wtx/Amer1, together with its role as a modulator of the Wnt signaling pathway, suggest that Wtx/Amer1 serves pleiotropic roles during mammalian organogenesis.
Collapse
Affiliation(s)
- Glenda Comai
- INSERM U636, Centre de Biochimie, and University of Nice/Sophia-Antipolis, Nice, France
| | | | | | | |
Collapse
|
65
|
Wegert J, Wittmann S, Leuschner I, Geissinger E, Graf N, Gessler M. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 2009; 48:1102-11. [PMID: 19760609 DOI: 10.1002/gcc.20712] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wilms tumor (WT) is one of the most common solid tumors in childhood. Mutations in WT1 and CTNNB1 are well established as causal alterations in about 10-15% of cases. Recently, WTX (WT gene on the X-chromosome), a gene implicated in WNT signaling, has been identified as a third WT gene. We determined the mutation status of WTX, CTNNB1, and WT1 in a large set of 429 tumors. Genomic WTX alterations were identified in 17% of WTs, equally distributed between males and females. Analysis of 104 WT samples for WTX point mutations revealed a rate of only 2%. An additional 11.5% of tumor samples lacked expression of WTX mRNA. These WTX alterations can occur in parallel to WT1 or CTNNB1 mutations. However, we could not find a significant correlation between WTX deletion status or expression level and clinical parameters suggesting that WTX mutations apparently have little direct impact on tumor behavior and presentation. Incomplete deletions of WTX in several cases suggested heterogeneity in tumors. In a small number of cases, we could analyze separate tumor fragments or microdissected regions with different histology of tumors with heterozygous point mutations. Despite complete allele losses at other sites in the genome, we detected varying degrees of WTX mutation. This suggests that WTX alteration is not an essential and early mutation needed to drive tumorigenesis, but rather a later event that may affect only a fraction of cells with unclear clinical relevance.
Collapse
Affiliation(s)
- Jenny Wegert
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Lai SL, Chien AJ, Moon RT. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 2009; 19:532-45. [PMID: 19365405 DOI: 10.1038/cr.2009.41] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wnt/beta-catenin regulates cellular functions related to tumor initiation and progression, cell proliferation, differentiation, survival, and adhesion. Beta-catenin-independent Wnt pathways have been proposed to regulate cell polarity and migration, including metastasis. In this review, we discuss the possible roles of both beta-catenin-dependent and -independent signaling pathways in tumor progression, with an emphasis on their regulation of Rho-family GTPases, cytoskeletal remodeling, and relationships with cell-cell adhesion and cilia/ciliogenesis.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
67
|
den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 2009; 20:3740-50. [PMID: 19553471 DOI: 10.1091/mbc.e09-01-0023] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.
Collapse
Affiliation(s)
- Nicole den Elzen
- University of Queensland, Institute for Molecular Bioscience, St. Lucia, Brisbane, Australia
| | | | | | | | | |
Collapse
|
68
|
The tumor suppressor WTX shuttles to the nucleus and modulates WT1 activity. Proc Natl Acad Sci U S A 2009; 106:8338-43. [PMID: 19416806 DOI: 10.1073/pnas.0811349106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
WTX encodes a tumor suppressor gene inactivated in Wilms tumor and recently implicated in WNT signaling through enhancement of cytoplasmic beta-catenin (CTNNB1) degradation. Here, we report that WTX translocates to the nucleus, a property that is modified by an endogenous splicing variant and is modulated by a nuclear export inhibitor. WTX is present in distinct subnuclear structures and co-localizes with the paraspeckle marker p54NRB/NONO, suggesting a role in transcriptional regulation. Notably, WTX binds WT1, another Wilms tumor suppressor and stem cell marker that encodes a zinc-finger transcription factor, and enhances WT1-mediated transcription of Amphiregulin, an endogenous target gene. Together, these observations suggest a role for WTX in nuclear pathways implicated in the transcriptional regulation of cellular differentiation programs.
Collapse
|
69
|
Abstract
Wilms tumours (WTs) have two distinct types of histology with or without ectopic mesenchymal elements, suggesting that WTs arise from either the mesenchymal or epithelial nephrogenic lineages. Regardless of the presence or absence of CTNNB1 mutations, nuclear accumulation of beta-catenin is often observed in WTs with ectopic mesenchymal elements. Here, we addressed the relationship between the WNT-signalling pathway and lineage in WTs by examining CTNNB1 and WT1 mutations, nuclear accumulation of beta-catenin, tumour histology and gene expression profiles. In addition, we screened for mutations in WTX, which has been proposed to be a negative regulator of the canonical WNT-signalling pathway. Unsupervised clustering analysis identified two classes of tumours: mesenchymal lineage WNT-dependent tumours, and epithelial lineage WNT-independent tumours. In contrast to the mesenchymal lineage specificity of CTNNB1 mutations, WTX mutations were surprisingly observed in both lineages. WTX-mutant WTs with ectopic mesenchymal elements had nuclear accumulation of beta-catenin, upregulation of WNT target genes and an association with CTNNB1 mutations in exon 7 or 8. However, epithelial lineage WTs with WTX mutations had no indications of active WNT signalling, suggesting that the involvement of WTX in the WNT-signalling pathway may be lineage dependent, and that WTX may have an alternative function to its role in the canonical WNT-signalling pathway.
Collapse
|
70
|
Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 2008; 41:95-100. [DOI: 10.1038/ng.270] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/23/2008] [Indexed: 12/28/2022]
|
71
|
Brocardo M, Henderson BR. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol 2008; 18:587-96. [DOI: 10.1016/j.tcb.2008.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
|
72
|
Breitman M, Zilberberg A, Caspi M, Rosin-Arbesfeld R. The armadillo repeat domain of the APC tumor suppressor protein interacts with Striatin family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1792-802. [PMID: 18502210 DOI: 10.1016/j.bbamcr.2008.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/24/2022]
Abstract
Adenomatous polyposis coli (APC) is a multifunctional tumor suppressor protein that negatively regulates the Wnt signaling pathway. The APC gene is ubiquitously expressed in various tissues, especially throughout the large intestine and central nervous system. Mutations in the gene encoding APC have been found in most colorectal cancers and in other types of cancer. The APC gene product is a large multidomain protein that interacts with a variety of proteins, many of which bind to the well conserved armadillo repeat domain of APC. Through its binding partners, APC affects a large number of important cellular processes, including cell-cell adhesion, cell migration, organization of the actin and microtubule cytoskeletons, spindle formation and chromosome segregation. The molecular mechanisms that control these diverse APC functions are only partly understood. Here we describe the identification of an additional APC armadillo repeat binding partner - the Striatin protein. The Striatin family members are multidomain molecules that are mainly neuronal and are thought to function as scaffolds. We have found that Striatin is expressed in epithelial cells and co-localizes with APC in the epithelial tight junction compartment and in neurite tips of PC12 cells. The junctional localization of APC and Striatin is actin-dependent. Depletion of APC or Striatin affected the localization of the tight junction protein ZO-1 and altered the organization of F-actin. These results raise the possibility that the contribution of APC to cell-cell adhesion may be through interaction with Striatin in the tight junction compartment of epithelial cells.
Collapse
Affiliation(s)
- Maya Breitman
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
73
|
Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 2008; 20:119-25. [PMID: 18339531 PMCID: PMC2390924 DOI: 10.1016/j.ceb.2008.01.009] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 12/21/2022]
Abstract
Wnt/beta-catenin signaling has central roles in embryogenesis and human diseases including cancer. A central scheme of the Wnt pathway is to stabilize the transcription coactivator beta-catenin by preventing its phosphorylation-dependent degradation. Significant progress has been made toward the understanding of this crucial regulatory pathway, including the protein complex that promotes beta-catenin phosphorylation-degradation, and the mechanism by which the extracellular Wnt ligand engages cell surface receptors to inhibit beta-catenin phosphorylation-degradation. Here we review some recent discoveries in these two areas, and highlight some crucial questions that remain to be resolved.
Collapse
Affiliation(s)
- He Huang
- The F M Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
74
|
Tran H, Hamada F, Schwarz-Romond T, Bienz M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528-42. [PMID: 18281465 PMCID: PMC2238673 DOI: 10.1101/gad.463208] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/14/2007] [Indexed: 01/09/2023]
Abstract
A key effector of the canonical Wnt pathway is beta-catenin, which binds to TCF/LEF factors to promote the transcription of Wnt target genes. In the absence of Wnt stimulation, beta-catenin is phosphorylated constitutively, and modified with K48-linked ubiquitin for subsequent proteasomal degradation. Here, we identify Trabid as a new positive regulator of Wnt signaling in mammalian and Drosophila cells. Trabid show a remarkable preference for binding to K63-linked ubiquitin chains with its three tandem NZF fingers (Npl4 zinc finger), and it cleaves these chains with its OTU (ovarian tumor) domain. These activities of Trabid are required for efficient TCF-mediated transcription in cells with high Wnt pathway activity, including colorectal cancer cell lines. We further show that Trabid can bind to and deubiquitylate the APC tumor suppressor protein, a negative regulator of Wnt-mediated transcription. Epistasis experiments indicate that Trabid acts below the stabilization of beta-catenin, and that it may affect the association or activity of the TCF-beta-catenin transcription complex. Our results indicate a role of K63-linked ubiquitin chains during Wnt-induced transcription.
Collapse
Affiliation(s)
- Hoanh Tran
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Fumihiko Hamada
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Thomas Schwarz-Romond
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| |
Collapse
|