51
|
Lv Z, Zhang X, Liu L, Chen J, Nie Z, Sheng Q, Zhang W, Jiang C, Yu W, Wang D, Wu X, Zhang S, Li J, Zhang Y. Characterization of a gene encoding prohibitin in silkworm, Bombyx mori. Gene 2012; 502:118-24. [PMID: 22450364 DOI: 10.1016/j.gene.2012.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/23/2012] [Accepted: 03/04/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prohibitin (PHB) is an evolutionarily conserved multifunctional protein with ubiquitous expression. However, its molecular roles are largely unknown. METHODS To better understand the function of prohibitin protein in silkworm (BmPHB), its coding sequence was isolated from a cDNA library of silkworm pupae. An His-tagged BmPHB fusion protein was expressed in Escherichia coli Rosetta (DE3) and purified with affinity and reversed-phase chromatography. Purified rBmPHB was used to generate anti-BmPHB polyclonal antibody. The subcellular localization of BmPHB was analysed by immunohistochemistry. RESULTS BmPHB gene has an ORF of 825 bp, encoding a predicted peptide with 274 amino acid residues. Immunostaining indicate that prohibitin is expressed in nucleus and predominately in cytoplasm. Western blot analyses indicated that, in the fifth instar larva, BmPHB was expressed descendingly in gonad, malpighian tubule, trachea, fatty body, intestine, and head. However, no expression was detected in larva's silk gland and epidermis. In addition, BmPHB was expressed in the nascent egg, larva and pupa, but not in the moth. CONCLUSIONS The expression of BmPHB gene presents differential characteristic in different stage and tissues. It may play important roles in the development of silkworm. GENERAL SIGNIFICANCE Studies on prohibitin have been still restricted to a few specific insects and insect cell lines such as Drosophila, Acyrthosiphon pisum and mosquito cell lines, not yet in silkworm. This is a first characterization of prohibitin in silkworm, B. mori.
Collapse
Affiliation(s)
- Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Zanou N, Schakman O, Louis P, Ruegg UT, Dietrich A, Birnbaumer L, Gailly P. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem 2012; 287:14524-34. [PMID: 22399301 DOI: 10.1074/jbc.m112.341784] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Nadège Zanou
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, 55/40 av. Hippocrate, 1200 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
53
|
Chowdhury I, Garcia-Barrio M, Harp D, Thomas K, Matthews R, Thompson WE. The emerging roles of prohibitins in folliculogenesis. Front Biosci (Elite Ed) 2012. [PMID: 22201905 DOI: 10.2741/410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prohibitins are members of a highly conserved eukaryotic protein family containing the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin (PHB) domain) found in divergent species from prokaryotes to eukaryotes. Prohibitins are found in unicellular eukaryotes, fungi, plants, animals and humans. Prohibitins are ubiquitously expressed and present in multiple cellular compartments including the mitochondria, nucleus, and the plasma membrane, and shuttles between the mitochondria, cytosol and nucleus. Multiple functions have been attributed to the mitochondrial and nuclear prohibitins, including cellular differentiation, anti-proliferation, and morphogenesis. In the present review, we focus on the recent developments in prohibitins research related to folliculogenesis. Based on current research findings, the data suggest that these molecules play important roles in modulating specific responses of granulose cells to follicle stimulating hormone (FSH) by acting at multiple levels of the FSH signal transduction pathway. Understanding the molecular mechanisms by which the intracellular signaling pathways utilize prohibitins in governing folliculogenesis is likely to result in development of strategies to overcome fertility disorders and suppress ovarian cancer growth.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | |
Collapse
|
54
|
Proteomic analysis of anti-tumor effects of 11-dehydrosinulariolide on CAL-27 cells. Mar Drugs 2011; 9:1254-1272. [PMID: 21822415 PMCID: PMC3148502 DOI: 10.3390/md9071254] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/27/2011] [Accepted: 07/07/2011] [Indexed: 01/11/2023] Open
Abstract
The anti-tumor effects of 11-dehydrosinulariolide, an active ingredient isolated from soft coral Sinularia leptoclados, on CAL-27 cells were investigated in this study. In the MTT assay for cell proliferation, increasing concentrations of 11-dehydrosinulariolide decreased CAL-27 cell viability. When a concentration of 1.5 μg/mL of 11-dehydrosinulariolide was applied, the CAL-27 cells viability was reduced to a level of 70% of the control sample. The wound healing function decreased as the concentration of 11-dehydrosinulariolide increased. The results in this study indicated that treatment with 11-dehydrosinulariolide for 6 h significantly induced both early and late apoptosis of CAL-27 cells, observed by flow cytometric measurement and microscopic fluorescent observation. A comparative proteomic analysis was conducted to investigate the effects of 11-dehydrosinulariolide on CAL-27 cells at the molecular level by comparison between the protein profiling (revealed on a 2-DE map) of CAL-27 cells treated with 11-dehydrosinulariolide and that of CAL-27 cells without the treatment. A total of 28 differential proteins (12 up-regulated and 16 down-regulated) in CAL-27 cells treated with 11-dehydrosinulariolide have been identified by LC-MS/MS analysis. Some of the differential proteins are associated with cell proliferation, apoptosis, protein synthesis, protein folding, and energy metabolism. The results of this study provided clues for the investigation of biochemical mechanisms of the anti-tumor effects of 11-dehydrosinulariolide on CAL-27 cells and could be valuable information for drug development and progression monitoring of oral squamous cell carcinoma (OSCC).
Collapse
|
55
|
CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 2011; 23:1686-90. [PMID: 21689744 PMCID: PMC7127762 DOI: 10.1016/j.cellsig.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/06/2011] [Indexed: 12/19/2022]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and ubiquitously expressed multifunctional protein which is present in various cellular compartments including the nucleus. However, mechanisms underlying various functions of PHB2 are not fully explored yet. Previously we showed that PHB2 interacts with Akt and inhibits muscle differentiation by repressing the transcriptional activity of both MyoD and MEF2. Here we show that Calcium/Calmodulin-dependent kinase IV (CaMK IV) specifically binds to the C terminus of PHB2 and phosphorylates PHB2 at serine 91. Ectopic expression of CaMK IV and PHB2 in C2C12 cells results effectively in decreased PHB2-mediated repression of MEF2-dependent gene expression. Conversely, PHB2 mutant (S91A) resistant to CaMK IV phosphorylation has less effective in relieving the inhibition of MEF2 transcription by PHB2. Our findings suggest that CaMK IV interacts with and regulates PHB2 through phosphorylation, which could be one of the mechanisms underlying the CaMK-mediated activation of MEF2.
Collapse
|
56
|
Li QF, Liang Y, Shi SL, Liu QR, Xu DH, Jing GJ, Wang SY, Kong HY. Localization of prohibitin in the nuclear matrix and alteration of its expression during differentiation of human neuroblastoma SK-N-SH cells induced by retinoic acid. Cell Mol Neurobiol 2011; 31:203-11. [PMID: 21061155 PMCID: PMC11498556 DOI: 10.1007/s10571-010-9608-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 09/28/2010] [Indexed: 12/17/2022]
Abstract
The nuclear matrix-intermediate filament system of human neuroblastoma SK-N-SH cells before and after retinoic acid (RA) treatment was selectively extracted and the distribution of prohibitin (PHB) in the nuclear matrix, as well as its colocalization with related genes, was observed. Results of two-dimensional gel electrophoresis (2-DE), mass spectrometry (MS) identification, and protein immunoblotting all confirm that PHB was present in the components of SK-N-SH nuclear matrix proteins and was down-regulated after RA treatment. Immunofluorescence microscopy observations show that PHB was localized in the nuclear matrix and its distribution was altered due to RA treatment. Laser confocal microscopy results reveal that PHB colocalized with the expression products of c-myc, c-fos, p53, and Rb, but the colocalization region was altered after RA treatment. Our results prove that PHB is a nuclear matrix protein and is localized in nuclear matrix fibers. The distribution of PHB in SK-N-SH cells and its colocalization with related proto-oncogenes and tumor suppressor genes suggest that PHB plays pivotal roles in the differentiation of SK-N-SH cells and deserves further study.
Collapse
Affiliation(s)
- Qi-Fu Li
- The Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, China.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Paris LL, Hu J, Galan J, Ong SS, Martin VA, Ma H, Tao WA, Harrison ML, Geahlen RL. Regulation of Syk by phosphorylation on serine in the linker insert. J Biol Chem 2010; 285:39844-54. [PMID: 20956537 PMCID: PMC3000966 DOI: 10.1074/jbc.m110.164509] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/10/2010] [Indexed: 11/06/2022] Open
Abstract
The Syk protein-tyrosine kinase is phosphorylated on multiple tyrosines after the aggregation of the B cell antigen receptor. However, metabolic labeling experiments indicate that Syk is inducibly phosphorylated to an even greater extent on serine after receptor ligation. A combination of phosphopeptide mapping and mass spectrometric analyses indicates that serine 291 is a major site of phosphorylation. Serine 291 lies within a 23-amino acid insert located within the linker B region that distinguishes Syk from SykB and Zap-70. The phosphorylation of serine-291 by protein kinase C enhances the ability of Syk to couple the antigen receptor to the activation of the transcription factors NFAT and Elk-1. Protein interaction studies indicate a role for the phosphorylated linker insert in promoting an interaction between Syk and the chaperone protein, prohibitin.
Collapse
Affiliation(s)
- Leela L. Paris
- From the Department of Medicinal Chemistry and Molecular Pharmacology
| | - Jianjie Hu
- From the Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Su Sien Ong
- From the Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Haiyan Ma
- From the Department of Medicinal Chemistry and Molecular Pharmacology
| | - W. Andy Tao
- From the Department of Medicinal Chemistry and Molecular Pharmacology
- the Department of Biochemistry, and
- the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Marietta L. Harrison
- From the Department of Medicinal Chemistry and Molecular Pharmacology
- the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Robert L. Geahlen
- From the Department of Medicinal Chemistry and Molecular Pharmacology
- the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
58
|
Shi SL, Li QF, Liu QR, Xu DH, Tang J, Liang Y, Zhao ZL, Yang LM. Nuclear matrix protein, prohibitin, was down-regulated and translocated from nucleus to cytoplasm during the differentiation of osteosarcoma MG-63 cells induced by ginsenoside Rg1, cinnamic acid, and tanshinone IIA (RCT). J Cell Biochem 2010; 108:926-34. [PMID: 19725052 DOI: 10.1002/jcb.22324] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ginsenoside Rg1, cinnamic acid, and tanshinone IIA (RCT) are effective anticancer and antioxidant constituents of traditional Chinese herbal medicines of Ginseng, Xuanseng, and Danseng. The molecular mechanisms of anticancer effects of those constituents and their targets are unknown. Prohibitin, an inner membrane-bound chaperone in mitochondrion involved in the regulation of cell growth, proliferation, differentiation, aging, and apoptosis, was chosen as a candidate molecular target because of its frequent up-regulation in various cancer cells. We demonstrated that prohibitin existed in the filaments of the nuclear matrix of the MG-63 cell and its expression was down-regulated by the treatment of RCT using proteomic methodologies and Western blot analysis. Immunogold electro-microscopy also found that prohibitin was localized on nuclear matrix intermediate filaments (NM-IF) that had undergone restorational changes after RCT treatment. Prohibitin may function as a molecular chaperone that might interact with multiple oncogenes and tumor suppressor genes. We found that oncogenes c-myc and c-fos and tumor suppressor genes P53 and Rb were regulated by RCT as well and that these gene products co-localized with prohibitin. Our study identified prohibitin as a molecular target of the effective anticancer constituents of Ginseng, Xuanseng, and Danseng that down-regulated prohibitin in nuclear matrix, changed prohibtin trafficking from nucleolus to cytoplasm, and regulated several oncogenes and tumor suppressor genes. Prohibitin downregulation and cellular trafficking from nucleolus to cytoplasm indicated RCT protective roles in cancer prevention and treatment.
Collapse
Affiliation(s)
- Song-Lin Shi
- The Key Laboratory of Ministry of Education for Cell Biology & Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen 361005, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Protein Kinase B (PKB/Akt), a Key Mediator of the PI3K Signaling Pathway. Curr Top Microbiol Immunol 2010; 346:31-56. [DOI: 10.1007/82_2010_58] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
60
|
Bertipaglia I, Bourg N, Richard I, Pahlman AK, Andersson L, James P, Carafoli E. A proteomic study of calpain-3 and its involvement in limb girdle muscular dystrophy type 2a. Cell Calcium 2009; 46:356-63. [PMID: 19926129 DOI: 10.1016/j.ceca.2009.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 09/15/2009] [Accepted: 10/05/2009] [Indexed: 10/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A is an autosomal recessive disorder generated by inactivating mutations in the gene coding for the muscle specific protease calpain-3. It is mainly expressed in skeletal muscle as a monomeric multidomain protein characterized by three unique insertion sequences (NS, IS1, IS2). It is unstable, and undergoes very rapid autolysis in solution, therefore, its heterologous expression and purification have been difficult. So far, calpain-3 substrates have been only identified in vitro and with indirect approaches. We have therefore decided to perform a comprehensive study of the substrates of the protease by comparing the 2D electrophoretic profile of myotubes from obtained from calpain-3 knockout and wild type mice. Digestion of differentially expressed spots was followed by mass spectrometry analysis. We could identify 16 proteins which differed in knockout and wild type mice. Among them: desmin, nestin, spectrin and PDLIM1 were of particular interest. In vitro experiments have then revealed that only PDLIM1 is cleaved directly by the protease, and that a fragment of about 8 kDa is released from the C-terminal portion of the protein.
Collapse
Affiliation(s)
- Ilenia Bertipaglia
- Department of Biochemistry University of Padova, and Venetian Institute of Molecular Medicine, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
61
|
Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends Endocrinol Metab 2009; 20:394-401. [PMID: 19733482 DOI: 10.1016/j.tem.2009.04.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/12/2009] [Accepted: 04/14/2009] [Indexed: 12/15/2022]
Abstract
Prohibitins are ubiquitous, evolutionarily conserved proteins that are mainly localized in mitochondria. The mitochondrial prohibitin complex comprises two subunits, PHB1 and PHB2. These two proteins assemble into a ring-like macromolecular structure at the inner mitochondrial membrane and are implicated in diverse cellular processes: from mitochondrial biogenesis and function to cell death and replicative senescence. In humans, prohibitins have been associated with various types of cancer. While their biochemical function remains poorly understood, studies in organisms ranging from yeast to mammals have provided significant insights into the role of the prohibitin complex in mitochondrial biogenesis and metabolism. Here we review recent studies and discuss their implications for deciphering the function of prohibitins in mitochondria.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain
| | | |
Collapse
|
62
|
Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 2009; 83:10314-8. [PMID: 19640993 DOI: 10.1128/jvi.00842-09] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) generates 16 nonstructural proteins (nsp's) through proteolytic cleavage of a large precursor protein. Although several nsp's exhibit catalytic activities that are important for viral replication and transcription, other nsp's have less clearly defined roles during an infection. In order to gain a better understanding of their functions, we attempted to identify host proteins that interact with nsp's during SARS-CoV infections. For nsp2, we identified an interaction with two host proteins, prohibitin 1 (PHB1) and PHB2. Our results suggest that nsp2 may be involved in the disruption of intracellular host signaling during SARS-CoV infections.
Collapse
|
63
|
Cui Z, Chen X, Lu B, Park SK, Xu T, Xie Z, Xue P, Hou J, Hang H, Yates JR, Yang F. Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture. Proteomics 2009; 9:1274-92. [PMID: 19253283 PMCID: PMC2946197 DOI: 10.1002/pmic.200800354] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Indexed: 11/10/2022]
Abstract
Defining the mechanisms governing myogenesis has advanced in recent years. Skeletal-muscle differentiation is a multi-step process controlled spatially and temporally by various factors at the transcription level. To explore those factors involved in myogenesis, stable isotope labeling with amino acids in cell culture (SILAC), coupled with high-accuracy mass spectrometry (LTQ-Orbitrap), was applied successfully. Rat L6 cell line is an excellent model system for studying muscle myogenesis in vitro. When mononucleate L6 myoblast cells reach confluence in culture plate, they could transform into multinucleate myotubes by serum starvation. By comparing protein expression of L6 myoblasts and terminally differentiated multinucleated myotubes, 1170 proteins were quantified and 379 proteins changed significantly in fully differentiated myotubes in contrast to myoblasts. These differentially expressed proteins are mainly involved in inter-or intracellular signaling, protein synthesis and degradation, protein folding, cell adhesion and extracellular matrix, cell structure and motility, metabolism, substance transportation, etc. These findings were supported by many previous studies on myogenic differentiation, of which many up-regulated proteins were found to be involved in promoting skeletal muscle differentiation for the first time in our study. In summary, our results provide new clues for understanding the mechanism of myogenesis.
Collapse
Affiliation(s)
- Ziyou Cui
- Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- Medical college of CAPF, Tianjin, China
| | - Xiulan Chen
- Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Bingwen Lu
- Department of Cell Biology, the Scripps Research Institute, La Jolla, USA
| | - Sung Kyu Park
- Department of Cell Biology, the Scripps Research Institute, La Jolla, USA
| | - Tao Xu
- Department of Cell Biology, the Scripps Research Institute, La Jolla, USA
| | - Zhensheng Xie
- Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peng Xue
- Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junjie Hou
- Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Hang
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - John R. Yates
- Department of Cell Biology, the Scripps Research Institute, La Jolla, USA
| | - Fuquan Yang
- Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
64
|
Do BRCA1 modifiers also affect the risk of breast cancer in non-carriers? Eur J Cancer 2008; 45:837-42. [PMID: 19071013 DOI: 10.1016/j.ejca.2008.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
We studied whether or not single nucleotide polymorphisms (SNPs), which have been shown to modify the risk of breast cancer in women with a BRCA1 mutation, are associated with cancer risk in unselected (non-hereditary) breast cancer patients. We genotyped seven SNPs in six distinct genes (PHB, RAD51, ITGB3, TGFB1, VEGF, MTHFR) in 1100 unselected Polish breast cancer patients and 1100 controls. The frequencies of genotypes were similar in cases and controls. In a subgroup analysis, we found a positive association between the homozygous genotype PHB 1630C/T and medullary breast cancer (odds ratio (OR)=4.0, 95% confidence interval (CI) 1.1-14.0). PHB 1630C/T was also associated with tumours negative for oestrogen receptor (OR=2.2, 95% CI 1.13-4.4) or progesterone receptor (OR=2.8, 95% CI 1.4-5.8). Our results show that, in general, the single nucleotide polymorphisms which modify the risk of hereditary breast cancer in Poland do not modify the risk of sporadic breast cancer. The PHB 1630 C/T single nucleotide polymorphism was associated with breast cancers with clinical features typical for BRCA1-positive tumours and is deserving of further study.
Collapse
|
65
|
Abstract
The Akt serine/threonine kinase (also called protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. Significant progress has been made in clarifying its regulation by upstream kinases and identifying downstream mechanisms that mediate its effects in cells and contribute to signaling specificity. Here, we provide an overview of present advances in the field regarding the function of Akt in physiological and pathological cell function within a more generalized framework of Akt signal transduction. An emphasis is placed on the involvement of Akt in human diseases ranging from cancer to metabolic dysfunction and mental disease.
Collapse
Affiliation(s)
- T F Franke
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
66
|
Wang K, Wang C, Xiao F, Wang H, Wu Z. JAK2/STAT2/STAT3 are required for myogenic differentiation. J Biol Chem 2008; 283:34029-36. [PMID: 18835816 DOI: 10.1074/jbc.m803012200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle satellite cell-derived myoblasts are mainly responsible for postnatal muscle growth and injury-induced regeneration. However, the cellular signaling pathways that control proliferation and differentiation of myoblasts remain poorly defined. Recently, we found that JAK1/STAT1/STAT3 not only participate in myoblast proliferation but also actively prevent them from premature differentiation. Unexpectedly, we found that a related pathway consisting of JAK2, STAT2, and STAT3 is required for early myogenic differentiation. Interference of this pathway by either a small molecule inhibitor or small interfering RNA inhibits myogenic differentiation. Consistently, all three molecules are activated upon differentiation. The pro-differentiation effect of JAK2/STAT2/STAT3 is partially mediated by MyoD and MEF2. Interestingly, the expression of the IGF2 gene and the HGF gene is also regulated by JAK2/STAT2/STAT3, suggesting that this pathway could also promote differentiation by regulating signaling molecules known to be involved in myogenic differentiation. In summary, our current study reveals a novel role for the JAK2/STAT2/STAT3 pathway in myogenic differentiation.
Collapse
Affiliation(s)
- Kepeng Wang
- Department of Biochemistry, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
67
|
Abstract
Over the past decade, the serine/threonine kinase Akt (also known as protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. In addition to the research required for the clarification of its regulation by upstream kinases and phosphatases, progress has been made in the identification of Akt-binding partners that modulate its activation, regulate its kinase activity, and define its impact on downstream biological responses. Studies of Akt-binding molecules have highlighted novel mechanisms involved in the regulation of signaling downstream of activated phosphoinositide 3-kinase. Akt-interacting molecules may have important roles in Akt signal transduction both under physiological and pathological conditions.
Collapse
Affiliation(s)
- Thomas F Franke
- Department of Psychiatry , New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
68
|
Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:27-32. [PMID: 18558096 DOI: 10.1016/j.bbamcr.2008.05.013] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/14/2008] [Accepted: 05/16/2008] [Indexed: 12/23/2022]
Abstract
Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins. Various roles in different cellular compartments have been proposed for prohibitin proteins. Recent experiments, however, identify large assemblies of two homologous prohibitin subunits, PHB1 and PHB2, in the inner membrane of mitochondria as the physiologically active structure. Mitochondrial prohibitin complexes control cell proliferation, cristae morphogenesis and the functional integrity of mitochondria. The processing of the dynamin-like GTPase OPA1, a core component of the mitochondrial fusion machinery, has been defined as a key process affected by prohibitins. The molecular mechanism of prohibitin function, however, remained elusive. The ring-like assembly of prohibitins and their sequence similarity with lipid raft-associated SPFH-family members suggests a scaffolding function of prohibitins, which may lead to functional compartmentalization in the inner membrane of mitochondria.
Collapse
Affiliation(s)
- Carsten Merkwirth
- Institute for Genetics, Centre for Molecular Medicine (CMMC), University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
69
|
He B, Feng Q, Mukherjee A, Lonard DM, DeMayo FJ, Katzenellenbogen BS, Lydon JP, O'Malley BW. A repressive role for prohibitin in estrogen signaling. Mol Endocrinol 2008; 22:344-60. [PMID: 17932104 PMCID: PMC2234581 DOI: 10.1210/me.2007-0400] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022] Open
Abstract
Nuclear receptor-mediated gene expression is regulated by corepressors and coactivators. In this study we demonstrate that prohibitin (PHB), a potential tumor suppressor, functions as a potent transcriptional corepressor for estrogen receptor alpha (ERalpha). Overexpression of PHB inhibits ERalpha transcriptional activity, whereas depletion of endogenous PHB increases the expression of ERalpha target genes in MCF-7 breast cancer cells. Chromatin immunoprecipitation experiments demonstrate that PHB is associated with the estrogen-regulated pS2 promoter in the absence of hormone and dissociates after estradiol treatment. We demonstrate that PHB interacts with the repressor of estrogen receptor activity (REA), a protein related to PHB, to form heteromers and enhance the protein stability of both corepressors. Interestingly, the corepressor activity of PHB is cross-squelched by the coexpression of REA (and vice versa), suggesting that PHB and REA repress transcription only when they are not paired. We further demonstrate that coiled-coil domains located in the middle of PHB and REA are responsible for their heteromerization, stabilization, and cross-squelching actions. Finally, ablation of PHB function in the mouse results in early embryonic lethality, whereas mice heterozygous for the PHB null allele exhibit a hyperproliferative mammary gland phenotype. Our results indicate that PHB functions as a transcriptional corepressor for ERalpha in vitro and in vivo, and that its heteromerization with REA acts as a novel mechanism to limit its corepressor activity.
Collapse
Affiliation(s)
- Bin He
- Department of Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Marshall A, Salerno MS, Thomas M, Davies T, Berry C, Dyer K, Bracegirdle J, Watson T, Dziadek M, Kambadur R, Bower R, Sharma M. Mighty is a novel promyogenic factor in skeletal myogenesis. Exp Cell Res 2008; 314:1013-29. [PMID: 18255059 DOI: 10.1016/j.yexcr.2008.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/27/2007] [Accepted: 01/06/2008] [Indexed: 11/25/2022]
Abstract
Genetic analysis has revealed an important function in myogenesis for Myostatin, a member of the TGF-beta superfamily. However, the cascade of genes that responds to Myostatin signalling to regulate myogenesis is not well understood. Thus, a suppressive subtraction hybridization to identify such genes was undertaken and here we report the cloning and characterization of a novel gene, Mighty. Mighty is expressed in a variety of different tissues but appears to be specifically regulated by Myostatin in skeletal muscle. Overexpression of Mighty in C2C12 cells results in early withdrawal of myoblasts from the cell cycle, enhanced and accelerated differentiation and hypertrophy of myotubes. Most importantly, Mighty overexpression leads to increased and earlier expression of MyoD and increased secretion of another known differentiation inducing factor, IGF-II. Furthermore, viral expression of Mighty in mdx mice resulted in an increase in the number of larger healthy muscle fibers. Given its role in myogenesis, we propose that Mighty is a critical promyogenic factor which plays a key role in the signalling pathway downstream of Myostatin.
Collapse
Affiliation(s)
- Amy Marshall
- Functional Muscle Genomics, AgResearch, Hamilton, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Héron-Milhavet L, Mamaeva D, Rochat A, Lamb NJC, Fernandez A. Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J Cell Physiol 2007; 214:158-65. [PMID: 17565718 DOI: 10.1002/jcp.21177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Akt1 and Akt2 are the major isoforms of Akt expressed in muscle cells and muscle tissue. We have performed siRNA silencing of Akt1 and Akt2 in C2 myoblasts to characterize their specific implication in muscle differentiation. Whereas silencing Akt2, and not Akt1, inhibited cell cycle exit and myoblast differentiation, Akt2 overexpression led to an increased proportion of differentiated myoblasts. In addition, we demonstrate that Akt2 is required for myogenic conversion induced by MyoD overexpression in fibroblasts. We show Akt2, but not Akt1, binds Prohibitin2/Repressor of Estrogen Activator, PHB2/REA, a protein recently implicated in transcriptionnal repression of myogenesis. Co-immunoprecipitation experiments on endogenous proteins showed the Akt2-REA complex does not contain Prohibitin1. We have analyzed expression and localization of PHB2/REA during proliferation and differentiation of mouse and human myoblasts. PHB2/REA shows punctated nuclear staining which partially co-localizes with Akt2 in differentiated myotubes and PHB2 levels decrease at the onset of myogenic differentiation concomitant with an increase in Akt2. There appears to be an inverse correlation between Akt2 and PHB2 protein levels where cells silenced for Akt2 expression show increased level of PHB2/REA and overexpression of Akt2 resulted in decreased Prohibitin2/REA. Taken together, these results, along with our previous observations, clearly show that Akt2 and not Akt1 plays a major and early role in cell cycle exit and myogenic differentiation and this function involves its specific interaction with PHB2/REA.
Collapse
|
72
|
Sun L, Ma K, Wang H, Xiao F, Gao Y, Zhang W, Wang K, Gao X, Ip N, Wu Z. JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. ACTA ACUST UNITED AC 2007; 179:129-38. [PMID: 17908914 PMCID: PMC2064742 DOI: 10.1083/jcb.200703184] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle stem cell-derived myoblasts are mainly responsible for postnatal muscle growth and injury-induced muscle regeneration. However, the cellular signaling pathways controlling the proliferation and differentiation of myoblasts are not fully understood. We demonstrate that Janus kinase 1 (JAK1) is required for myoblast proliferation and that it also functions as a checkpoint to prevent myoblasts from premature differentiation. Deliberate knockdown of JAK1 in both primary and immortalized myoblasts induces precocious myogenic differentiation with a concomitant reduction in cell proliferation. This is caused, in part, by an accelerated induction of MyoD, myocyte enhancer-binding factor 2 (MEF2), p21Cip1, and p27Kip1, a faster down-regulation of Id1, and an increase in MEF2-dependent gene transcription. Downstream of JAK1, of all the signal transducer and activator of transcriptions (STATs) present in myoblasts, we find that only STAT1 knockdown promotes myogenic differentiation in both primary and immortalized myoblasts. Leukemia inhibitory factor stimulates myoblast proliferation and represses differentiation via JAK1-STAT1-STAT3. Thus, JAK1-STAT1-STAT3 constitutes a signaling pathway that promotes myoblast proliferation and prevents premature myoblast differentiation.
Collapse
Affiliation(s)
- Luguo Sun
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Joshi B, Rastogi S, Morris M, Carastro L, Decook C, Seto E, Chellappan S. Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites. Biochem J 2007; 401:155-66. [PMID: 16918502 PMCID: PMC1698671 DOI: 10.1042/bj20060364] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prohibitin is a 30 kDa growth suppressive protein that has pleiotropic functions in the cell. Although prohibitin has been demonstrated to have potent transcriptional regulatory functions, it has also been proposed to facilitate protein folding in the mitochondria and promote cell migration in association with Raf-1. Our previous studies have shown that prohibitin physically interacts with the marked-box domain of E2F family members and represses their transcriptional activity; in contrast, prohibitin could bind to and enhance the transcriptional activity of p53. Here, we show that promoters of human YY1 (Yin and Yang 1) as well as caspase 7 genes are modulated by prohibitin. YY1 promoter activity was reduced upon overexpression of prohibitin, while it was enhanced when prohibitin was depleted by small interfering RNA techniques. The repressive effects of prohibitin on the YY1 promoter were mediated through E2F binding sites, as seen by mutational analysis and chromatin immunoprecipitation assays. Further, depletion of E2F1 prevented prohibitin from repressing the YY1 promoter. In contrast with YY1, prohibitin overexpression led to enhanced levels of caspase 7, whereas depletion of prohibitin reduced it. Interestingly, the caspase 7 promoter was found to have p53-binding sites and prohibitin activated this promoter through p53. These studies show that prohibitin can have diverse effects on the expression of different genes and the activity of various cellular promoters is affected by prohibitin. Further, it appears very likely that prohibitin carries out many of its cellular functions by affecting the transcription of different genes.
Collapse
Affiliation(s)
- B. Joshi
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - S. Rastogi
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - M. Morris
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - L. M. Carastro
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - C. Decook
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - E. Seto
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - S. P. Chellappan
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
74
|
Polesskaya OO, Fryxell KJ, Merchant AD, Locklear LL, Ker KF, McDonald CG, Eppolito AK, Smith LN, Wheeler TL, Smith RF. Nicotine causes age-dependent changes in gene expression in the adolescent female rat brain. Neurotoxicol Teratol 2006; 29:126-40. [PMID: 17234382 DOI: 10.1016/j.ntt.2006.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/12/2006] [Accepted: 11/01/2006] [Indexed: 12/21/2022]
Abstract
Humans often start smoking during adolescence. Recent results suggest that rodents may also be particularly vulnerable to nicotine dependence during adolescence. We examined the effect of chronic nicotine exposure on gene expression profiles during adolescence in female rats, who were dosed with nicotine (and control animals were dosed with saline) via subcutaneously implanted osmotic minipumps. Brain samples were collected at four ages: before puberty (postnatal day 25), at about the time of puberty in females (postnatal day 35), and after puberty (postnatal days 45 and 55). The expression of 7931 genes in three brain areas was measured using DNA microarrays. Quantitative RT-PCR was also employed to confirm the expression patterns of selected genes. We used a novel clustering technique (principal cluster analysis) to classify 162 nicotine-regulated genes into five clusters, of which only one (cluster A) showed similar patterns of gene expression across all three brain areas (ventral striatum, prefrontal cortex, and hippocampus). Three clusters of genes (A, B, and C) showed dramatic peaks in their nicotine responses at the same age (p35). The other two clusters (D1 and D2) showed smaller peaks and/or valleys in their nicotine responses at p35 and p45. Thus, the age of maximal gene expression response to nicotine in female rats corresponds approximately to the age of maximal behavioral response and the age of puberty.
Collapse
Affiliation(s)
- Oksana O Polesskaya
- Center for Biomedical Genomics and Informatics, George Mason University, Discovery Hall, mail stop 1J1, 10900 University Blvd., Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Yun BG, Matts RL. Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Cell Signal 2006; 17:1477-85. [PMID: 15935620 DOI: 10.1016/j.cellsig.2005.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 02/15/2005] [Accepted: 03/03/2005] [Indexed: 01/16/2023]
Abstract
The function of the 90-kDa heat shock protein (Hsp90) is essential for the regulation of a myriad of signal transduction cascades that control all facets of a cell's physiology. Akt (PKB) is an Hsp90-dependent serine-threonine kinase that plays critical roles in the regulation of muscle cell physiology, including roles in the regulation of muscle differentiation and anti-apoptotic responses that modulate cell survival. In this report, we have examined the role of Hsp90 in regulating the activity of Akt in differentiating C2C12 myoblasts. While long-term treatment of differentiating C2C12 cells with the Hsp90 inhibitor geldanamycin led to the depletion of cellular Akt levels, pulse-chase analysis indicated that geldanamycin primarily enhanced the turnover rate of newly synthesized Akt. Hsp90 maintained an interaction with mature Akt, while Cdc37, Hsp90's kinase-specific co-chaperone, was lost from the chaperone complex upon Akt maturation. Geldanamycin partially disrupted the interaction of Cdc37 with Akt, but had a much less significant effect on the interaction of Hsp90 with Akt. Surprisingly, short-term treatment of differentiating C2C12 with geldanamycin increased the phosphorylation of Akt on Ser473, an effect mimicked by treatment of C2C12 cells with okadaic acid or the Hsp90 inhibitor novobiocin. Furthermore, Akt was found to interact directly with catalytic subunit of protein phosphatase 2A (PP2Ac) in C2C12 cells, and this interaction was not disrupted by geldanamycin. Thus, our findings indicate that Hsp90 functions to balance the phosphorylation state of Akt by modulating the ability of Akt to be dephosphorylated by PP2Ac during C2C12 myoblast differentiation.
Collapse
Affiliation(s)
- Bo-Geon Yun
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, United States
| | | |
Collapse
|
76
|
Abstract
The prohibitins, Phb1 and Phb2 are highly conserved proteins in eukaryotic cells that are present in multiple cellular compartments. Initial investigations focused on the role of Phb1 as an inhibitor of cell proliferation hence the original name prohibitin. However both proteins appear to have a diverse range of functions and recent evidence suggests that the prohibitins have very similar but as yet only partially understood functions. In addition to their role as chaperone proteins in the mitochondria, and their ability to target to lipid rafts, their is now compelling evidence that both prohibitins are localized in the nucleus and can modulate transcriptional activity by interacting with various transcription factors, including the steroid hormone receptors, either directly or indirectly. In addition Phb1 and Phb2 are present in the circulation and can be internalized when added to cultured cells suggesting that the circulating prohibitins may have some regulatory role. This review presents some of the recent developments in prohibitin research and focuses on the similarities in the structure and function of these interesting proteins.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Physiology, University of Manitoba, WinnipegManitoba, Canada
| | - Leigh C Murphy
- Department of Biochemistry, University of Manitoba, WinnipegManitoba, Canada
| | - Liam J Murphy
- Department of Physiology, University of Manitoba, WinnipegManitoba, Canada
- Department of Internal Medicine, University of Manitoba, WinnipegManitoba, Canada
- Correspondence to: Liam J. MURPHY Room 843, John Buhler Research Centre, University of Manitoba, 715 McDermot Ave., Winnipeg MB R3E 3P4, Canada. Tel.: (204) 789 3779; Fax: (204) 789 3940 E-mail:
| |
Collapse
|
77
|
Tang MK, Wang CM, Shan SW, Chui YL, Ching AKK, Chow PH, Grotewold L, Chan JYH, Lee KKH. Comparative proteomic analysis reveals a function of the novel death receptor-associated protein BRE in the regulation of prohibitin and p53 expression and proliferation. Proteomics 2006; 6:2376-85. [PMID: 16518872 DOI: 10.1002/pmic.200500603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain and reproductive organ expressed (BRE) gene encodes a highly conserved stress-modulating protein. To gain further insight into the function of this gene, we used comparative proteomics to investigate the protein profiles of C2C12 and D122 cells resulting from small interfering RNA (siRNA)-mediated silencing as well as overexpression of BRE. Silencing of BRE in C2C12 cells, using siRNA, resulted in up-regulated Akt-3 and carbonic anhydrase III expression, while the 26S proteasome regulatory subunit S14 and prohibitin were down-regulated. Prohibitin is a potential tumour suppressor gene, which can directly interact with p53. We found that cell proliferation was significantly increased after knockdown of BRE, concomitant with reduced p53 and prohibitin expression. In contrast, we observed decreased proliferation and up-regulation of p53 and prohibitin when BRE was overexpressed in the D122 cell line. In total, five proteins were found to be up-regulated after BRE over-expression. The majority of these proteins can target or crosstalk with NF-kappaB, which plays a central role in regulating cell proliferation, differentiation and survival. Our results establish a crucial role for BRE in the regulation of key proteins of the cellular stress-response machinery and provide an explanation for the multifunctional nature of BRE.
Collapse
Affiliation(s)
- Mei Kuen Tang
- Department of Anatomy, Basic Medical Science Building, Chinese University of Hong Kong, Shatin, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Rastogi S, Joshi B, Fusaro G, Chellappan S. Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism. J Biol Chem 2006; 281:2951-9. [PMID: 16319068 DOI: 10.1074/jbc.m508669200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prohibitin is a growth-suppressive protein that has multiple functions in the nucleus and the mitochondria. Our earlier studies had shown that prohibitin represses the activity of E2F transcription factors while enhancing p53-mediated transcription. At the same time, prohibitin has been implicated in mediating the proper folding of mitochondrial proteins. We had found that treatment of cells with camptothecin, a topoisomerase 1 inhibitor, led to the export of prohibitin and p53 from the nucleus to the mitochondria. Here we show that the camptothecin-induced export of prohibitin occurs preferentially in transformed cell lines, but not in untransformed or primary cells. Cells that did not display the translocation of prohibitin were refractive to the apoptotic effects of camptothecin. The translocation was mediated by a putative nuclear export signal at the C-terminal region of prohibitin; fusion of the nuclear export signal (NES) of prohibitin to green fluorescence protein led to its export from the nucleus. Leptomycin B could inhibit the nuclear export of prohibitin showing that it was a CRM-1-dependent event driven by Ran GTPase. Confirming this, prohibitin was found to physically interact with CRM-1, and this interaction was significantly higher in transformed cells. Delivery of a peptide corresponding to the NES of prohibitin prevented the export of prohibitin to cytoplasm and protected cells from apoptosis. These results suggest that the regulated translocation of prohibitin from the nucleus to the mitochondria facilitates its pleiotropic functions and might contribute to its anti-proliferative and tumor suppressive properties.
Collapse
Affiliation(s)
- Shipra Rastogi
- Drug Discovery Program, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
79
|
McDonagh MB, Ferguson KL, Bacic A, Gardner GE, Hegarty RS. Variation in protein abundance profiles in the M. semitendinosus of lambs bred from sires selected on the basis of growth and muscling potential. ACTA ACUST UNITED AC 2006. [DOI: 10.1071/ar04277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Relative abundance of proteins localised in the nuclear-enriched, total cell membrane and cytosolic fractions of the semitendinosus muscle was compared between lambs bred from control (C), high muscling (M), and high growth rate (G) sires. In total, 31 proteins were identified whose abundance was differentially regulated between sire type. Differences in hind-limb muscle development between M lambs and C and G lambs were reflected in levels of proteins that regulate or function in cellular mechanisms of protein and energy metabolism. Despite no apparent difference in hind-limb muscle growth in G lambs compared to C, G lambs exhibited marked differences in proteins involved in regulation and function of energy metabolism. These results detail pathways that can be specifically targeted to enhance muscle accretion and growth in lambs. The development of means to manipulate these cellular mechanisms may yield greater gains in muscle accretion and growth rate than breeding on the basis for genetic capacity alone.
Collapse
|
80
|
Abstract
Ten years ago, it was observed that the Akt kinase is activated by phosphorylation via a phosphoinositide 3-kinase (PI-3K)-dependent process. This discovery generated enormous interest because it provided a link between PI-3K, an enzyme known to play a critical role in cellular physiology, and its downstream targets. Subsequently, it was shown that the activity of the core components of the 'PI-3K/Akt pathway' is modulated by a complex network of regulatory proteins and pathways. Some of the Akt-binding partners modulate its activation by external signals by interacting with different domains of the Akt protein. This review focuses on the Akt interacting proteins and the mechanisms by which they regulate Akt activation.
Collapse
Affiliation(s)
- Keyong Du
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
81
|
Ma K, Chan JKL, Zhu G, Wu Z. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 2005; 25:3575-82. [PMID: 15831463 PMCID: PMC1084296 DOI: 10.1128/mcb.25.9.3575-3582.2005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) family proteins are key transcription factors controlling gene expression in myocytes, lymphocytes, and neurons. MEF2 proteins are known to be regulated by phosphorylation. We now provide evidence showing that MEF2C is acetylated by p300 both in vitro and in vivo. In C2C12 myogenic cells, MEF2 is preferentially acetylated in differentiating myocytes but not in undifferentiated myoblasts. Several major acetylation sites are mapped to the transactivation domain of MEF2C, some of which are fully conserved in other MEF2 members from several different species. Mutation of these lysines affects MEF2 DNA binding and transcriptional activity, as well as its synergistic effect with myogenin in myogenic conversion assays. When introduced into C2C12 myoblasts, the nonacetylatable MEF2C inhibits myogenic differentiation. Thus, in addition to phosphorylation, MEF2 activity is also critically regulated by acetylation during myogenesis.
Collapse
Affiliation(s)
- Kewei Ma
- Department of Biochemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
82
|
Yang XJ, Grégoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 2005; 25:2873-84. [PMID: 15798178 PMCID: PMC1069616 DOI: 10.1128/mcb.25.8.2873-2884.2005] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, McGill University Health Center, 687 Pine Ave. West, Montréal, Quebec H3A 1A1, Canada.
| | | |
Collapse
|
83
|
Yun BG, Matts RL. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 2005; 307:212-23. [PMID: 15922741 DOI: 10.1016/j.yexcr.2005.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 12/27/2022]
Abstract
As derivatives of the Hsp90-inhibitor and tumoricidal agent geldanamycin move into phase II clinical trials, its potential for triggering adverse effects in non-tumor cell populations requires closer examination. In this report, the effect of geldanamycin on the differentiation and survival of C2C12 myoblasts was investigated. Treatment of differentiating C2C12 myoblasts with geldanamycin blocked myogenin expression, inhibited myotubule formation, and led to the depletion of three Hsp90-dependent protein kinases, ErbB2, Fyn, and Akt, and induction of apoptosis. ErbB2 levels declined rapidly, while Fyn and Akt levels decreased at a slower rate. Geldanamycin blocked the interaction of Hsp90 and its "kinase-specific" co-chaperone Cdc37 with Fyn, indicating that Fyn is an Hsp90-dependent kinase. Pulse-chase experiments indicated that geldanamycin caused newly synthesized Akt and Fyn to be degraded rapidly, but geldanamycin had little effect on the turnover rate of mature Fyn and Akt. Curiously, total cellular Src (c-Src) protein levels and the turnover rate of newly synthesized c-Src were unaffected by geldanamycin. While, geldanamycin had no effect on the levels of the putative Hsp90 client protein MyoD expressed in C2C12 cells, geldanamycin disrupted the interaction of Cdc37 with MyoD. Thus, inhibition of Hsp90 caused C2C12 cells to become depleted of multiple signal transduction proteins whose functions are essential for myoblast differentiation, and muscle cell survival, suggesting that geldanamycin derivatives may have the prospective of adversely affecting the physiology of certain sensitive muscle cell populations in vivo.
Collapse
Affiliation(s)
- Bo-Geon Yun
- Department of Biochemistry and Molecular Biology, 246 NRC, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | |
Collapse
|
84
|
Tatsuta T, Model K, Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 2004; 16:248-59. [PMID: 15525670 PMCID: PMC539169 DOI: 10.1091/mbc.e04-09-0807] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prohibitins comprise a remarkably conserved protein family in eukaryotic cells with proposed functions in cell cycle progression, senescence, apoptosis, and the regulation of mitochondrial activities. Two prohibitin homologues, Phb1 and Phb2, assemble into a high molecular weight complex of approximately 1.2 MDa in the mitochondrial inner membrane, but a nuclear localization of Phb1 and Phb2 also has been reported. Here, we have analyzed the biogenesis and structure of the prohibitin complex in Saccharomyces cerevisiae. Both Phb1 and Phb2 subunits are targeted to mitochondria by unconventional noncleavable targeting sequences at their amino terminal end. Membrane insertion involves binding of newly imported Phb1 to Tim8/13 complexes in the intermembrane space and is mediated by the TIM23-translocase. Assembly occurs via intermediate-sized complexes of approximately 120 kDa containing both Phb1 and Phb2. Conserved carboxy-terminal coiled-coil regions in both subunits mediate the formation of large assemblies in the inner membrane. Single particle electron microscopy of purified prohibitin complexes identifies diverse ring-shaped structures with outer dimensions of approximately 270 x 200 angstroms. Implications of these findings for proposed cellular activities of prohibitins are discussed.
Collapse
Affiliation(s)
- Takashi Tatsuta
- Institut für Genetik and Zentrum für Molekulare Medizin, Universität zu Köln, 50674 Köln, Germany
| | | | | |
Collapse
|