51
|
Johnson CM, O'Brien XM, Byrd AS, Parisi VE, Loosely AJ, Li W, Witt H, Faridi MH, LeFort CT, Gupta V, Kim M, Reichner JS. Integrin Cross-Talk Regulates the Human Neutrophil Response to Fungal β-Glucan in the Context of the Extracellular Matrix: A Prominent Role for VLA3 in the Antifungal Response. THE JOURNAL OF IMMUNOLOGY 2016; 198:318-334. [PMID: 27852744 DOI: 10.4049/jimmunol.1502381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 10/20/2016] [Indexed: 11/19/2022]
Abstract
Candida albicans infection produces elongated hyphae resistant to phagocytic clearance compelling alternative neutrophil effector mechanisms to destroy these physically large microbial structures. Additionally, all tissue-based neutrophilic responses to fungal infections necessitate contact with the extracellular matrix (ECM). Neutrophils undergo a rapid, ECM-dependent mechanism of homotypic aggregation and NETosis in response to C. albicans mediated by the β2 integrin, complement receptor 3 (CR3, CD11b/CD18, αMβ2). Neither homotypic aggregation nor NETosis occurs when human neutrophils are exposed either to immobilized fungal β-glucan or to C. albicans hyphae without ECM. The current study provides a mechanistic basis to explain how matrix controls the antifungal effector functions of neutrophils under conditions that preclude phagocytosis. We show that CR3 ligation initiates a complex mechanism of integrin cross-talk resulting in differential regulation of the β1 integrins VLA3 (α3β1) and VLA5 (α5β1). These β1 integrins control distinct antifungal effector functions in response to either fungal β-glucan or C. albicans hyphae and fibronectin, with VLA3 inducing homotypic aggregation and VLA5 regulating NETosis. These integrin-dependent effector functions are controlled temporally whereby VLA5 and CR3 induce rapid, focal NETosis early after binding fibronectin and β-glucan. Within minutes, CR3 undergoes inside-out auto-activation that drives the downregulation of VLA5 and the upregulation of VLA3 to support neutrophil swarming and aggregation. Forcing VLA5 to remain in the activated state permits NETosis but prevents homotypic aggregation. Therefore, CR3 serves as a master regulator during the antifungal neutrophil response, controlling the affinity states of two different β1 integrins, which in turn elicit distinct effector functions.
Collapse
Affiliation(s)
- Courtney M Johnson
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Xian M O'Brien
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912
| | - Angel S Byrd
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Valentina E Parisi
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Alex J Loosely
- Department of Physics, Brown University, Providence, RI 02912
| | - Wei Li
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903
| | - Hadley Witt
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Mohd H Faridi
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Craig T LeFort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| |
Collapse
|
52
|
Torchiaro E, Lorenzato A, Olivero M, Valdembri D, Gagliardi PA, Gai M, Erriquez J, Serini G, Di Renzo MF. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism. Oncotarget 2016; 7:712-28. [PMID: 26625210 PMCID: PMC4808028 DOI: 10.18632/oncotarget.6412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.
Collapse
Affiliation(s)
- Erica Torchiaro
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Annalisa Lorenzato
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Martina Olivero
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Paolo Armando Gagliardi
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Marta Gai
- Department of Molecular Biotechnologies and Health Sciences, University of Turin at the Molecular Biotechnology Center, Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Maria Flavia Di Renzo
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| |
Collapse
|
53
|
Mould AP, Askari JA, Byron A, Takada Y, Jowitt TA, Humphries MJ. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION. J Biol Chem 2016; 291:20993-21007. [PMID: 27484800 PMCID: PMC5076510 DOI: 10.1074/jbc.m116.736942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking.
Collapse
Affiliation(s)
- A Paul Mould
- From the Biomolecular Analysis Core Facility and
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Adam Byron
- the Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | - Yoshikazu Takada
- the Department of Vascular Biology, VB-1, The Scripps Research Institute, La Jolla, California 92037
| | | | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
54
|
Abstract
Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.
Collapse
|
55
|
Blandin AF, Noulet F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Vereb G, Lelong-Rebel I, Martin S, Dontenwill M, Lehmann M. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376:328-38. [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Fanny Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Guillaume Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Marie-Cécile Mercier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Laurence Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Philippe Ronde
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, France
| | - Nelly Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France; Department of Pharmacy, Centre Paul Strauss, Strasbourg, France
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Isabelle Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Sophie Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Monique Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Maxime Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
56
|
Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. ACTA ACUST UNITED AC 2016; 108:19-32. [DOI: 10.1002/bdrc.21122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Lien M. Davidson
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| |
Collapse
|
57
|
A Sawtooth Pattern of Cadherin 2 Stability Mechanically Regulates Somite Morphogenesis. Curr Biol 2016; 26:542-9. [PMID: 26853361 DOI: 10.1016/j.cub.2015.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023]
Abstract
Differential cadherin (Cdh) expression is a classical mechanism for in vitro cell sorting. Studies have explored the roles of differential Cdh levels in cell aggregates and during vertebrate gastrulation, but the role of differential Cdh activity in forming in vivo tissue boundaries and boundary extracellular matrix (ECM) is unclear. Here, we examine the interactions between cell-cell and cell-ECM adhesion during somitogenesis, the formation of the segmented embryonic precursors of the vertebral column and musculature. We identify a sawtooth pattern of stable Cdh2 adhesions in which there is a posterior-to-anterior gradient of stable Cdh2 within each somite, while there is a step-like drop in stable Cdh2 along the somite boundary. Moreover, we find that the posterior somite boundary cells with high levels of stable Cdh2 have the most columnar morphology. Cdh2 is required for maximal cell aspect ratio and thus full epithelialization of the posterior somite. Loss-of-function analysis also indicates that Cdh2 acts with the fibronectin (FN) receptor integrin α5 (Itgα5) to promote somite boundary formation. Using genetic mosaics, we demonstrate that differential Cdh2 levels are sufficient to induce boundary formation, Itgα5 activation, and FN matrix assembly in the paraxial mesoderm. Elevated cytoskeletal contractility is sufficient to replace differential Cdh2 levels in genetic mosaics, suggesting that Cdh2 promotes ECM assembly by increasing cytoskeletal and tissue stiffness along the posterior somite boundary. Throughout somitogenesis, Cdh2 promotes ECM assembly along tissue boundaries and inhibits ECM assembly in the tissue mesenchyme.
Collapse
|
58
|
Abstract
Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions.
Collapse
Affiliation(s)
- Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | | | | |
Collapse
|
59
|
Hang Q, Isaji T, Hou S, Im S, Fukuda T, Gu J. Integrin α5 Suppresses the Phosphorylation of Epidermal Growth Factor Receptor and Its Cellular Signaling of Cell Proliferation via N-Glycosylation. J Biol Chem 2015; 290:29345-60. [PMID: 26483551 DOI: 10.1074/jbc.m115.682229] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/26/2022] Open
Abstract
Integrin α5β1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5β1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5β1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5β1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3-5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3-5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors.
Collapse
Affiliation(s)
- Qinglei Hang
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
60
|
A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices. Biomaterials 2015; 74:256-66. [PMID: 26461118 DOI: 10.1016/j.biomaterials.2015.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
The cell binding motif RGD is the most widely used peptide to improve cell binding properties of various biomaterials, including recombinant spider silk. In this paper we use genetic engineering to further enhance the cell supportive capacity of spider silk by presenting the RGD motif as a turn loop, similar to the one found in fibronectin (FN), but in the silk stabilized by cysteines, and therefore denoted FNCC. Human primary cells cultured on FNCC-silk showed increased attachment, spreading, stress fiber formation and focal adhesions, not only compared to RGD-silk, but also to silk fused with linear controls of the RGD containing motif from fibronectin. Cell binding to FNCC-silk was shown to involve the α5β1 integrin, and to support proliferation and migration of keratinocytes. The FNCC-silk protein allowed efficient assembly, and could even be transformed into free standing films, on which keratinocytes could readily form a monolayer culture. The results hold promise for future applications within tissue engineering.
Collapse
|
61
|
Cross-Scale Integrin Regulation Organizes ECM and Tissue Topology. Dev Cell 2015; 34:33-44. [PMID: 26096733 DOI: 10.1016/j.devcel.2015.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022]
Abstract
The diverse morphologies of animal tissues are underlain by different configurations of adherent cells and extracellular matrix (ECM). Here, we elucidate a cross-scale mechanism for tissue assembly and ECM remodeling involving Cadherin 2, the ECM protein Fibronectin, and its receptor Integrin α5. Fluorescence cross-correlation spectroscopy within the zebrafish paraxial mesoderm mesenchyme reveals a physical association between Integrin α5 on adjacent cell membranes. This Integrin-Integrin complex correlates with conformationally inactive Integrin. Cadherin 2 stabilizes both the Integrin association and inactive Integrin conformation. Thus, Integrin repression within the adherent mesenchymal interior of the tissue biases Fibronectin fibrillogenesis to the tissue surface lacking cell-cell adhesions. Along nascent somite boundaries, Cadherin 2 levels decrease, becoming anti-correlated with levels of Integrin α5. Simultaneously, Integrin α5 clusters and adopts the active conformation and then commences ECM assembly. This cross-scale regulation of Integrin activation organizes a stereotypic pattern of ECM necessary for vertebrate body elongation and segmentation.
Collapse
|
62
|
Rainero E, Howe JD, Caswell PT, Jamieson NB, Anderson K, Critchley DR, Machesky L, Norman JC. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration. Cell Rep 2015; 10:398-413. [PMID: 25600874 DOI: 10.1016/j.celrep.2014.12.037] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.
Collapse
Affiliation(s)
- Elena Rainero
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Jonathan D Howe
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK; Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Patrick T Caswell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK; Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nigel B Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Alexandra Parade, Glasgow G31 2ER, UK
| | - Kurt Anderson
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK.
| |
Collapse
|
63
|
Manavski Y, Carmona G, Bennewitz K, Tang Z, Zhang F, Sakurai A, Zeiher AM, Gutkind JS, Li X, Kroll J, Dimmeler S, Chavakis E. Brag2 differentially regulates β1- and β3-integrin-dependent adhesion in endothelial cells and is involved in developmental and pathological angiogenesis. Basic Res Cardiol 2014; 109:404. [DOI: 10.1007/s00395-014-0404-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/19/2014] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
|
64
|
Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. ACTA ACUST UNITED AC 2013; 202:545-61. [PMID: 23918940 PMCID: PMC3734079 DOI: 10.1083/jcb.201303044] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of CCM1/2 leads to destabilization of ICAP-1 and up-regulation of β1 integrin, resulting in the destabilization of intercellular junctions due to increased cell contractility and aberrant extracellular matrix remodeling. The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.
Collapse
Affiliation(s)
- Eva Faurobert
- INSERM U823, Institut Albert Bonniot, Grenoble F-38042, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Palamidessi A, Frittoli E, Ducano N, Offenhauser N, Sigismund S, Kajiho H, Parazzoli D, Oldani A, Gobbi M, Serini G, Di Fiore PP, Scita G, Lanzetti L. The GTPase-activating protein RN-tre controls focal adhesion turnover and cell migration. Curr Biol 2013; 23:2355-64. [PMID: 24239119 DOI: 10.1016/j.cub.2013.09.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/02/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Integrin-mediated adhesion of cells to the extracellular matrix (ECM) relies on the dynamic formation of focal adhesions (FAs), which are biochemical and mechanosensitive platforms composed of a large variety of cytosolic and transmembrane proteins. During migration, there is a constant turnover of ECM contacts that initially form as nascent adhesions at the leading edge, mature into FAs as actomyosin tension builds up, and are then disassembled at the cell rear, thus allowing for cell detachment. Although the mechanisms of FA assembly have largely been defined, the molecular circuitry that regulates their disassembly still remains elusive. RESULTS Here, we show that RN-tre, a GTPase-activating protein (GAP) for Rabs including Rab5 and Rab43, is a novel regulator of FA dynamics and cell migration. RN-tre localizes to FAs and to a pool of Rab5-positive vesicles mainly associated with FAs undergoing rapid remodeling. We found that RN-tre inhibits endocytosis of β1, but not β3, integrins and delays the turnover of FAs, ultimately impairing β1-dependent, but not β3-dependent, chemotactic cell migration. All of these effects are mediated by its GAP activity and rely on Rab5. CONCLUSIONS Our findings identify RN-tre as the Rab5-GAP that spatiotemporally controls FA remodeling during chemotactic cell migration.
Collapse
Affiliation(s)
- Andrea Palamidessi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proc Natl Acad Sci U S A 2013; 110:19372-7. [PMID: 24222685 DOI: 10.1073/pnas.1307405110] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Matrix mechanics controls cell fate by modulating the bonds between integrins and extracellular matrix (ECM) proteins. However, it remains unclear how fibronectin (FN), type 1 collagen, and their receptor integrin subtypes distinctly control force transmission to regulate focal adhesion kinase (FAK) activity, a crucial molecular signal governing cell adhesion/migration. Here we showed, using a genetically encoded FAK biosensor based on fluorescence resonance energy transfer, that FN-mediated FAK activation is dependent on the mechanical tension, which may expose its otherwise hidden FN synergy site to integrin α5. In sharp contrast, the ligation between the constitutively exposed binding motif of type 1 collagen and its receptor integrin α2 was surprisingly tension-independent to induce sufficient FAK activation. Although integrin α subunit determines mechanosensitivity, the ligation between α subunit and the ECM proteins converges at the integrin β1 activation to induce FAK activation. We further discovered that the interaction of the N-terminal protein 4.1/ezrin/redixin/moesin basic patch with phosphatidylinositol 4,5-biphosphate is crucial during cell adhesion to maintain the FAK activation from the inhibitory effect of nearby protein 4.1/ezrin/redixin/moesin acidic sites. Therefore, different ECM proteins either can transmit or can shield from mechanical forces to regulate cellular functions, with the accessibility of ECM binding motifs by their specific integrin α subunits determining the biophysical mechanisms of FAK activation during mechanotransduction.
Collapse
|
67
|
Boscher C, Nabi IR. Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 2013; 24:2134-45. [PMID: 23657817 PMCID: PMC3694797 DOI: 10.1091/mbc.e13-02-0095] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 binding to N-glycans promotes EGF receptor signaling to integrin in mammary cancer cells. This leads to phospho-caveolin-1–, Src-, and ILK-dependent activation of RhoA, resulting in actin reorganization in circular dorsal ruffles, cell migration, and fibronectin remodeling. In murine mammary epithelial cancer cells, galectin-3 binding to β1,6-acetylglucosaminyltransferase V (Mgat5)–modified N-glycans restricts epidermal growth factor (EGF) receptor mobility in the plasma membrane and acts synergistically with phospho-caveolin-1 to promote integrin-dependent matrix remodeling and cell migration. We show that EGF signaling to RhoA is galectin-3 and phospho-caveolin-1 dependent and promotes the formation of transient, actin-rich, circular dorsal ruffles (CDRs), cell migration, and fibronectin fibrillogenesis via Src- and integrin-linked kinase (ILK)–dependent signaling. ILK, Src, and galectin-3 also mediate EGF stimulation of caveolin-1 phosphorylation. Direct activation of integrin with Mn2+ induces galectin-3, ILK, and Src-dependent RhoA activation and caveolin-1 phosphorylation. This suggests that in response to EGF, galectin-3 enables outside-in integrin signaling stimulating phospho-caveolin-1–dependent RhoA activation, actin reorganization in CDRs, cell migration, and fibronectin remodeling. Similarly, caveolin-1/galectin-3–dependent EGF signaling induces motility, peripheral actin ruffling, and RhoA activation in MDA-MB-231 human breast carcinoma cells, but not HeLa cells. These studies define a galectin-3/phospho-caveolin-1/RhoA signaling module that mediates integrin signaling downstream of growth factor activation, leading to actin and matrix remodeling and tumor cell migration in metastatic cancer cells.
Collapse
Affiliation(s)
- Cecile Boscher
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
68
|
Mythreye K, Knelson EH, Gatza CE, Gatza ML, Blobe GC. TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells. Oncogene 2013; 32:1416-27. [PMID: 22562249 PMCID: PMC3835656 DOI: 10.1038/onc.2012.157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/15/2012] [Accepted: 03/28/2012] [Indexed: 12/15/2022]
Abstract
The type III TGF-β receptor (TβRIII) is a ubiquitous co-receptor for TGF-β superfamily ligands with roles in suppressing cancer progression, in part through suppressing cell motility. Here we demonstrate that TβRIII promotes epithelial cell adhesion to fibronectin in a β-arrestin2 dependent and TGF-β/BMP independent manner by complexing with active integrin α5β1, and mediating β-arrestin2-dependent α5β1 internalization and trafficking to nascent focal adhesions. TβRIII-mediated integrin α5β1 trafficking regulates cell adhesion and fibronectin fibrillogenesis in epithelial cells, as well as α5 localization in breast cancer patients. We further demonstrate that increased TβRIII expression correlates with increased α5 localization at sites of cell-cell adhesion in breast cancer patients, while higher TβRIII expression is a strong predictor of overall survival in breast cancer patients. These data support a novel, clinically relevant role for TβRIII in regulating integrin α5 localization, reveal a novel crosstalk mechanism between the integrin and TGF-β superfamily signaling pathways and identify β-arrestin2 as a regulator of α5β1 trafficking.
Collapse
Affiliation(s)
| | - Erik H. Knelson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708, USA
| | - Catherine E. Gatza
- Department of Medicine, Duke University Medical Center, Durham NC 27708, USA
| | - Michael L. Gatza
- Duke IGSP, Duke University Medical Center, Durham, NC 27708, USA
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center, Durham NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708, USA
| |
Collapse
|
69
|
Gupton SL, Riquelme D, Hughes-Alford SK, Tadros J, Rudina SS, Hynes RO, Lauffenburger D, Gertler FB. Mena binds α5 integrin directly and modulates α5β1 function. ACTA ACUST UNITED AC 2012; 198:657-76. [PMID: 22908313 PMCID: PMC3514034 DOI: 10.1083/jcb.201202079] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mena binds to the cytoplasmic tail of α5 integrin and modulates key
α5β1 integrin functions in adhesion, motility, and
fibrillogenesis. Mena is an Ena/VASP family actin regulator with roles in cell migration,
chemotaxis, cell–cell adhesion, tumor cell invasion, and metastasis.
Although enriched in focal adhesions, Mena has no established function within
these structures. We find that Mena forms an adhesion-regulated complex with
α5β1 integrin, a fibronectin receptor involved in cell adhesion,
motility, fibronectin fibrillogenesis, signaling, and growth factor receptor
trafficking. Mena bound directly to the carboxy-terminal portion of the
α5 cytoplasmic tail via a 91-residue region containing 13 five-residue
“LERER” repeats. In fibroblasts, the Mena–α5 complex
was required for “outside-in” α5β1 functions,
including normal phosphorylation of FAK and paxillin and formation of fibrillar
adhesions. It also supported fibrillogenesis and cell spreading and controlled
cell migration speed. Thus, fibroblasts require Mena for multiple
α5β1-dependent processes involving bidirectional interactions
between the extracellular matrix and cytoplasmic focal adhesion proteins.
Collapse
Affiliation(s)
- Stephanie L Gupton
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Valdembri D, Serini G. Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol 2012; 24:582-91. [PMID: 22981739 DOI: 10.1016/j.ceb.2012.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 08/20/2012] [Indexed: 01/14/2023]
Abstract
The dynamic control of integrin-mediated cell adhesion to extracellular matrix proteins is crucial for several physiological and pathological phenomena as diverse as embryonic morphogenesis, muscle contraction, tissue repair, and cancer cell dissemination. On one hand, the intrinsic conformational plasticity of integrins, which can be bidirectionally modulated by their ligands and cytosolic adaptors in combination with physical forces, is a key regulatory parameter. On the other hand, endo-exocytic integrin traffic logistics represent an additional important mode of control. Herein, we highlight how these two apparently parallel and independent strategies for tuning integrin function appear instead to be indissolubly intermingled, as eukaryotic cells have evolved distinct molecular strategies and endosomal pathways to traffic ligand-bound and ligand-free integrins.
Collapse
Affiliation(s)
- Donatella Valdembri
- Laboratory of Cell Adhesion Dynamics - IRCC and Department of Oncological Sciences, University of Torino School of Medicine, 10060, Candiolo, Italy
| | | |
Collapse
|
71
|
SHARPIN is an endogenous inhibitor of β1-integrin activation. Nat Cell Biol 2011; 13:1315-24. [PMID: 21947080 DOI: 10.1038/ncb2340] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/09/2011] [Indexed: 12/16/2022]
Abstract
Regulated activation of integrins is critical for cell adhesion, motility and tissue homeostasis. Talin and kindlins activate β1-integrins, but the counteracting inhibiting mechanisms are poorly defined. We identified SHARPIN as an important inactivator of β1-integrins in an RNAi screen. SHARPIN inhibited β1-integrin functions in human cancer cells and primary leukocytes. Fibroblasts, leukocytes and keratinocytes from SHARPIN-deficient mice exhibited increased β1-integrin activity, which was fully rescued by re-expression of SHARPIN. We found that SHARPIN directly binds to a conserved cytoplasmic region of integrin α-subunits and inhibits recruitment of talin and kindlin to the integrin. Therefore, SHARPIN inhibits the critical switching of β1-integrins from inactive to active conformations.
Collapse
|
72
|
Valdembri D, Sandri C, Santambrogio M, Serini G. Regulation of integrins by conformation and traffic: it takes two to tango. MOLECULAR BIOSYSTEMS 2011; 7:2539-46. [PMID: 21761076 DOI: 10.1039/c1mb05066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
In multicellular organisms, the execution of complex morphogenetic events, such as gastrulation or vascular morphogenesis, depends on the dynamic modulation of adhesion. Guidance cues, such as chemokines, growth factors, and semaphorins control the attachment of cells to extracellular matrix proteins by regulating the conformational activation of integrin receptors. The endo-exocytic traffic of integrins back and forth from the plasma membrane represents another crucial regulatory aspect in cell adhesion and motility. Recent work added an additional layer of complexity by indicating that distinct molecular machineries are required for trafficking active and inactive integrins.
Collapse
Affiliation(s)
- Donatella Valdembri
- Laboratory of Cell Adhesion Dynamics-IRCC, Institute for Cancer Research and Treatment and Department of Oncological Sciences, University of Torino School of Medicine, Strada Provinciale 142, Km 3.95, 10060, Candiolo, Italy
| | | | | | | |
Collapse
|
73
|
Wilken JA, Baron AT, Foty RA, McCormick DJ, Maihle NJ. Identification of immunoreactive regions of homology between soluble epidermal growth factor receptor and α5-integrin. Biochemistry 2011; 50:4309-21. [PMID: 21491912 DOI: 10.1021/bi200126j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proteins encoded by the epidermal growth factor receptor (EGFR/HER1/ERBB1) gene are being studied as diagnostic, prognostic, and theragnostic biomarkers for numerous human cancers. The clinical application of these tissue/tumor biomarkers has been limited, in part, by discordant results observed for epidermal growth factor receptor (EGFR) expression using different immunological reagents. Previous studies have used EGFR-directed antibodies that cannot distinguish between full-length and soluble EGFR (sEGFR) expression. We have generated and characterized an anti-sEGFR polyclonal antiserum directed against a 31-mer peptide (residues 604-634) located within the unique 78-amino acid carboxy-terminal sequence of sEGFR. Here, we use this antibody to demonstrate that sEGFR is coexpressed with EGFR in a number of carcinoma-derived cell lines. In addition, we show that a second protein of ~140 kDa (p140) also is detected by this antibody. Rigorous biochemical characterization identifies this second protein to be α5-integrin. We show that a 26-amino acid peptide in the calf domain of α5-integrin (residues 710-735) is 35% identical in sequence with a 31-mer carboxy-terminal sEGFR peptide and exhibits an approximately 5-fold lower affinity for anti-sEGFR than the homologous 31-mer sEGFR peptide does. We conclude that the carboxy terminus of sEGFR and the calf-1 domain of α5-integrin share a region of sequence identity, which results in their mutual immunological reactivity with anti-sEGFR. We also demonstrate that anti-sEGFR promotes three-dimensional tissue cohesion and compaction in vitro, further suggesting a functional link between sEGFR and α5-integrin and a role of the calf-1 domain in cell adhesion. These results have implications for the study of both EGFR and sEGFR as cancer biomarkers and also provide new insight into the mechanisms of interaction between cell surface EGFR isoforms and integrins in complex processes such as cell adhesion and survival signaling.
Collapse
Affiliation(s)
- Jason A Wilken
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, 310 Cedar Street, New Haven, CT 06520-8063, USA
| | | | | | | | | |
Collapse
|
74
|
Tiwari S, Askari JA, Humphries MJ, Bulleid NJ. Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking. J Cell Sci 2011; 124:1672-80. [PMID: 21511727 DOI: 10.1242/jcs.084483] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integrins are divalent cation-dependent, αβ heterodimeric adhesion receptors that control many fundamental aspects of cell behaviour by bi-directional signalling between the extracellular matrix and intracellular cytoskeleton. The activation state of cell surface integrins is tightly regulated by divalent cation occupancy of the ligand-binding pocket and by interaction with cytoplasmic adaptor proteins, such as talin. These agents elicit gross conformational changes across the entire molecule, which specify the activation state. Much less is known about the activation state of newly synthesised integrins or the role of cations during the early folding and trafficking of integrins. Here we use a number of well-characterised, conformation-specific antibodies to demonstrate that β1-integrins adopt the bent, inactive conformation after assembly with α-integrins in the endoplasmic reticulum. Folding and assembly are totally dependent on the binding of Ca(2+) ions. In addition, Ca(2+) binding prevents integrin activation before its arrival at the cell surface. Activation at the cell surface occurs only following displacement of Ca(2+) with Mg(2+) or Mn(2+). These results demonstrate the essential roles played by divalent cations to facilitate folding of the β-integrin subunit, to prevent inappropriate intracellular integrin signalling, and to activate ligand binding and signalling at the cell surface.
Collapse
Affiliation(s)
- Shweta Tiwari
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
75
|
Qu H, Tu Y, Shi X, Larjava H, Saleem MA, Shattil SJ, Fukuda K, Qin J, Kretzler M, Wu C. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci 2011; 124:879-91. [PMID: 21325030 PMCID: PMC3048888 DOI: 10.1242/jcs.076976] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 12/29/2022] Open
Abstract
Kindlin-2 is a FERM and PH domain-containing integrin-binding protein that is emerging as an important regulator of integrin activation. How kindlin-2 functions in integrin activation, however, is not known. We report here that kindlin-2 interacts with multiple phosphoinositides, preferentially with phosphatidylinositol 3,4,5-trisphosphate. Although integrin-binding is essential for focal adhesion localization of kindlin-2, phosphoinositide-binding is not required for this process. Using biologically and clinically relevant glomerular podocytes as a model system, we show that integrin activation and dependent processes are tightly regulated by kindlin-2: depletion of kindlin-2 reduced integrin activation, matrix adhesion and fibronectin matrix deposition, whereas overexpression of kindlin-2 promoted these processes. Furthermore, we provide evidence showing that kindlin-2 is involved in phosphoinositide-3-kinase-mediated regulation of podocyte-matrix adhesion and fibronectin matrix deposition. Mechanistically, kindlin-2 promotes integrin activation and integrin-dependent processes through interacting with both integrins and phosphoinositides. TGF-β1, a mediator of progressive glomerular failure, markedly increased the level of kindlin-2 and fibronectin matrix deposition, and the latter process was reversed by depletion of kindlin-2. Our results reveal important functions of kindlin-2 in the regulation of podocyte-matrix adhesion and matrix deposition and shed new light on the mechanism whereby kindlin-2 functions in these processes.
Collapse
Affiliation(s)
- Hong Qu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaohua Shi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hannu Larjava
- Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Moin A. Saleem
- The Academic Renal Unit, University of Bristol, Bristol BS10 5NB, UK
| | - Sanford J. Shattil
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Koichi Fukuda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive Ann Arbor, MI 48109, USA
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
76
|
Régent M, Planus E, Bouin AP, Bouvard D, Brunner M, Faurobert E, Millon-Frémillon A, Block MR, Albiges-Rizo C. Specificities of β1 integrin signaling in the control of cell adhesion and adhesive strength. Eur J Cell Biol 2010; 90:261-9. [PMID: 20971526 DOI: 10.1016/j.ejcb.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022] Open
Abstract
Cells exert actomyosin contractility and cytoskeleton-dependent force in response to matrix stiffness cues. Cells dynamically adapt to force by modifying their behavior and remodeling their microenvironment. This adaptation is favored by integrin activation switch and their ability to modulate their clustering and the assembly of an intracellular hub in response to force. Indeed integrins are mechanoreceptors and mediate mechanotransduction by transferring forces to specific adhesion proteins into focal adhesions which are sensitive to tension and activate intracellular signals. α(5)β(1) integrin is considered of major importance for the formation of an elaborate meshwork of fibronectin fibrils and for the extracellular matrix deposition and remodeling. Here we summarize recent progress in the study of mechanisms regulating the activation cycle of β(1) integrin and the specificity of α(5)β(1) integrin in mechanotransduction.
Collapse
Affiliation(s)
- Myriam Régent
- INSERM U823 Institut Albert Bonniot, Université Joseph Fourier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Martín-Villar E, Fernández-Muñoz B, Parsons M, Yurrita MM, Megías D, Pérez-Gómez E, Jones GE, Quintanilla M. Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell 2010; 21:4387-99. [PMID: 20962267 PMCID: PMC3002391 DOI: 10.1091/mbc.e10-06-0489] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Podoplanin, a cancer-associated glycoprotein, interacts with CD44. Both glycoproteins are coordinately upregulated during tumor progression. Podoplanin–CD44 interaction in the cell membrane occurs mainly in migrating cells, and it seems to be required for podoplanin-mediated cell migration and directionality. Podoplanin is a transmembrane glycoprotein up-regulated in different human tumors, especially those derived from squamous stratified epithelia (SCCs). Its expression in tumor cells is linked to increased cell migration and invasiveness; however, the mechanisms underlying this process remain poorly understood. Here we report that CD44, the major hyaluronan (HA) receptor, is a novel partner for podoplanin. Expression of the CD44 standard isoform (CD44s) is coordinately up-regulated together with that of podoplanin during progression to highly aggressive SCCs in a mouse skin model of carcinogenesis, and during epithelial-mesenchymal transition (EMT). In carcinoma cells, CD44 and podoplanin colocalize at cell surface protrusions. Moreover, CD44 recruitment promoted by HA-coated beads or cross-linking with a specific CD44 antibody induced corecruitment of podoplanin. Podoplanin–CD44s interaction was demonstrated both by coimmunoprecipitation experiments and, in vivo, by fluorescence resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM), the later confirming its association on the plasma membrane of cells with a migratory phenotype. Importantly, we also show that podoplanin promotes directional persistence of motility in epithelial cells, a feature that requires CD44, and that both molecules cooperate to promote directional migration in SCC cells. Our results support a role for CD44-podoplanin interaction in driving tumor cell migration during malignancy.
Collapse
Affiliation(s)
- Ester Martín-Villar
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, SE1UL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Stepp MA, Daley WP, Bernstein AM, Pal-Ghosh S, Tadvalkar G, Shashurin A, Palsen S, Jurjus RA, Larsen M. Syndecan-1 regulates cell migration and fibronectin fibril assembly. Exp Cell Res 2010; 316:2322-39. [PMID: 20580707 PMCID: PMC3141227 DOI: 10.1016/j.yexcr.2010.05.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/10/2010] [Accepted: 05/18/2010] [Indexed: 01/25/2023]
Abstract
Corneal scarring is a major cause of blindness worldwide and can result from the deposition of abnormal amounts of collagen fibers lacking the correct size and spacing required to produce a clear cornea. Collagen fiber formation requires a preformed fibronectin (FN) matrix. We demonstrate that the loss of syndecan1 (sdc1) in corneal stromal cells (CSC) impacts cell migration rates, the sizes and composition of focal and fibrillar adhesions, the activation of integrins, and the assembly of fibronectin into fibrils. Integrin and fibronectin expression are not altered on sdc1-null CSCs. Cell adhesion, spreading, and migration studies using low compared to high concentrations of FN and collagen I (CNI) or vitronectin (VN) with and without activation of integrins by manganese chloride show that the impact of sdc1 depletion on integrin activation varies depending on the integrin-mediated activity evaluated. Differences in FN fibrillogenesis and migration in sdc1-null CSCs are reversed by addition of manganese chloride but cell spreading differences remain. To determine if our findings on sdc1 were specific to the cornea, we compared the phenotypes of sdc1-null dermal fibroblasts with those of CSCs. We found that without sdc1, both cell types migrate faster; however, cell-type-specific differences in FN expression and its assembly into fibrils exist between these two cell types. Together, our data demonstrate that sdc1 functions to regulate integrin activity in multiple cell types. Loss of sdc1-mediated integrin function results in cell-type specific differences in matrix assembly. A better understanding of how different cell types regulate FN fibril formation via syndecans and integrins will lead to better treatments for scarring and fibrosis.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington DC 20037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Hamidouche Z, Fromigué O, Ringe J, Häupl T, Marie PJ. Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol 2010; 11:44. [PMID: 20573191 PMCID: PMC2901205 DOI: 10.1186/1471-2121-11-44] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/23/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs. RESULTS Microarray analysis and validation experiments showed that the expression of IGF2 and IGFBP2 was increased together with integrin alpha5 (ITGA5) during dexamethasone-induced osteoblast differentiation in human MSCs. This effect was functional since we found that IGF2 and IGFBP2 enhanced the expression of osteoblast phenotypic markers and in vitro osteogenic capacity of hMSCs. Interestingly, we showed that downregulation of endogenous ITGA5 using specific shRNA decreased IGF2 and IGFBP2 expression in hMSCs. Conversely, ITGA5 overexpression upregulated IGF2 and IGFBP2 expression in hMSCs, which indicates tight crosstalks between these molecules. Consistent with this concept, activation of endogenous ITGA5 using a specific antibody that primes the integrin, or a peptide that specifically activates ITGA5 increased IGF2 and IGFBP2 expression in hMSCs. Finally, we showed that pharmacological inhibition of FAK/ERK1/2-MAPKs or PI3K signalling pathways that are enhanced by ITGA5 activation, blunted IGF2 and IGFBP2 expression in hMSCs. CONCLUSION The results show that ITGA5 is a key mediator of IGF2 and IGFBP2 expression that promotes osteoblast differentiation in human MSCs, and reveal that crosstalks between ITGA5 and IGF2/IGFBP2 signalling are important mechanisms that trigger osteogenic differentiation in human bone marrow derived mesenchymal stromal cells.
Collapse
Affiliation(s)
- Zahia Hamidouche
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Paris F-75475, France
| | | | | | | | | |
Collapse
|
80
|
Askari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, Humphries MJ. Focal adhesions are sites of integrin extension. J Cell Biol 2010; 188:891-903. [PMID: 20231384 PMCID: PMC2845069 DOI: 10.1083/jcb.200907174] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 02/23/2010] [Indexed: 12/05/2022] Open
Abstract
Integrins undergo global conformational changes that specify their activation state. Current models portray the inactive receptor in a bent conformation that upon activation converts to a fully extended form in which the integrin subunit leg regions are separated to enable ligand binding and subsequent signaling. To test the applicability of this model in adherent cells, we used a fluorescent resonance energy transfer (FRET)-based approach, in combination with engineered integrin mutants and monoclonal antibody reporters, to image integrin alpha5beta1 conformation. We find that restricting leg separation causes the integrin to adopt a bent conformation that is unable to respond to agonists and mediate cell spreading. By measuring FRET between labeled alpha5beta1 and the cell membrane, we find extended receptors are enriched in focal adhesions compared with adjacent regions of the plasma membrane. These results demonstrate definitely that major quaternary rearrangements of beta1-integrin subunits occur in adherent cells and that conversion from a bent to extended form takes place at focal adhesions.
Collapse
Affiliation(s)
- Janet A. Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Christopher J. Tynan
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, England, UK
| | - Stephen E.D. Webb
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, England, UK
| | - Marisa L. Martin-Fernandez
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, England, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
81
|
Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Pagès JC, Srouji S, Livne E, Marie PJ. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A 2009; 106:18587-91. [PMID: 19843692 PMCID: PMC2773973 DOI: 10.1073/pnas.0812334106] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin alpha5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised.
Collapse
Affiliation(s)
- Zahia Hamidouche
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
- University Denis Diderot, Paris, France
| | - Olivia Fromigué
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
- University Denis Diderot, Paris, France
| | | | | | - Pascal Vaudin
- Institut National de la Santé et de la Recherche Médicale U966, University of Tours, France; and
| | - Jean-Christophe Pagès
- Institut National de la Santé et de la Recherche Médicale U966, University of Tours, France; and
| | - Samer Srouji
- Anatomy and Cell Biology Department, Faculty of Medicine, Rappaport Institute, Haifa, Israel
| | - Erella Livne
- Anatomy and Cell Biology Department, Faculty of Medicine, Rappaport Institute, Haifa, Israel
| | - Pierre J. Marie
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
- University Denis Diderot, Paris, France
| |
Collapse
|
82
|
Lydolph MC, Morgan-Fisher M, Høye AM, Couchman JR, Wewer UM, Yoneda A. α9β1 Integrin in melanoma cells can signal different adhesion states for migration and anchorage. Exp Cell Res 2009; 315:3312-24. [PMID: 19796635 DOI: 10.1016/j.yexcr.2009.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/17/2009] [Accepted: 09/23/2009] [Indexed: 01/16/2023]
Affiliation(s)
- Magnus C Lydolph
- Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
83
|
Quinn JA, Graeber CT, Frackelton AR, Kim M, Schwarzbauer JE, Filardo EJ. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30. Mol Endocrinol 2009; 23:1052-64. [PMID: 19342448 PMCID: PMC2703602 DOI: 10.1210/me.2008-0262] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 03/25/2009] [Indexed: 12/18/2022] Open
Abstract
Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.
Collapse
Affiliation(s)
- Jeffrey A Quinn
- Department of Medicine, Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
84
|
Stanchi F, Grashoff C, Nguemeni Yonga CF, Grall D, Fässler R, Van Obberghen-Schilling E. Molecular dissection of the ILK-PINCH-parvin triad reveals a fundamental role for the ILK kinase domain in the late stages of focal-adhesion maturation. J Cell Sci 2009; 122:1800-11. [PMID: 19435803 DOI: 10.1242/jcs.044602] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Integrin-linked kinase (ILK) and cytoplasmic adaptors of the PINCH and parvin families form a ternary complex, termed IPP, that localizes to integrin adhesions. We show here that deletion of the genes encoding ILK or PINCH1 similarly blocks maturation of focal adhesions to tensin-rich and phosphotyrosine-poor fibrillar adhesions (FBs) by downregulating expression or recruitment of tensin and destabilizing alpha5beta1-integrin-cytoskeleton linkages. As IPP components are interdependent for integrin targeting and protein stability, functional dissection of the complex was achieved by fusing ILK, PINCH, parvin or their individual motifs to the cytoplasmic tail of beta3 integrin, normally excluded from FBs. Using this novel gain-of-function approach, we demonstrated that expression of the C-terminal kinase domain of ILK can restore tensin recruitment and prompt focal-adhesion maturation in IPP-null cells. Debilitating mutations in the paxillin- or ATP-binding sites of ILK, together with alpha-parvin silencing, revealed a determinant role for ILK-parvin association, but not for direct paxillin binding, in this function. We propose a model in which the C-terminal domain of ILK promotes integrin sorting by reinforcing alpha5beta1-integrin-actin linkage and controls force transmission by targeting tensin to maturing adhesions.
Collapse
Affiliation(s)
- Fabio Stanchi
- Institute of Developmental Biology and Cancer Research, University of Nice-Sophia Antiopolis, CNRS-UMR6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Cells govern tissue shape by exerting highly regulated forces at sites of matrix adhesion. As the major force-bearing adhesion-receptor protein, integrins have a central role in how cells sense and respond to the mechanics of their surroundings. Recent studies have shown that a key aspect of mechanotransduction is the cycle by which integrins bind to the matrix at the leading cell edge, attach to the cytoskeleton, transduce mechanical force, aggregate in the plasma membrane as part of increasingly strengthened adhesion complexes, unbind and, ultimately, are recycled. This mechanical cycle enables the transition from early complexes to larger, more stable adhesions that can then rapidly release. Within this mechanical cycle, integrins themselves exhibit intramolecular conformational change that regulates their binding affinity and may also be dependent upon force. How the cell integrates these dynamic elements into a rigidity response is not clear. Here, we focus on the steps in the integrin mechanical cycle that are sensitive to force and closely linked to integrin function, such as the lateral alignment of integrin aggregates and related adhesion components.
Collapse
|
86
|
Karydis A, Jimenez-Vidal M, Denker SP, Barber DL. Mislocalized scaffolding by the Na-H exchanger NHE1 dominantly inhibits fibronectin production and TGF-beta activation. Mol Biol Cell 2009; 20:2327-36. [PMID: 19225158 DOI: 10.1091/mbc.e08-08-0842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretion and assembly of the extracellular matrix protein fibronectin regulates a number of normal cell and tissue functions and is dysregulated in disease states such as fibrosis, diabetes, and cancer. We found that mislocalized scaffolding by the plasma membrane Na-H exchanger NHE1 suppresses fibronectin expression, secretion, and assembly. In fibroblasts, wild-type NHE1 localizes to the distal margin of membrane protrusions or lamellipodia but a mutant NHE1-KRA2 lacking binding sites for PI(4,5)P2 and the ERM proteins ezrin, radixin, and moesin is mislocalized and found uniformly along the plasma membrane. Although NHE1 regulates intracellular pH homeostasis, fibronectin production is not regulated by changes in intracellular pH, nor is it attenuated in NHE1-deficient cells, indicating fibronectin expression is independent of NHE1 activity. However, fibronectin production is nearly absent in cells expressing NHE1-KRA2 because scaffolding by NHE1 is mislocalized. Additionally, secretion of active but not latent TGF-beta is reduced and exogenous TGF-beta restores fibronectin secretion and assembly. Our data indicate that scaffolding by NHE1-KRA2 dominantly suppresses fibronectin synthesis and TGF-beta activation, and they suggest that NHE1-KRA2 can be used for obtaining a mechanistic understanding of how fibronectin production is regulated and speculatively for therapeutic control of dysregulated production in pathological conditions.
Collapse
Affiliation(s)
- Anastasios Karydis
- Department of Cell and Tissue Biology, University of California, San Francisco, 94143, USA
| | | | | | | |
Collapse
|
87
|
Valdembri D, Caswell PT, Anderson KI, Schwarz JP, König I, Astanina E, Caccavari F, Norman JC, Humphries MJ, Bussolino F, Serini G. Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 2009; 7:e25. [PMID: 19175293 PMCID: PMC2631072 DOI: 10.1371/journal.pbio.1000025] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 12/11/2008] [Indexed: 12/15/2022] Open
Abstract
Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes alpha5beta1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with alpha5beta1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active alpha5beta1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with alpha5beta1, and the associated motor myosin VI (Myo6) support active alpha5beta1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active alpha5beta1. Nrp1 modulation of alpha5beta1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice.
Collapse
Affiliation(s)
- Donatella Valdembri
- Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy
| | - Patrick T Caswell
- Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Juliane P Schwarz
- Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Ireen König
- Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Elena Astanina
- Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy
| | - Francesca Caccavari
- Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy
| | - Jim C Norman
- Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Federico Bussolino
- Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy
| | - Guido Serini
- Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy
| |
Collapse
|
88
|
Lee SW, Kim SY, Rhyu IC, Chung WY, Leesungbok R, Lee KW. Influence of microgroove dimension on cell behavior of human gingival fibroblasts cultured on titanium substrata. Clin Oral Implants Res 2009; 20:56-66. [DOI: 10.1111/j.1600-0501.2008.01597.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
89
|
Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM. Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 2008; 121:2696-704. [PMID: 18653538 DOI: 10.1242/jcs.029819] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly deposited microfibrils strongly colocalise with fibronectin in primary fibroblasts. Microfibril formation is grossly inhibited by fibronectin depletion, but rescued by supplementation with exogenous cellular fibronectin. As integrin receptors are key determinants of fibronectin assembly, we investigated whether they also influenced microfibril deposition. Analysis of beta1-integrin-receptor-null fibroblasts, blockage of cell surface integrin receptors that regulate fibronectin assembly and disruption of Rho kinase all result in suppressed deposition of both fibronectin and microfibrils. Antibody activation of beta1 integrins in fibronectin-depleted cultures is insufficient to rescue microfibril assembly. In fibronectin(RGE/RGE) mutant mouse fibroblast cultures, which do not engage alpha5beta1 integrin, extracellular assembly of both fibronectin and microfibrils is markedly reduced. Thus, pericellular microfibril assembly is regulated by fibronectin fibrillogenesis.
Collapse
Affiliation(s)
- Rachel Kinsey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Science, Michael Smith Building, Oxford Road, University of Manchester, Manchester M139PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Pan S, Wang R, Zhou X, Corvera J, Kloc M, Sifers R, Gallick GE, Lin SH, Kuang J. Extracellular Alix regulates integrin-mediated cell adhesions and extracellular matrix assembly. EMBO J 2008; 27:2077-90. [PMID: 18636094 DOI: 10.1038/emboj.2008.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/19/2008] [Indexed: 01/12/2023] Open
Abstract
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in alpha5beta1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes alpha5beta1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605-709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 2008; 121:255-64. [PMID: 18216330 DOI: 10.1242/jcs.006064] [Citation(s) in RCA: 686] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Far from being a static structure, the ECM is constantly undergoing remodeling--i.e. assembly and degradation--particularly during the normal processes of development, differentiation and wound repair. When misregulated, this can contribute to disease. ECM assembly is regulated by the 3D environment and the cellular tension that is transmitted through integrins. Degradation is controlled by complex proteolytic cascades, and misregulation of these results in ECM damage that is a common component of many diseases. Tissue engineering strives to replace damaged tissues with stem cells seeded on synthetic structures designed to mimic the ECM and thus restore the normal control of cell function. Stem cell self-renewal and differentiation is influenced by the 3D environment within the stem cell niche. For tissue-engineering strategies to be successful, the intimate dynamic relationship between cells and the ECM must be understood to ensure appropriate cell behavior.
Collapse
Affiliation(s)
- William P Daley
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
92
|
Pae SH, Dokic D, Dettman RW. Communication between integrin receptors facilitates epicardial cell adhesion and matrix organization. Dev Dyn 2008; 237:962-78. [DOI: 10.1002/dvdy.21488] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
93
|
Kuznetsova SA, Mahoney DJ, Martin-Manso G, Ali T, Nentwich HA, Sipes JM, Zeng B, Vogel T, Day AJ, Roberts DD. TSG-6 binds via its CUB_C domain to the cell-binding domain of fibronectin and increases fibronectin matrix assembly. Matrix Biol 2008; 27:201-10. [PMID: 18042364 PMCID: PMC2384166 DOI: 10.1016/j.matbio.2007.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 09/05/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
Abstract
Human plasma fibronectin binds with high affinity to the inflammation-induced secreted protein TSG-6. Fibronectin binds to the CUB_C domain of TSG-6 but not to its Link module. TSG-6 can thus act as a bridging molecule to facilitate fibronectin association with the TSG-6 Link module ligand thrombospondin-1. Fibronectin binding to TSG-6 is divalent cation-independent and is conserved in cellular fibronectins. Based on competition binding studies using recombinant and proteolytic fragments of fibronectin, TSG-6 binding localizes to type III repeats 9-14 of fibronectin. This region of fibronectin contains the Arg-Gly-Asp sequence recognized by alpha5beta1 integrin, but deletion of that sequence does not prevent TSG-6 binding, and TSG-6 does not inhibit cell adhesion on fibronectin substrates mediated by this integrin. This region of fibronectin is also involved in fibronectin matrix assembly, and addition of TSG-6 enhances exogenous and endogenous fibronectin matrix assembly by human fibroblasts. Therefore, TSG-6 is a high affinity ligand that can mediate fibronectin interactions with other matrix components and modulate some interactions of fibronectin with cells.
Collapse
Affiliation(s)
- Svetlana A. Kuznetsova
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J. Mahoney
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tariq Ali
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Hilke A. Nentwich
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - John M. Sipes
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Bixi Zeng
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tikva Vogel
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anthony J. Day
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
94
|
Park J, Will C, Martin B, Gullotti L, Friedrichs N, Buettner R, Schneider H, Ludwig S, Wixler V. Deficiency in the LIM-only protein FHL2 impairs assembly of extracellular matrix proteins. FASEB J 2008; 22:2508-20. [PMID: 18356303 DOI: 10.1096/fj.07-095521] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have described the scaffolding protein FHL2 as a component of focal adhesion structures, to which it is recruited via binding to both alpha- or beta-integrin subunits. Using mesenchymal stem cells from wild-type and FHL2-knockout mice, we show here that inactivation of FHL2 leads to impaired assembly of extracellular matrix proteins on the cell surface and to impaired bundling of focal adhesions. Both altered properties can be restored by reexpression of recombinant FHL2 protein in FHL2-null cells. Molecular analysis of integrin-mediated signaling revealed a higher phosphorylation of FAK at tyrosine 925 in FHL2-knockout cells compared to their wild-type counterpart. Consequently, the activation of the mitogenic kinase ERK was more pronounced in knockout cells on cell adhesion. The growth factor-induced activation of ERK, however, was not altered. The perturbed organization of extracellular matrix on FHL2-null cells was improved when the increased activation of MAPK was inhibited. Our findings point to a role of FHL2 in bundling of focal adhesion structures, in integrin-mediated ERK activation, and subsequently in proper allocation of matrix proteins on the cell surface.
Collapse
Affiliation(s)
- Jung Park
- Institute of Molecular Virology, Münster University Hospital Medical School, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Kotha J, Longhurst C, Appling W, Jennings LK. Tetraspanin CD9 regulates beta 1 integrin activation and enhances cell motility to fibronectin via a PI-3 kinase-dependent pathway. Exp Cell Res 2008; 314:1811-22. [PMID: 18358474 DOI: 10.1016/j.yexcr.2008.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 02/07/2023]
Abstract
Tetraspanin CD9 regulates cell motility and other adhesive processes in a variety of tissue types. Using transfected Chinese Hamster Ovary cells as our model system, we examined the cellular pathways critical for CD9 promoted cell migration. alpha 5 beta 1 integrin was directly involved as CD9 enhanced migration was abolished by the alpha 5 beta 1 blocking antibody PB1. Furthermore, the ligand mimetic peptide RGDS, significantly upregulated the expression of a beta1 ligand induced binding site (LIBS) demonstrating for the first time that CD9 expression potentiates beta1 integrin high affinity conformation states. CD9 promoted cell motility was significantly blocked by phosphatidylinositol-3 kinase (PI-3K) inhibitors, wortmannin and LY294002, whereas inhibitors targeting protein kinase C or mitogen-activated protein kinase had no effect. PI-3K dominant/negative cDNA transfections confirmed that PI-3K was an essential component. CD9 enhanced the phosphorylation of the PI-3K substrate, Akt, in response to cell adhesion on FN. CD9 expression also upregulated p130Cas phosphorylation and total protein levels; however, p130Cas siRNA knockdown did not alter the motile phenotype. CD9 enhanced migration was also unaffected by serum deprivation suggesting that growth factors were not critical. Our studies demonstrate that CD9 upregulates beta1 LIBS, and in concert with alpha 5 beta 1, enhances cell motility to FN via a PI-3K dependent mechanism.
Collapse
Affiliation(s)
- Jayaprakash Kotha
- Vascular Biology Center of Excellence and the Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
96
|
Millon-Frémillon A, Bouvard D, Grichine A, Manet-Dupé S, Block MR, Albiges-Rizo C. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent beta1-integrin affinity. ACTA ACUST UNITED AC 2008; 180:427-41. [PMID: 18227284 PMCID: PMC2213582 DOI: 10.1083/jcb.200707142] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain–associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1–deficient mouse embryonic fibroblasts and cells expressing active β1 integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1–dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.
Collapse
|
97
|
Pereira M, Sharma RI, Penkala R, Gentzel TA, Schwarzbauer JE, Moghe PV. Engineered Cell-Adhesive Nanoparticles Nucleate Extracellular Matrix Assembly. ACTA ACUST UNITED AC 2007; 13:567-78. [PMID: 17518603 DOI: 10.1089/ten.2006.0228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tissue engineering aims to regenerate new biological tissue for replacing diseased or injured tissues. We propose a new approach to accelerate the deposition of cell-secreted matrix proteins into extracellular matrix fibrils. We examined whether dynamic substrates with nanoscale ligand features allowing for alpha5beta1 integrin recruiting, cellular tension generation, and alpha5beta1 integrin mobility would enhance fibronectin matrix assembly in a ligand model system that is routinely not sufficient for its induction. To this end, we developed biodynamic substrates consisting of cell adhesive fragment from the 9th and 10th type repeats of fibronectin (FNf ) functionalized to 100 nm prefabricated albumin nanoparticles (ANPs). FNf-ANPs modulated cellular spreading processes, promoting the development of stellate or dendritic morphologies. Concomitant with the spreading, FNf-ANPs rapidly recruited beta1 integrins to focal contacts and promoted the migration of beta1 integrins centripetally from the cell periphery toward the center. FNf-ANPs stimulated the deposition of secreted fibronectin into matrix fibrils; FNf, the key ligand alone, was not sufficient for fibronectin fibrillogenesis. When FNf-ANPs were displayed from "immobilized" substrates, abolishing any mobility of ligated beta1 integrins, fibronectin matrix assembly was abrogated, implicating the role of dynamic matrix display on matrix assembly. Receptor ligation of FNf-ANPs via noncontractile adhesions was not sufficient to stimulate fibrillogenesis, and Rho-kinase inhibitors abolished fibronectin matrix deposition. Our approach highlights the possibility of engineering integrin-based extracellular matrix assembly using nanotechnology, which may have implications for improved biomaterials for wound repair and basic understanding of matrix remodeling within pathogenesis and biomedicine.
Collapse
Affiliation(s)
- Marian Pereira
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
98
|
Bass MD, Morgan MR, Humphries MJ. Integrins and syndecan-4 make distinct, but critical, contributions to adhesion contact formation. SOFT MATTER 2007; 3:372-376. [PMID: 19458789 PMCID: PMC1828213 DOI: 10.1039/b614610d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During cell adhesion to fibronectin there is a major reorganisation of the actin cytoskeleton and concomitant formation of adhesion complexes. Conflicting studies of adhesion receptors report that either integrin alone, or both integrin and syndecan-4 mediate the formation of vinculin-containing adhesions, and differences in these studies have been attributed to the density and conformational integrity of ligands used. We have endeavoured to resolve these issues by ELISA analysis of immobilised polypeptides, and found that ligands of both integrin alpha(5)beta(1) and syndecan-4 are necessary for focal adhesion formation under conditions of equivalent density of folded ligand. We also demonstrate that integrin and syndecan-4 play quite distinct roles in adhesion contact maturation and are not interchangeable. These results help us to understand how cells respond efficiently to changes in matrix environment, which should prove useful for developing approaches to aid wound healing.
Collapse
Affiliation(s)
- Mark D Bass
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom M13 9PT. E-mail: ; ; Tel: +44-(0)-161-275-5071
| | | | | |
Collapse
|
99
|
Puklin-Faucher E, Gao M, Schulten K, Vogel V. How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. J Cell Biol 2006; 175:349-60. [PMID: 17060501 PMCID: PMC2064575 DOI: 10.1083/jcb.200602071] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 09/21/2006] [Indexed: 01/09/2023] Open
Abstract
How the integrin head transitions to the high-affinity conformation is debated. Although experiments link activation with the opening of the hinge angle between the betaA and hybrid domains in the ligand-binding headpiece, this hinge is closed in the liganded alpha(v)beta3 integrin crystal structure. We replaced the RGD peptide ligand of this structure with the 10th type III fibronectin module (FnIII10) and discovered through molecular dynamics (MD) equilibrations that when the conformational constraints of the leg domains are lifted, the betaA/hybrid hinge opens spontaneously. Together with additional equilibrations on the same nanosecond timescale in which small structural variations impeded hinge-angle opening, these simulations allowed us to identify the allosteric pathway along which ligand-induced strain propagates via elastic distortions of the alpha1 helix to the betaA/hybrid domain hinge. Finally, we show with steered MD how force accelerates hinge-angle opening along the same allosteric pathway. Together with available experimental data, these predictions provide a novel framework for understanding integrin activation.
Collapse
Affiliation(s)
- Eileen Puklin-Faucher
- Department of Materials, Swiss Federal Institute of Technology in Zurich (ETH Zurich), CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
100
|
Schröder A, Schröder B, Roppenser B, Linder S, Sinha B, Fässler R, Aepfelbacher M. Staphylococcus aureus fibronectin binding protein-A induces motile attachment sites and complex actin remodeling in living endothelial cells. Mol Biol Cell 2006; 17:5198-210. [PMID: 17021255 PMCID: PMC1679684 DOI: 10.1091/mbc.e06-05-0463] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus fibronectin binding protein-A (FnBPA) stimulates alpha5beta1-integrin signaling and actin rearrangements in host cells. This eventually leads to invasion of the staphylococci and their targeting to lysosomes. Using live cell imaging, we found that FnBPA-expressing staphylococci induce formation of fibrillar adhesion-like attachment sites and translocate together with them on the surface of human endothelial cells (velocity approximately 50 microm/h). The translocating bacteria recruited cellular actin and Rab5 in a cyclic and alternating manner, suggesting unsuccessful attempts of phagocytosis by the endothelial cells. Translocation, actin recruitment, and eventual invasion of the staphylococci was regulated by the fibrillar adhesion protein tensin. The staphylococci also regularly produced Neural Wiskott-Aldrich syndrome protein-controlled actin comet tails that further propelled them on the cell surface (velocity up to 1000 microm/h). Thus, S. aureus FnBPA produces attachment sites that promote bacterial movements but subvert actin- and Rab5 reorganization during invasion. This may constitute a novel strategy of S. aureus to postpone invasion until its toxins become effective.
Collapse
Affiliation(s)
- Andreas Schröder
- *Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Barbara Schröder
- Institut für Prophylaxe der Kreislaufkrankheiten, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Bernhard Roppenser
- *Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für Prophylaxe der Kreislaufkrankheiten, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Bhanu Sinha
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, 48149 Münster, Germany; and
| | - Reinhard Fässler
- Max-Planck-Institut für Biochemie, Abteilung für Molekulare Medizin, 82152 Martinsried, Germany
| | - Martin Aepfelbacher
- *Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|