51
|
The multiple faces of prostaglandin E2 G-protein coupled receptor signaling during the dendritic cell life cycle. Int J Mol Sci 2013; 14:6542-55. [PMID: 23528886 PMCID: PMC3645653 DOI: 10.3390/ijms14046542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 01/06/2023] Open
Abstract
Many processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs) and report biochemical changes in the microenvironment. Dendritic cells (DCs) are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2) via four GPCR subtypes (EP1-4) critically regulates DC generation, maturation and migration. The role of PGE2 signaling in DC biology was unraveled by the characterization of EP receptor subtype expression in DC progenitor cells and DCs, the identification of the signaling pathways initiated by these GPCR subtypes and the classification of DC responses to PGE2 at different stages of differentiation. Here, we review the advances in PGE2 signaling in DCs and describe the efforts still to be made to understand the spatio-temporal fine-tuning of PGE2 responses by DCs.
Collapse
|
52
|
Meddens MBM, Rieger B, Figdor CG, Cambi A, van den Dries K. Automated podosome identification and characterization in fluorescence microscopy images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:180-189. [PMID: 23347434 DOI: 10.1017/s1431927612014018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Podosomes are cellular adhesion structures involved in matrix degradation and invasion that comprise an actin core and a ring of cytoskeletal adaptor proteins. They are most often identified by staining with phalloidin, which binds F-actin and therefore visualizes the core. However, not only podosomes, but also many other cytoskeletal structures contain actin, which makes podosome segmentation by automated image processing difficult. Here, we have developed a quantitative image analysis algorithm that is optimized to identify podosome cores within a typical sample stained with phalloidin. By sequential local and global thresholding, our analysis identifies up to 76% of podosome cores excluding other F-actin-based structures. Based on the overlap in podosome identifications and quantification of podosome numbers, our algorithm performs equally well compared to three experts. Using our algorithm we show effects of actin polymerization and myosin II inhibition on the actin intensity in both podosome core and associated actin network. Furthermore, by expanding the core segmentations, we reveal a previously unappreciated differential distribution of cytoskeletal adaptor proteins within the podosome ring. These applications illustrate that our algorithm is a valuable tool for rapid and accurate large-scale analysis of podosomes to increase our understanding of these characteristic adhesion structures.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
53
|
Bhuwania R, Cornfine S, Fang Z, Krüger M, Luna EJ, Linder S. Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 2012; 125:2300-14. [PMID: 22344260 DOI: 10.1242/jcs.100032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are actin-rich adhesion and invasion structures. Especially in macrophages, podosomes exist in two subpopulations, large precursors at the cell periphery and smaller podosomes (successors) in the cell interior. To date, the mechanisms that differentially regulate these subpopulations are largely unknown. Here, we show that the membrane-associated protein supervillin localizes preferentially to successor podosomes and becomes enriched at precursors immediately before their dissolution. Consistently, podosome numbers are inversely correlated with supervillin protein levels. Using deletion constructs, we find that the myosin II regulatory N-terminus of supervillin [SV(1-174)] is crucial for these effects. Phosphorylated myosin light chain (pMLC) localizes at supervillin-positive podosomes, and time-lapse analyses show that enrichment of GFP-supervillin at podosomes coincides with their coupling to contractile myosin-IIA-positive cables. We also show that supervillin binds only to activated myosin IIA, and a dysregulated N-terminal construct [SV(1-830)] enhances pMLC levels at podosomes. Thus, preferential recruitment of supervillin to podosome subpopulations might both require and induce actomyosin contractility. Using siRNA and pharmacological inhibition, we demonstrate that supervillin and myosin IIA cooperate to regulate podosome lifetime, podosomal matrix degradation and cell polarization. In sum, we show here that podosome subpopulations differ in their molecular composition and identify supervillin, in cooperation with myosin IIA, as a crucial factor in the regulation of podosome turnover and function.
Collapse
Affiliation(s)
- Ridhirama Bhuwania
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
54
|
Luxenburg C, Winograd-Katz S, Addadi L, Geiger B. Involvement of actin polymerization in podosome dynamics. J Cell Sci 2012; 125:1666-72. [PMID: 22328507 DOI: 10.1242/jcs.075903] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes, which are formed by different monocyte derivatives, are small adhesion structures whose coordinated dynamics and cytoskeletal reorganization drive their motile and invasive features. Using live-cell microscopy, we explored the temporal molecular steps of the de novo assembly and disassembly of podosomes in cultured osteoclasts. We demonstrate here that the earliest visible step in podosome assembly is the local accumulation of the plaque protein paxillin, along with cortactin, which stabilizes actin networks, followed by robust polymerization of actin filaments and their association with α-actinin. Only then is a local increase in integrin β3 levels apparent in the podosome ring domain. Thus, local actin polymerization in cortactin- and paxillin-rich locations nucleates podosome assembly before the local accumulation of β3 integrin. We further show that actin polymerization is also important for the recruitment and maintenance of plaque proteins in the mature podosome ring domain. Our model implies that core bundle dynamics play a central role in regulating podosome stability.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
55
|
van den Dries K, van Helden SFG, te Riet J, Diez-Ahedo R, Manzo C, Oud MM, van Leeuwen FN, Brock R, Garcia-Parajo MF, Cambi A, Figdor CG. Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes. Cell Mol Life Sci 2011; 69:1889-901. [PMID: 22204022 PMCID: PMC3350765 DOI: 10.1007/s00018-011-0908-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 01/01/2023]
Abstract
Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E2 (PGE2). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE2 causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE2-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Podosomes are dynamic actin-enriched membrane structures that play an important role in invasive cell motility and extracellular matrix degradation. They are often found to assemble into large rosettelike structures in highly invasive cells. However, the mechanism of this assembly remains obscure. In this study, we identified focal adhesion kinase (FAK) as a key molecule necessary for assembly. Moreover, phosphorylation of p130Cas and suppression of Rho signaling by FAK were found to be important for FAK to induce the assembly of podosome rosettes. Finally, we found that suppression of vimentin intermediate filaments by FAK facilitates the assembly of podosome rosettes. Collectively, our results strongly suggest a link between FAK, podosome rosettes, and tumor invasion and unveil a negative role for Rho signaling and vimentin filaments in podosome rosette assembly.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | |
Collapse
|
57
|
Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 2011; 23:597-606. [DOI: 10.1016/j.ceb.2011.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022]
|
58
|
Dovas A, Cox D. Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal 2011; 23:1225-34. [PMID: 21342664 PMCID: PMC3095719 DOI: 10.1016/j.cellsig.2011.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
59
|
Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27:185-211. [PMID: 21801014 DOI: 10.1146/annurev-cellbio-092910-154216] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are cell-matrix contacts in a variety of cell types, such as monocytic cells or cancer cells, that have to cross tissue barriers. Both structures share an actin-rich core, which distinguishes them from other matrix contacts, and are regulated by a multitude of signaling pathways including RhoGTPases, kinases, actin-associated proteins, and microtubule-dependent transport. Invadosomes recruit and secrete proteinases and are thus able to lyse extracellular matrix components. They are therefore considered to be potential key structures in proteolytic cell invasion in both physiological and pathological settings. This review provides an overview of the field, with special focus on current developments such as intracellular transport processes, ultrastructural analysis, the possible involvement of invadosomes in disease, and the tentative identification of invadosomes in 3D environments and in vivo.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
60
|
Yamakita Y, Matsumura F, Lipscomb MW, Chou PC, Werlen G, Burkhardt JK, Yamashiro S. Fascin1 promotes cell migration of mature dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2850-9. [PMID: 21263068 DOI: 10.4049/jimmunol.1001667] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes.
Collapse
Affiliation(s)
- Yoshihiko Yamakita
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci U S A 2010; 107:21016-21. [PMID: 21081699 DOI: 10.1073/pnas.1007835107] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Podosomes are unique cellular entities specifically found in macrophages and involved in cell-matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts.
Collapse
|
62
|
van Helden SFG, Hordijk PL. Podosome regulation by Rho GTPases in myeloid cells. Eur J Cell Biol 2010; 90:189-97. [PMID: 20573421 DOI: 10.1016/j.ejcb.2010.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/17/2010] [Accepted: 05/22/2010] [Indexed: 01/16/2023] Open
Abstract
Myeloid cells form a first line of defense against infections. They migrate from the circulation to the infected tissues by adhering to and subsequently crossing the vascular wall. This process requires precise control and proper regulation of these interactions with the environment is therefore crucial. Podosomes are the most prominent adhesion structures in myeloid cells. Podosomes control both the adhesive and migratory properties of myeloid cells and the regulation of podosomes is key to the proper functioning of these cells. Here we discuss the regulation of podosomes by Rho GTPases, well known regulators of adhesion and migration, focusing on myeloid cells. In addition, the regulation of podosomes by GTPase regulators such as GEFs and GAPs, as well as the effects of some Rho GTPase effector pathways, will be discussed.
Collapse
Affiliation(s)
- Suzanne F G van Helden
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
63
|
Gawden-Bone C, Zhou Z, King E, Prescott A, Watts C, Lucocq J. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci 2010; 123:1427-37. [PMID: 20356925 PMCID: PMC2858019 DOI: 10.1242/jcs.056515] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2010] [Indexed: 12/17/2022] Open
Abstract
Podosomes are spot-like actin-rich structures formed at the ventral surface of monocytic and haematopoietic cells. Podosomes degrade extracellular matrix and are proposed to be involved in cell migration. A key question is whether podosomes form protrusions similar to the invadopodia of cancer cells. We characterised podosomes of immature dendritic cells using electron microscopy combined with both conventional and novel high-resolution structured illumination light microscopy. Dendritic cell podosomes are composed of actin foci surrounded by a specialised ring region that is rich in material containing paxillin. We found that podosomes were preferential sites for protrusion into polycarbonate filters impregnated with crosslinked gelatin, degrading up to 2 micrometers of matrix in 24 hours. Podosome-associated uptake of colloidal gold-labelled gelatin matrix appeared to occur via large phagosome-like structures or narrow tubular invaginations. The motor protein myosin-II was excluded from ring or core regions but was concentrated around them and the myosin-II inhibitor Blebbistatin reduced the length of podosome protrusions. Finally, we found that degradation, protrusion and endocytosis in this system are dependent on the matrix metalloproteinase MMP-14. We propose that podosomes mediate migration of dendritic cells through tissues by means of myosin-II-dependent protrusion coupled to MMP-14-dependent degradation and endocytosis.
Collapse
Affiliation(s)
- Christian Gawden-Bone
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Zhongjun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Emma King
- LM Facility, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Alan Prescott
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Colin Watts
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - John Lucocq
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
64
|
Abstract
Bone resorption by osteoclasts depends on the assembly of a specialized, actin-rich adhesive 'sealing zone' that delimits the area designed for degradation. In this study, we show that the level of roughness of the underlying adhesive surface has a profound effect on the formation and stability of the sealing zone and the associated F-actin. As our primary model substrate, we use 'smooth' and 'rough' calcite crystals with average topography values of 12 nm and 530 nm, respectively. We show that the smooth surfaces induce the formation of small and unstable actin rings with a typical lifespan of approximately 8 minutes, whereas the sealing zones formed on the rough calcite surfaces are considerably larger, and remain stable for more than 6 hours. It was further observed that steps or sub-micrometer cracks on the smooth surface stimulate local ring formation, raising the possibility that similar imperfections on bone surfaces may stimulate local osteoclast resorptive activity. The mechanisms whereby the physical properties of the substrate influence osteoclast behavior and their involvement in osteoclast function are discussed.
Collapse
Affiliation(s)
- Dafna Geblinger
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
65
|
Watts C, West MA, Zaru R. TLR signalling regulated antigen presentation in dendritic cells. Curr Opin Immunol 2010; 22:124-30. [PMID: 20083398 DOI: 10.1016/j.coi.2009.12.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/15/2009] [Indexed: 12/31/2022]
Abstract
Recent evidence suggests that TLR signalling in dendritic cells (DCs) transiently enhances antigen endocytosis and autophagy, augments the assembly of key antigen transport and processing systems, qualitatively modulates protein translation and induces a temporary cessation of DC motility. These rapid changes require activation of the MAP kinases, PI3-kinase and downstream signalling pathways and are observed in both myeloid DC and, with variations on the theme, in plasmacytoid DC.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Biology & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
66
|
Affiliation(s)
- Stefan Linder
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
67
|
Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol 2009; 158:1017-33. [PMID: 19845685 PMCID: PMC2785524 DOI: 10.1111/j.1476-5381.2009.00449.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
68
|
Collin O, Na S, Chowdhury F, Hong M, Shin ME, Wang F, Wang N. Self-organized podosomes are dynamic mechanosensors. Curr Biol 2008; 18:1288-94. [PMID: 18760605 PMCID: PMC2605691 DOI: 10.1016/j.cub.2008.07.046] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 01/16/2023]
Abstract
Podosomes are self-organized, dynamic, actin-containing structures that adhere to the extracellular matrix via integrins [1-5]. Yet, it is not clear what regulates podosome dynamics and whether podosomes can function as direct mechanosensors, like focal adhesions [6-9]. We show here that myosin-II proteins form circular structures outside and at the podosome actin ring to regulate podosome dynamics. Inhibiting myosin-II-dependent tension dissipated podosome actin rings before dissipating the myosin-ring structure. As podosome rings changed size or shape, tractions underneath the podosomes were exerted onto the substrate and were abolished when myosin-light-chain activity was inhibited. The magnitudes of tractions were comparable to those generated underneath focal adhesions, and they increased with substrate stiffness. The dynamics of podosomes and of focal adhesions were different. Torsional tractions underneath the podosome rings were generated with rotations of podosome rings in a nonmotile, nonrotating cell, suggesting a unique feature of these circular structures. Stresses applied via integrins at the apical surface directly displaced podosomes near the basal surface. Stress-induced podosome displacements increased nonlinearly with applied stresses. Our results suggest that podosomes are dynamic mechanosensors in which interactions of myosin tension and actin dynamics are crucial for regulating these self-organized structures in living cells.
Collapse
Affiliation(s)
- Olivier Collin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Sungsoo Na
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Farhan Chowdhury
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Michael Hong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Myung Eun Shin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Fei Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| |
Collapse
|
69
|
West MA, Prescott AR, Chan KM, Zhou Z, Rose-John S, Scheller J, Watts C. TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent. J Cell Biol 2008; 182:993-1005. [PMID: 18762577 PMCID: PMC2528573 DOI: 10.1083/jcb.200801022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 08/04/2008] [Indexed: 02/03/2023] Open
Abstract
Toll-like receptor (TLR) signaling induces a rapid reorganization of the actin cytoskeleton in cultured mouse dendritic cells (DC), leading to enhanced antigen endocytosis and a concomitant loss of filamentous actin-rich podosomes. We show that as podosomes are lost, TLR signaling induces prominent focal contacts and a transient reduction in DC migratory capacity in vitro. We further show that podosomes in mouse DC are foci of pronounced gelatinase activity, dependent on the enzyme membrane type I matrix metalloprotease (MT1-MMP), and that DC transiently lose the ability to degrade the extracellular matrix after TLR signaling. Surprisingly, MMP inhibitors block TLR signaling-induced podosome disassembly, although stimulated endocytosis is unaffected, which demonstrates that the two phenomena are not obligatorily coupled. Podosome disassembly caused by TLR signaling occurs normally in DC lacking MT1-MMP, and instead requires the tumor necrosis factor alpha-converting enzyme ADAM17 (a disintegrin and metalloprotease 17), which demonstrates a novel role for this "sheddase" in regulating an actin-based structure.
Collapse
Affiliation(s)
- Michele A West
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
70
|
Dorfleutner A, Cho Y, Vincent D, Cunnick J, Lin H, Weed SA, Stehlik C, Flynn DC. Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells. J Cell Sci 2008; 121:2394-405. [PMID: 18577577 DOI: 10.1242/jcs.026187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AFAP-110 is an actin-binding and -crosslinking protein that is enriched in Src and phorbol ester (PE)-induced podosomes. In vascular smooth muscle cells endogenous AFAP-110 localized to actin stress fibers and, in response to treatment with phorbol-12,13-dibutyrate (PDBu), to actin-rich podosomes. Since PEs can activate PKCalpha, AFAP-110 is a substrate of PKCalpha and PKCalpha-AFAP-110 interactions direct podosome formation, we sought to identify a PE-induced phosphorylation site in AFAP-110 and determine whether phosphorylation is linked to the formation of podosomes. Mutational analysis revealed Ser277 of AFAP-110 to be phosphorylated in PE-treated cells. The use of a newly generated, phospho-specific antibody directed against phosphorylated Ser277 revealed that PKCalpha activation is associated with PE-induced AFAP-110 phosphorylation. In PDBu-treated A7r5 rat vascular smooth muscle cells, immunolabeling using the phospho-specific antibody showed that phospho-AFAP-110 is primarily associated with actin in podosomes. Although mutation of Ser at position 277 to Ala (AFAP-110(S277A)) did not alter the ability of AFAP-110 to localize to podosomes, overexpression of AFAP-110(S277A) in treated and untreated A7r5 cells resulted in an increased number of cells that display podosomes. Video microscopy demonstrated that AFAP-110(S277A) expression correlates with an increased number of long-lived podosomes. Therefore, we hypothesize that AFAP-110 phosphorylation and/or dephosphorylation is involved in the regulation of podosome stability and lifespan.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- The Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|