51
|
Dontabhaktuni A, Taft DR, Patel M. Gentamicin Renal Excretion in Rats: Probing Strategies to Mitigate Drug-Induced Nephrotoxicity. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/pp.2016.71007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
52
|
Shin B, Park W. Synergistic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii. PLoS One 2015; 10:e0137751. [PMID: 26360766 PMCID: PMC4567131 DOI: 10.1371/journal.pone.0137751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023] Open
Abstract
Difficulties involved in treating drug-resistant pathogens have created a need for new therapies. In this study, we investigated the possibility of using oleanolic acid (OA), a natural pentacyclic triterpenoid, as a natural adjuvant for antibiotics against Acinetobacter baumannii. High concentrations of OA can kill cells, partly because it generates reactive oxygen species. Measurement of the fractional inhibitory concentration (FIC) for OA and time-kill experiments demonstrated that it only synergizes with aminoglycoside antibiotics (e.g., gentamicin, kanamycin). Other classes of antibiotics (e.g., ampicillin, rifampicin, norfloxacin, chloramphenicol, and tetracycline) have no interactions with OA. Microarray and quantitative reverse transcription-PCR analysis indicated that genes involved in ATP synthesis and cell membrane permeability, the gene encoding glycosyltransferase, peptidoglycan-related genes, phage-related genes, and DNA repair genes were upregulated under OA. OA highly induces the expression of adk, which encodes an adenylate kinase, and des6, which encodes a linoleoyl-CoA desaturase, and deletion of these genes increased FICs; these observations indicate that adk and des6 are involved in the synergism of OA with aminoglycosides. Data obtained using 8-anilino-1-naphthalenesulfonic acid, fluorescence-conjugated gentamicin, and membrane fatty acid analysis indicates that adk and des6 are involved in changes in membrane permeability. Proton-motive force and ATP synthesis tests show that those genes are also involved in energy metabolism. Taken together, our data show that OA boosts aminoglycoside uptake by changing membrane permeability and energy metabolism in A. baumannii.
Collapse
Affiliation(s)
- Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
53
|
Li H, Kachelmeier A, Furness DN, Steyger PS. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells. Front Cell Neurosci 2015; 9:130. [PMID: 25926770 PMCID: PMC4396448 DOI: 10.3389/fncel.2015.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/20/2015] [Indexed: 12/03/2022] Open
Abstract
Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs). Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy. Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR) for 30 min prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses (ABRs) before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET) channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy. We found wide-band noise (WBN) levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS. These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic synergy.
Collapse
Affiliation(s)
- Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| | | | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
54
|
Sodium-glucose transporter-2 (SGLT2; SLC5A2) enhances cellular uptake of aminoglycosides. PLoS One 2014; 9:e108941. [PMID: 25268124 PMCID: PMC4182564 DOI: 10.1371/journal.pone.0108941] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/− mice, but not in Sglt2−/− mice. However, serum GTTR levels were elevated in Sglt2−/− mice compared to Sglt2+/− mice, and in phlorizin-treated Sglt2+/− mice compared to vehicle-treated Sglt2+/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity.
Collapse
|
55
|
Oonk AM, Ekker MS, Huygen PL, Kunst HP, Kremer H, Schelhaas JJ, Pennings RJ. Intrafamilial Variable Hearing Loss in TRPV4 Induced Spinal Muscular Atrophy. Ann Otol Rhinol Laryngol 2014; 123:859-65. [DOI: 10.1177/0003489414539130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Mutations in the transient receptor potential vanilloid 4 gene ( TRPV4) can induce a great diversity of neuropathies. Together with these neuropathies, hearing loss can occur. This study is focused on providing an audiometric phenotype description of a Dutch family with spinal muscular atrophy caused by a mutation in TRPV4. Methods: A neurological examination was repeated and pure tone and speech audiometry were performed. Results: A large variety in neurological symptoms as well as variation in audiometric characteristics was observed. The severity of hearing loss is mild to moderate and the audiogram configuration is highly variable. The hearing loss of these patients has a progressive nature in general. The frequencies that deteriorate significantly differ between family members. When compared to presbyacusis patients, speech recognition scores of patients with a TRPV4 mutation are not clearly different. Conclusion: The function of TRPV4 in the inner ear is still elusive but it is suggested that TRPV4 is required for maintenance of cochlear function in stress conditions, like acoustic injury. We can neither confirm nor reject this based on the results obtained in this family. Therefore, one might consider advising patients with a TRPV4 mutation to avoid exposure to environmental influences such as noise exposure.
Collapse
Affiliation(s)
- Anne M.M. Oonk
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Merel S. Ekker
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Patrick L.M. Huygen
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Henricus P.M. Kunst
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Centre, Nijmegen, the Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jurgen J. Schelhaas
- Expertise Centre for Epileptology, Sleep Medicine and Neurocognition, Kempenhaege, Heeze, the Netherlands
| | - Ronald J.E. Pennings
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
56
|
Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol 2014; 90:331-7. [PMID: 24881578 DOI: 10.1016/j.bcp.2014.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022]
Abstract
Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
57
|
Hahn H, Salt AN, Schumacher U, Plontke SK. Gentamicin concentration gradients in scala tympani perilymph following systemic applications. Audiol Neurootol 2013; 18:383-91. [PMID: 24192668 DOI: 10.1159/000355283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
It has been shown in prior studies that round window membrane (RWM) application of gentamicin produced a robust basal-apical concentration gradient in the perilymph of scala tympani (ST) with peak concentrations in the basal turn of ST. These gradients potentially contribute to the clinical efficacy and safety of intratympanic gentamicin applications for the treatment of Ménière's disease. The present study aimed to establish the distribution of gentamicin along ST perilymph after systemic applications. Gentamicin sulfate was applied intravenously in the amounts of 100, 300 and 600 mg/kg body weight (BW) over a period of 3 h or as a 300 mg/kg BW subcutaneous bolus injection. At 3 and 5 h after the start of the application perilymph of ST was aspirated from the cochlea apex of the right and left cochlea, respectively, and 10 sequential 1-µl perilymph samples from the apex of each cochlea were quantitatively analyzed using a fluorescence polarization immunoassay. In contrast to local RWM delivery, systemic application of gentamicin resulted in the highest perilymph levels in the apex of the cochlea with decreasing concentrations towards the basal regions of ST. The absolute gentamicin concentrations increased with the amount of drug applied and time before sampling. While it is likely that the basal-apical gradient measured after local drug applications to the round window niche is the result of the direct uptake of drugs into the perilymph of the ST, distribution by diffusion and a very low perilymph flow towards the cochlear apex, computer simulations suggested that the apical-basal gradient observed with these systemic applications can be explained by higher entry rates of gentamicin in the apex compared to the basal turns of the cochlea. It is also possible that gentamicin enters perilymph indirectly from the blood via the endolymph. In this case the faster kinetics in apical turns could be due to the smaller cross-sectional area of ST relative to endolymph in the apical turns.
Collapse
Affiliation(s)
- Hartmut Hahn
- Department of Otorhinolaryngology, Head and Neck Surgery and Tübingen Hearing Research Center (THRC), University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
58
|
Wang T, Yang YQ, Karasawa T, Wang Q, Phillips A, Guan BC, Ma KT, Jiang M, Xie DH, Steyger PS, Jiang ZG. Bumetanide hyperpolarizes madin-darby canine kidney cells and enhances cellular gentamicin uptake by elevating cytosolic Ca(2+) thus facilitating intermediate conductance Ca(2+)--activated potassium channels. Cell Biochem Biophys 2013; 65:381-98. [PMID: 23109177 DOI: 10.1007/s12013-012-9442-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loop diuretics such as bumetanide and furosemide enhance aminoglycoside ototoxicity when co-administered to patients and animal models. The underlying mechanism(s) is poorly understood. We investigated the effect of these diuretics on cellular uptake of aminoglycosides, using Texas Red-tagged gentamicin (GTTR), and intracellular/whole-cell recordings of Madin-Darby canine kidney (MDCK) cells. We found that bumetanide and furosemide dose-dependently enhanced cytoplasmic GTTR fluorescence by ~60 %. This enhancement was suppressed by La(3+), a non-selective cation channel (NSCC) blocker, and by K(+) channel blockers Ba(2+) and clotrimazole, but not by tetraethylammonium (TEA), 4-aminopyridine (4-AP) or glipizide, nor by Cl(-) channel blockers diphenylamine-2-carboxylic acid (DPC), niflumic acid (NFA), and CFTRinh-172. Bumetanide and furosemide hyperpolarized MDCK cells by ~14 mV, increased whole-cell I/V slope conductance; the bumetanide-induced net current I/V showed a reversal potential (V r) ~-80 mV. Bumetanide-induced hyperpolarization and I/V change was suppressed by Ba(2+) or clotrimazole, and absent in elevated [Ca(2+)]i, but was not affected by apamin, 4-AP, TEA, glipizide, DPC, NFA, or CFTRinh-172. Bumetanide and furosemide stimulated a surge of Fluo-4-indicated cytosolic Ca(2+). Ba(2+) and clotrimazole alone depolarized cells by ~18 mV and reduced I/V slope with a net current V r near -85 mV, and reduced GTTR uptake by ~20 %. La(3+) alone hyperpolarized the cells by ~-14 mV, reduced the I/V slope with a net current V r near -10 mV, and inhibited GTTR uptake by ~50 %. In the presence of La(3+), bumetanide-caused negligible change in potential or I/V. We conclude that NSCCs constitute a major cell entry pathway for cationic aminoglycosides; bumetanide enhances aminoglycoside uptake by hyperpolarizing cells that increases the cation influx driving force; and bumetanide-induced hyperpolarization is caused by elevating intracellular Ca(2+) and thus facilitating activation of the intermediate conductance Ca(2+)-activated K(+) channels.
Collapse
Affiliation(s)
- Tian Wang
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Karasawa T, Sibrian-Vazquez M, Strongin RM, Steyger PS. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds. PLoS One 2013; 8:e66220. [PMID: 23755301 PMCID: PMC3670892 DOI: 10.1371/journal.pone.0066220] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022] Open
Abstract
Cisplatin is widely used as an antineoplastic drug, but its ototoxic and nephrotoxic side-effects, as well as the inherent or acquired resistance of some cancers to cisplatin, remain significant clinical problems. Cisplatin's selectivity in killing rapidly proliferating cancer cells is largely dependent on covalent binding to DNA via cisplatin's chloride sites that had been aquated. We hypothesized that cisplatin's toxicity in slowly proliferating or terminally differentiated cells is primarily due to drug-protein interactions, instead of drug-DNA binding. To identify proteins that bind to cisplatin, we synthesized two different platinum-agarose conjugates, one with two amino groups and another with two chlorides attached to platinum that are available for protein binding, and conducted pull-down assays using cochlear and kidney cells. Mass spectrometric analysis on protein bands after gel electrophoresis and Coomassie blue staining identified several proteins, including myosin IIA, glucose-regulated protein 94 (GRP94), heat shock protein 90 (HSP90), calreticulin, valosin containing protein (VCP), and ribosomal protein L5, as cisplatin-binding proteins. Future studies on the interaction of these proteins with cisplatin will elucidate whether these drug-protein interactions are involved in ototoxicity and nephrotoxicity, or contribute to tumor sensitivity or resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.
| | | | | | | |
Collapse
|
60
|
Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability. Exp Mol Med 2013; 45:e12. [PMID: 23470714 PMCID: PMC3641395 DOI: 10.1038/emm.2013.25] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hair cells at the base of the cochlea appear to be more susceptible to damage by the aminoglycoside gentamicin than those at the apex. However, the mechanism of base-to-apex gradient ototoxicity by gentamicin remains to be elucidated. We report here that gentamicin caused rodent cochlear hair cell damages in a time- and dose-dependent manner. Hair cells at the basal turn were more vulnerable to gentamicin than those at the apical turn. Gentamicin-conjugated Texas Red (GTTR) uptake was predominant in basal turn hair cells in neonatal rats. Transient receptor potential vanilloid 1 (TRPV1) and 4 (TRPV4) expression was confirmed in the cuticular plate, stereocilia and hair cell body of inner hair cells and outer hair cells. The involvement of TRPV1 and TRPV4 in gentamicin trafficking of hair cells was confirmed by exogenous calcium treatment and TRPV inhibitors, including gadolinium and ruthenium red, which resulted in markedly inhibited GTTR uptake and gentamicin-induced hair cell damage in rodent and zebrafish ototoxic model systems. These results indicate that the cytotoxic vulnerability of cochlear hair cells in the basal turn to gentamicin may depend on effective uptake of the drug, which was, in part, mediated by the TRPV1 and TRPV4 proteins.
Collapse
|
61
|
Waissbluth S, Daniel SJ. Cisplatin-induced ototoxicity: transporters playing a role in cisplatin toxicity. Hear Res 2013; 299:37-45. [PMID: 23467171 DOI: 10.1016/j.heares.2013.02.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/16/2013] [Accepted: 02/07/2013] [Indexed: 12/13/2022]
Abstract
Cisplatin is a potent antineoplastic agent widely used for a variety of cancer types. Unfortunately, its use leads to dose limiting side effects such as ototoxicity. Up to 93% of patients receiving cisplatin chemotherapy will develop progressive and irreversible sensorineural hearing loss which leads to a decreased quality of life in cancer survivors. No treatment is currently available for cisplatin-induced ototoxicity. It appears that cisplatin causes apoptosis by binding DNA, activating the inflammatory cascade as well as generating oxidative stress in the cell. Various studies have aimed to assess the potential protective effects of compounds such as antioxidants, anti-inflammatories, caspase inhibitors, anti-apoptotic agents and calcium channel blockers against the toxicity caused by cisplatin in the inner ear with variable degrees of protection. Nevertheless, the pathophysiology of cisplatin-induced ototoxicity remains unclear. This review summarizes all of the known transporters that could play a role in cisplatin influx, leading to cisplatin-induced ototoxicity. The following were evaluated: copper transporters, organic cation transporters, the transient receptor potential channel family, calcium channels, multidrug resistance associated proteins, mechanotransduction channels and chloride channels.
Collapse
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, The Montreal Children's Hospital, Quebec, Canada
| | | |
Collapse
|
62
|
Nabissi M, Morelli MB, Santoni M, Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 2012; 34:48-57. [PMID: 23079154 DOI: 10.1093/carcin/bgs328] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aggressive behavior of Glioblastoma multiforme (GBM) is mainly due to high invasiveness and proliferation rate as well as to high resistance to standard chemotherapy. Several chemotherapeutic agents like temozolomide (TMZ), carmustine (BCNU) or doxorubicin (DOXO) have been employed for treatment of GBM, but they display limited efficacy. Therefore, it is important to identify new treatment modalities to improve therapeutic effects and enhance GBM chemosensitivity. Recently, activation of the transient receptor potential vanilloid type 2 (TRPV2) has been found to inhibit human GBM cell proliferation and overcome BCNU resistance of GBM cells. Herein, we evaluated the involvement of cannabidiol (CBD)-induced TRPV2 activation, in the modulation of glioma cell chemosensitivity to TMZ, BCNU and DOXO. We found that CBD increases TRPV2 expression and activity. CBD by triggering TRPV2-dependent Ca(2+) influx increases drug uptake and synergizes with cytotoxic agents to induce apoptosis of glioma cells, whereas no effects were observed in normal human astrocytes. Moreover, as the pore region of transient receptor potential (TRP) channels is critical for ion channel permeation, we demonstrated that deletion of TRPV2 poredomain inhibits CBD-induced Ca(2+) influx, drug uptake and cytotoxic effects. Overall, we demonstrated that co-administration of cytotoxic agents together with the TRPV2 agonist CBD increases drug uptake and parallelly potentiates cytotoxic activity in human glioma cells.
Collapse
Affiliation(s)
- Massimo Nabissi
- Department of Experimental Medicine, School of Pharmacy, University of Camerino, Camerino, MC 62032, Italy
| | | | | | | |
Collapse
|
63
|
Hailey DW, Roberts B, Owens KN, Stewart AK, Linbo T, Pujol R, Alper SL, Rubel EW, Raible DW. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone. PLoS Genet 2012; 8:e1002971. [PMID: 23071446 PMCID: PMC3469417 DOI: 10.1371/journal.pgen.1002971] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Dale W. Hailey
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
| | - Brock Roberts
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
| | - Kelly N. Owens
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Andrew K. Stewart
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Remy Pujol
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- INSERM Unit 583, Universite de Montpellier, Institut des Neurosciences de Montpellier, Hopital St. Eloi, Montpellier, France
| | - Seth L. Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Edwin W. Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
64
|
Steyger PS, Karasawa T. Intra-cochlear trafficking of aminoglycosides. Commun Integr Biol 2012; 1:140-2. [PMID: 19704872 DOI: 10.4161/cib.1.2.6888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022] Open
Abstract
Cochlear sensory hair cells are pharmacologically sensitive to aminoglycoside antibiotics that are used for treating life-threatening bacterial sepsis. Cochlear tissues are compartmentalized behind an impermeable paracellular barrier called the blood-labyrinth barrier (BLB). Most macromolecules cannot cross the blood-labyrinth barrier; however, aminoglycosides can cross this barrier into the cochlear fluids and enter hair cells, inducing hair cell death and consequent permanent hearing loss or deafness. The trafficking routes and cellular mechanisms required for aminoglycoside trafficking across the blood-labyrinth barrier remain unknown.Aminoglycosides enter cochlear hair cells across their apical membranes that are bathed in endolymph, a hitherto unexpected trafficking route. The stria vascularis, a component of the blood- labyrinth barrier, preferentially loads with aminoglycosides. Our recent work demonstrates that the stria vascularis exhibits high expression of the cation-selective ion channel TRPV4, and that this channel is permeable to aminoglycosides. However, aminoglycosides must employ more than one cellular mechanism to cross the blood-labyrinth barrier into endolymph against the electrical gradient.
Collapse
Affiliation(s)
- Peter S Steyger
- Oregon Hearing Research Center; Oregon Health and Science University; Portland, Oregon USA
| | | |
Collapse
|
65
|
Ramakrishnan NA, Drescher MJ, Khan KM, Hatfield JS, Drescher DG. HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 2012; 287:37628-46. [PMID: 22948144 DOI: 10.1074/jbc.m112.375832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A unique coupling between HCN1 and stereociliary tip-link protein protocadherin 15 has been described for a teleost vestibular hair-cell model and mammalian organ of Corti (OC) (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238). We now show that Ca(2+)-dependent interaction of the organ of Corti HCN1 and protocadherin 15 CD3 is mediated by amino-terminal sequence specific to HCN1 and is not replicated by analogous specific peptides for HCN2 or HCN4 nor by amino-terminal sequence conserved across HCN isoforms utilized in channel formation. Furthermore, the HCN1-specific peptide binds both phosphatidylinositol (3,4,5)-trisphosphate and phosphatidylinositol (4,5)-bisphosphate but not phosphatidylinositol 4-phosphate. Singly isolated cochlear inner and outer hair cells express HCN1 transcript, and HCN1 and HCN2 protein is immunolocalized to hair-cell stereocilia by both z-stack confocal and pre-embedding EM immunogold microscopy, with stereociliary tip-link and subcuticular plate sites. Quantitative PCR indicates HCN1/HCN2/HCN3/HCN4 = 9:9:1:89 in OC of the wild-type mouse, with HCN4 protein primarily attributable to inner sulcus cells. A mutant form of HCN1 mRNA and protein is expressed in the OC of an HCN1 mutant, corresponding to a full-length sequence with the in-frame deletion of pore-S6 domains, predicted by construct. The mutant transcript of HCN1 is ∼9-fold elevated relative to wild-type levels, possibly representing molecular compensation, with unsubstantial changes in HCN2, HCN3, and HCN4. Immunoprecipitation protocols indicate alternate interactions of full-length proteins; HCN1 can interact with protocadherin 15 CD3 and F-actin-binding filamin A forming a complex that does not include HCN2, or HCN1 can interact with HCN2 forming a complex without protocadherin 15 CD3 but including F-actin-binding fascin-2.
Collapse
Affiliation(s)
- Neeliyath A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
66
|
Sawada T, Nagai J, Okada Y, Yumoto R, Takano M. Gadolinium modulates gentamicin uptake via an endocytosis-independent pathway in HK-2 human renal proximal tubular cell line. Eur J Pharmacol 2012; 684:146-53. [DOI: 10.1016/j.ejphar.2012.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
67
|
Escobedo JO, Chu YH, Wang Q, Steyger PS, Strongin RM. Live cell imaging of a fluorescent gentamicin conjugate. Nat Prod Commun 2012; 7:317-320. [PMID: 22545403 PMCID: PMC3376166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Understanding cellular mechanisms of ototoxic and nephrotoxic drug uptake, intracellular distribution, and molecular trafficking across cellular barrier systems aids the study of potential uptake blockers that preserve sensory and renal function during critical life-saving therapy. Herein we report the design, synthesis characterization and evaluation of a fluorescent conjugate of the aminoglycoside antibiotic gentamicin. Live cell imaging results show the potential utility of this new material. Related gentamicin conjugates studied to date quench in live kindney cells, and have been largely restricted to use in fixed (delipidated) cells.
Collapse
Affiliation(s)
- Jorge O. Escobedo
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Yu-Hsuan Chu
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Qi Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| |
Collapse
|
68
|
Escobedo JO, Chu YH, Wang Q, Steyger PS, Strongin RM. Live Cell Imaging of a Fluorescent Gentamicin Conjugate. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Understanding cellular mechanisms of ototoxic and nephrotoxic drug uptake, intracellular distribution, and molecular trafficking across cellular barrier systems aids the study of potential uptake blockers that preserve sensory and renal function during critical life-saving therapy. Herein we report the design, synthesis characterization and evaluation of a fluorescent conjugate of the aminoglycoside antibiotic gentamicin. Live cell imaging results show the potential utility of this new material. Related gentamicin conjugates studied to date quench in live kindney cells, and have been largely restricted to use in fixed (delipidated) cells.
Collapse
Affiliation(s)
- Jorge O. Escobedo
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Yu-Hsuan Chu
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Qi Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| |
Collapse
|
69
|
Abstract
The modern era of evidence-based ototoxicity emerged in the 1940s following the discovery of aminoglycosides and their ototoxic side effects. New classes of ototoxins have been identified in subsequent decades, notably loop diuretics, antineoplastic drugs, and metal chelators. Ototoxic drugs are frequently nephrotoxic, as both organs regulate fluid and ion composition. The mechanisms of ototoxicity are as diverse as the pharmacological properties of each ototoxin, though the generation of toxic levels of reactive oxygen species appears to be a common denominator. As mechanisms of cytotoxicity for each ototoxin continue to be elucidated, a new frontier in ototoxicity is emerging: How do ototoxins cross the blood-labyrinth barrier that tightly regulates the composition of the inner ear fluids? Increased knowledge of the mechanisms by which systemic ototoxins are trafficked across the blood-labyrinth barrier into the inner ear is critical to developing new pharmacotherapeutic agents that target the blood-labyrinth barrier to prevent trafficking of ototoxic drugs and their cytotoxic sequelae.
Collapse
Affiliation(s)
- Peter S Steyger
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
70
|
Karasawa T, Steyger PS. Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol (Camb) 2011; 3:879-86. [PMID: 21799993 DOI: 10.1039/c1ib00034a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since introduction into clinical practice over 60 years ago, aminoglycoside antibiotics remain important drugs in the treatment of bacterial infections, cystic fibrosis and tuberculosis. However, the ototoxic and nephrotoxic properties of these drugs are still a major clinical problem. Recent advances in molecular biology and biochemistry have begun to uncover the intracellular actions of aminoglycosides that lead to cytotoxicity. In this review, we discuss intracellular binding targets of aminoglycosides, highlighting specific aminoglycoside-binding proteins (HSP73, calreticulin and CLIMP-63) and their potential for triggering caspases and Bcl-2 signalling cascades that are involved in aminoglycoside-induced cytotoxicity. We also discuss potential strategies to reduce aminoglycoside cytotoxicity, which are necessary for greater bactericidal efficacy during aminoglycoside pharmacotherapy.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | |
Collapse
|
71
|
Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG, Ricci AJ. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One 2011; 6:e22347. [PMID: 21818312 PMCID: PMC3144223 DOI: 10.1371/journal.pone.0022347] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/19/2011] [Indexed: 12/02/2022] Open
Abstract
Aminoglycosides (AG) are commonly prescribed antibiotics with potent bactericidal activities. One main side effect is permanent sensorineural hearing loss, induced by selective inner ear sensory hair cell death. Much work has focused on AG's initiating cell death processes, however, fewer studies exist defining mechanisms of AG uptake by hair cells. The current study investigated two proposed mechanisms of AG transport in mammalian hair cells: mechanotransducer (MET) channels and endocytosis. To study these two mechanisms, rat cochlear explants were cultured as whole organs in gentamicin-containing media. Two-photon imaging of Texas Red conjugated gentamicin (GTTR) uptake into live hair cells was rapid and selective. Hypocalcemia, which increases the open probability of MET channels, increased AG entry into hair cells. Three blockers of MET channels (curare, quinine, and amiloride) significantly reduced GTTR uptake, whereas the endocytosis inhibitor concanavalin A did not. Dynosore quenched the fluorescence of GTTR and could not be tested. Pharmacologic blockade of MET channels with curare or quinine, but not concanavalin A or dynosore, prevented hair cell loss when challenged with gentamicin for up to 96 hours. Taken together, data indicate that the patency of MET channels mediated AG entry into hair cells and its toxicity. Results suggest that limiting permeation of AGs through MET channel or preventing their entry into endolymph are potential therapeutic targets for preventing hair cell death and hearing loss.
Collapse
Affiliation(s)
- Abdelrahman Alharazneh
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Special Surgery, Mu'tah University, Alkarak, Jordan
| | - Lauren Luk
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Markus Huth
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Ashkan Monfared
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Peter S. Steyger
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
72
|
Karasawa T, Wang Q, David LL, Steyger PS. Calreticulin binds to gentamicin and reduces drug-induced ototoxicity. Toxicol Sci 2011; 124:378-87. [PMID: 21785162 DOI: 10.1093/toxsci/kfr196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides like gentamicin are among the most commonly used antibiotics in clinical practice and are essential for treating life-threatening tuberculosis and Gram-negative bacterial infections. However, aminoglycosides are also nephrotoxic and ototoxic. Although a number of mechanisms have been proposed, it is still unclear how aminoglycosides induce cell death in auditory sensory epithelia and subsequent deafness. Aminoglycosides bind to various intracellular molecules, such as RNA and phosphoinositides. We hypothesized that aminoglycosides, based on their tissue-specific susceptibility, also bind to intracellular proteins that play a role in drug-induced ototoxicity. By conjugating an aminoglycoside, gentamicin, to agarose beads and conducting a gentamicin-agarose pull-down assay, we have isolated gentamicin-binding proteins (GBPs) from immortalized cells of mouse organ of Corti, HEI-OC1. Mass spectrometry identified calreticulin (CRT) as a GBP. Immunofluorescence revealed that CRT expression is concentrated in strial marginal cells and hair cell stereocilia, primary locations of drug uptake and cytotoxicity in the cochlea. In HEI-OC1 cells treated with gentamicin, reduction of CRT expression using small interfering RNA (siRNA) reduced intracellular drug levels. CRT-deficient mouse embryonic fibroblast (MEF) cells as well as CRT siRNA-transfected wild-type MEFs also had reduced cell viability after gentamicin treatment. A pull-down assay using deletion mutants of CRT determined that the carboxyl C-domain of CRT binds to gentamicin. HeLa cells transfected with CRT C-domain deletion mutant construct were more susceptible to gentamicin-induced cytotoxicity compared with cells transfected with full-length CRT or other deletion mutants. Therefore, we conclude that CRT binding to gentamicin is protective against gentamicin-induced cytotoxicity.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
73
|
Acoustic trauma increases cochlear and hair cell uptake of gentamicin. PLoS One 2011; 6:e19130. [PMID: 21552569 PMCID: PMC3084257 DOI: 10.1371/journal.pone.0019130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/16/2011] [Indexed: 02/07/2023] Open
Abstract
Background Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity. Methods Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy. Results Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides. Conclusions Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.
Collapse
|
74
|
Abstract
Aminoglycoside-induced nephrotoxicity and ototoxicity is a major clinical problem. To understand how aminoglycosides, including gentamicin, induce cytotoxicity in the kidney proximal tubule and the inner ear, we identified gentamicin-binding proteins (GBPs) from mouse kidney cells by pulling down GBPs with gentamicin–agarose conjugates and mass spectrometric analysis. Among several GBPs specific to kidney proximal tubule cells, cytoskeleton-linking membrane protein of 63 kDa (CLIMP-63) was the only protein localized in the endoplasmic reticulum, and was co-localized with gentamicin-Texas Red (GTTR) conjugate after cells were treated with GTTR for 1 h. In western blots, kidney proximal tubule cells and cochlear cells, but not kidney distal tubule cells, exhibited a dithiothreitol (DTT)-resistant dimer band of CLIMP-63. Gentamicin treatment increased the presence of DTT-resistant CLIMP-63 dimers in both kidney proximal (KPT11) and distal (KDT3) tubule cells. Transfection of wild-type and mutant CLIMP-63 into 293T cells showed that the gentamicin-dependent dimerization requires CLIMP-63 palmitoylation. CLIMP-63 siRNA transfection enhanced cellular resistance to gentamicin-induced toxicity, which involves apoptosis, in KPT11 cells. Thus, the dimerization of CLIMP-63 is likely an early step in aminoglycoside-induced cytotoxicity in the kidney and cochlea. Gentamicin also enhanced the binding between CLIMP-63 and 14-3-3 proteins, and we also identified that 14-3-3 proteins are involved in gentamicin-induced cytotoxicity, likely by binding to CLIMP-63.
Collapse
|
75
|
Hirose K, Sato E. Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res 2010; 272:108-16. [PMID: 21044672 DOI: 10.1016/j.heares.2010.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
Combinations of aminoglycosides and loop diuretics have been known to have a synergistic effect in ototoxic injury. Because murine hair cells are relatively resistant to ototoxicity compared to those of other mammals, investigators have turned to combination therapies to create ototoxic lesions in the mouse inner ear. In this paper, we perform a systematic comparison of hearing thresholds, hair cell damage and monocyte migration into the mouse cochlea after kanamycin versus combined kanamycin/furosemide and explore the pathophysiology of enhanced hair cell loss in aminoglycoside ototoxicity in the presence of loop diuretic. Combined kanamycin-furosemide resulted in elevation of threshold not only in the high frequencies, but across all frequencies with more extensive loss of outer hair cells when compared to kanamycin alone. The stria vascularis was severely atrophied and stellate cells in the spiral limbus were missing in kanamycin-furosemide exposed mice while these changes were not observed in mice receiving kanamycin alone. Monocytes and macrophages were recruited in large numbers to the spiral ligament and spiral ganglion in these mice. Combination therapy resulted in a greater number of macrophages in total, and many more macrophages were present further apically when compared to mice given kanamycin alone. Combined kanamycin-furosemide provides an effective method of addressing the relative resistance to ototoxicity that is observed in most mouse strains. As the mouse becomes increasingly more common in studies of hearing loss, and combination therapies gain popularity, recognition of the overall effects of combined aminoglycoside-loop diuretic therapy will be critical to interpretation of the interventions that follow.
Collapse
Affiliation(s)
- Keiko Hirose
- Department of Otolaryngology, Washington University, 660 South Euclid Avenue, Campus Box 8115, St. Louis, MO 63110, United States.
| | | |
Collapse
|
76
|
Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez-Hernandez FJ. An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin. Toxicol Sci 2010; 119:245-56. [DOI: 10.1093/toxsci/kfq267] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
77
|
Wang Q, Kachelmeier A, Steyger PS. Competitive antagonism of fluorescent gentamicin uptake in the cochlea. Hear Res 2010; 268:250-9. [PMID: 20561573 PMCID: PMC2923250 DOI: 10.1016/j.heares.2010.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/02/2010] [Accepted: 06/09/2010] [Indexed: 11/17/2022]
Abstract
Aminoglycosides enter inner ear hair cells via apical endocytosis, or mechanoelectrical transduction channels, implying that, in vivo, aminoglycosides enter hair cells from endolymph prior to exerting their cytotoxic effect. If so, circulating aminoglycosides likely cross the strial blood-labyrinth barrier and enter marginal cells prior to clearance into endolymph. We characterized the competitive antagonism of unconjugated aminoglycosides on the uptake of fluorescent gentamicin (GTTR) in the stria vascularis and kidney cells at an early time point. In mice, uptake of GTTR by kidney proximal tubule cells was competitively antagonized by gentamicin at all doses, but only weakly by kanamycin (mimicking in vitro data). GTTR fluorescence was approximately 100-fold greater in proximal tubule cells than in the stria vascularis. Furthermore, only high molar ratios of aminoglycosides significantly reduced strial uptake of GTTR. Thus, gentamicin antagonism of GTTR uptake is more efficacious in proximal tubules than in the stria vascularis. Competitive antagonism of GTTR uptake is indicative of specific cell-regulatable uptake mechanisms (e.g., ion channels, transporters) in the kidney. Strial uptake mechanisms have lower specific affinity for gentamicin, and/or density (compared to the kidney), yet may be critical to transport gentamicin across the strial blood-labyrinth barrier into marginal cells.
Collapse
Affiliation(s)
- Qi Wang
- Oregon Hearing Research Center, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
78
|
Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 103:2-17. [PMID: 19835908 DOI: 10.1016/j.pbiomolbio.2009.10.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/07/2009] [Indexed: 12/19/2022]
Abstract
The Transient Receptor Potential Vanilloid 4 channel, TRPV4, is a Ca(2+) and Mg(2+) permeable non-selective cation channel involved in many different cellular functions. It is activated by a variety of physical and chemical stimuli, including heat, mechano-stimuli, endogenous substances such as arachidonic acid and its cytochrome P450-derived metabolites (epoxyeicosatrienoic acids), endocannabinoids (anandamide and 2-arachidonoylglycerol), as well as synthetic alpha-phorbol derivatives. Recently, TRPV4 has been characterized as an important player modulating osteoclast differentiation in bone remodelling and as a urothelial mechanosensor that controls normal voiding. Several TRPV4 gain-of-function mutations are shown to cause autosomal-dominant bone dysplasias such as brachyolmia and Koszlowski disease. In this review we comprehensively describe the structural, biophysical and (patho)physiological properties of the TRPV4 channel and we summarize the current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Wouter Everaerts
- Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, KULeuven, Herestraat 49, bus 802, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
79
|
Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol 2009; 10:205-19. [PMID: 19255807 DOI: 10.1007/s10162-009-0160-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 02/05/2009] [Indexed: 01/16/2023] Open
Abstract
Aminoglycosides enter inner ear hair cells across their apical membranes via endocytosis, or through the mechanoelectrical transduction channels in vitro, suggesting that these drugs enter cochlear hair cells from endolymph to exert their cytotoxic effect. We used zebrafish to determine if fluorescently tagged gentamicin (GTTR) also enters hair cells via apically located calcium-sensitive cation channels and the cytotoxicity of GTTR to hair cells. We then examined the serum kinetics of GTTR following systemic injection in mice and which murine cochlear sites preferentially loaded with systemically administered GTTR over time by confocal microscopy. GTTR is taken up by, and is toxic to, wild-type zebrafish neuromast hair cells. Neuromast hair cell uptake of GTTR is attenuated by high concentrations of extracellular calcium or unconjugated gentamicin and is blocked in mariner mutant zebrafish, suggestive of entry via the apical mechanotransduction channel. In murine cochleae, GTTR is preferentially taken up by the stria vascularis compared to the spiral ligament, peaking 3 h after intra-peritoneal injection, following GTTR kinetics in serum. Strial marginal cells display greater intensity of GTTR fluorescence compared to intermediate and basal cells. Immunofluorescent detection of gentamicin in the cochlea also revealed widespread cellular labeling throughout the cochlea, with preferential labeling of marginal cells. Only GTTR fluorescence displayed increasing cytoplasmic intensity with increasing concentration, unlike the cytoplasmic intensity of fluorescence from immunolabeled gentamicin. These data suggest that systemically administered aminoglycosides are trafficked from strial capillaries into marginal cells and clear into endolymph. If so, this will facilitate electrophoretically driven aminoglycoside entry into hair cells from endolymph. Trans-strial trafficking of aminoglycosides from strial capillaries to marginal cells will be dependent on as-yet-unidentified mechanisms that convey these drugs across the intra-strial electrical barrier and into marginal cells.
Collapse
Affiliation(s)
- Qi Wang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
80
|
Abstract
Acoustic exposure to high intensity and/or prolonged noise causes temporary or permanent threshold shifts in auditory perception, reflected by reversible or irreversible damage in the cochlea. Aminoglycoside antibiotics, used for treating or preventing life-threatening bacterial infections, also induce cytotoxicity in the cochlea. Combined noise and aminoglycoside exposure, particularly in neonatal intensive care units, can lead to auditory threshold shifts greater than simple summation of the two insults. The synergistic toxicity of acoustic exposure and aminoglycoside antibiotics is not limited to simultaneous exposures. Prior acoustic insult which does not result in permanent threshold shifts potentiates aminoglycoside ototoxicity. In addition, exposure to subdamaging doses of aminoglycosides aggravates noise-induced cochlear damage. The mechanisms by which aminoglycosides cause auditory dysfunction are still being unraveled, but likely include the following: 1) penetration into the endolymphatic fluid of the scala media, 2) permeation of nonselective cation channels on the apical surface of hair cells, and 3) generation of toxic reactive oxygen species and interference with other cellular pathways. Here we discuss the effect of combined noise and aminoglycoside exposure to identify pivotal synergistic events that can potentiate ototoxicity, in addition to a current understanding of aminoglycoside trafficking within the cochlea. Preventing the ototoxic synergy of noise and aminoglycosides is best achieved by using non-ototoxic bactericidal drugs, and by attenuating perceived noise intensity when life-saving aminoglycoside therapy is required.
Collapse
Affiliation(s)
- Hongzhe Li
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|