51
|
Romana-Souza B, Santos JS, Monte-Alto-Costa A. beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays rat cutaneous wound healing. Wound Repair Regen 2009; 17:230-9. [PMID: 19320892 DOI: 10.1111/j.1524-475x.2008.00453.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sympathetic nervous system plays an important role in wound healing, but its mechanism of action is poorly understood. The aim of this study was to investigate the effects of beta- and alpha-adrenoceptor blockade on cutaneous wound healing. Male rats were treated with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist), or phentolamine (alpha1- and alpha2-antagonist) dissolved in drinking water. A full-thickness excisional lesion was created and the wound area was measured. Fourteen days after wounding, lesions and adjacent skin were removed, formalin-fixed, and paraffin-embedded. Sections were stained with hematoxylin-eosin and toluidine blue, and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Wound contraction was delayed in propranolol- and atenolol-treated animals but not in phentolamine-treated animals. Reepithelialization was decreased only in propranolol-treated animals. beta1- and beta2-adrenoceptor blockade delayed leukocyte migration, epidermal and connective tissue cell proliferation, myofibroblastic differentiation, and mast cell migration. The volume density of blood vessels was increased in the propranolol- and atenolol-treated animals compared with controls. The levels of matrix metalloproteases (MMP-2 and MMP-9) decreased in the propranolol- and atenolol-treated animals. alpha1- and alpha2-adrenoceptor blockade only affected leukocyte migration, epithelial and connective tissue cell proliferation, and pro-MMP-9 levels. In conclusion, beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays cutaneous wound healing.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Brazil
| | | | | |
Collapse
|
52
|
Romana-Souza B, Santos JS, Desmoulière A, Monte-Alto-Costa A. Beta-adrenoceptor blockade delays granulation tissue formation in polyurethane sponge implants. J Cutan Pathol 2008; 36:522-8. [PMID: 19476519 DOI: 10.1111/j.1600-0560.2008.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role of adrenoceptors in granulation tissue formation is not well understood. The aim of this study was to investigate the effects of alpha- and beta-adrenoceptor blockade on granulation tissue development using polyurethane (PU) implants in the rat. METHODS Animals were treated orally with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist) or phentolamine (alpha1- and alpha2-antagonist) until euthanasia. The control group received only water. All animals received subcutaneous implants of PU sponges. After 14 days, implants were collected, formalin-fixed and paraffin-embedded. Sections were stained with hematoxylin and eosin and Sirius red and immunostained for CD68 and alpha-smooth muscle actin. RESULTS The number of inflammatory cells and the volume density of myofibroblasts and blood vessels were lower in the control group than in the propranolol- and atenolol-treated groups. The collagen fiber score was greater in the control group than in the propranolol- and atenolol-treated groups. The inflammatory infiltrate, collagen fiber score, blood vessel density or myofibroblast differentiation was not affected by phentolamine. The percentage of fibrovascular invasion was greater in the antagonist-treated groups than in the control group. CONCLUSIONS Blockade of beta1- and beta2-adrenoceptors, but not alpha-adrenoceptors, impairs granulation tissue development in PU implants due to interference with the inflammatory response.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
53
|
Abstract
Wound healing is a sophisticated response ubiquitous to various traumatic stimuli leading to an anatomical/functional disruption. The aim of present article was to review the current evidence regarding the effects of microgravity on wound healing dynamics. Modulation of haemostatic phase because of alteration of platelet quantity and function seems probable. Furthermore, production of growth factors that are released from activated platelets and infiltration/function of inflammatory cells seem to be impaired by microgravity. Proliferation of damaged structures is dependent on orchestrated function of various growth factors, for example transforming growth factors, platelet-derived growth factor and epidermal growth factor, all of which are affected by microgravitational status. Moreover, gravity-induced alterations of gap junction, neural inputs, and cell populations have been reported. It may be concluded that different cellular and extracellular element involved in the healing response are modified through effect of microgravity which may lead to impairment in healing dynamics.
Collapse
|
54
|
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16:585-601. [PMID: 19128254 DOI: 10.1111/j.1524-475x.2008.00410.x] [Citation(s) in RCA: 2503] [Impact Index Per Article: 147.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stephan Barrientos
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
55
|
Kim MO, Na SI, Lee MY, Heo JS, Han HJ. Epinephrine increases DNA synthesis via ERK1/2s through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse embryonic stem cells. J Cell Biochem 2008; 104:1407-20. [PMID: 18275042 DOI: 10.1002/jcb.21716] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epinephrine is a catecholamine that plays important roles in regulating a wide variety of physiological systems by acting through the adrenergic receptors (ARs). The cellular responses to AR stimulation are mediated through various signaling pathways. Therefore, this study examined the effects of epinephrine on DNA synthesis and related signaling molecules in mouse embryonic stem cells (ESCs). Epinephrine increased DNA synthesis in a dose- and time-dependent manner, as determined by the level of [(3)H]-thymidine incorporation. AR subtypes (alpha1(A), alpha2(A), beta1, beta2, and beta3) were expressed in mouse ESCs and their expression levels were increased by epinephrine. In this experiment, epinephrine increased cAMP levels, intracellular Ca(2+) concentration ([Ca(2+)](i)), and translocation of protein kinase C (PKC) from the cytosol to the membrane compartment. In addition, we observed Akt phosphorylation in response to epinephrine; this was stimulated by phosphorylation of the epidermal growth factor receptor (EGFR). Epinephrine also induced phosphorylation of ERK1/2 (p44/42 MAPKs), while inhibition of PKC or Akt blocked this phosphorylation. Epinephrine increased the mRNA levels of proto-oncogenes (c-fos, c-jun, c-myc), while inhibition of ERK1/2 decreased these mRNA levels. In experiments aimed at examining the involvement of cell cycle regulatory proteins, epinephrine increased the levels of cyclin E/cyclin-dependent kinase 2 (CDK2) and cyclin D1/cyclin-dependent kinase 4 (CDK4). In conclusion, epinephrine stimulates DNA synthesis via ERK1/2 through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse ESCs.
Collapse
Affiliation(s)
- Mi Ok Kim
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | |
Collapse
|
56
|
Abstract
The epidermal growth factor (EGF) family comprises multiple mediators such as transforming growth factor-alpha, amphiregulin, heparin binding-EGF, and epiregulin, which are crucially involved in the tissue-specific proliferation/differentiation homeostasis. Typically, they act in an autocrine and paracrine manner on their specific cell membrane receptor and mount an effective reparative response to any attack to biophysical integrity. In addition, the EGFR can be activated by transactivation from a variety of G-protein-coupled receptors, integrins, and cytokine receptors, so that it acts as the major transducer of disparate cell functions, including changes in proliferation rate, cellular shape, attachment and motility, and regulation of proinflammatory activation. However, numerous experimental observations indicate that the different EGFR ligands are not redundant, but may rather provide distinct and specific contributions to keratinocyte functions. Importantly, increasing evidence now suggests that the EGFR pathway has a major impact on the inflammatory/immune reactions of the skin, in the apparent effort of enhancing innate immune defense while opposing overactivation of keratinocyte pro-inflammatory functions. This review covers the molecular mechanisms and functions activated by this major growth factor system in the regulation of keratinocyte biology and focuses on the complex contribution of EGFR signaling to the inflammatory processes in the skin.
Collapse
|
57
|
Grossmann C, Gekle M. Non-classical actions of the mineralocorticoid receptor: misuse of EGF receptors? Mol Cell Endocrinol 2007; 277:6-12. [PMID: 17692454 DOI: 10.1016/j.mce.2007.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/18/2007] [Accepted: 07/02/2007] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) plays a key role in cardiovascular and renal injury. The underlying mechanisms seem to involve the epidermal growth factor receptor (EGFR) for the development of fibrosis and vascular dysfunction. Both enhanced EGFR transactivation by activated MR as well as upregulation of EGFR expression by aldosterone-bound MR have been described. While the former seems to be mediated by the tyrosine kinase cSrc, reporter gene assays and chromatin immunoprecipitation data indicate that the latter is caused by an interaction between MR and the EGFR promoter. Pharmacological inhibition of EGFR function prevents some of MR's pathological actions in cell culture systems, like vascular smooth muscle cells. Thus, transactivation as well as enhanced expression of EGFR may be an important switch for the pathophysiological actions in the reno-cardiovascular continuum. Furthermore, EGFR signaling may serve as a negative feedback loop to limit sodium retention. Overall, MR's "misuse" of the EGFR is one possible explanation for the pathophysiological effects of aldosterone, making the EGFR a potential target for therapeutical interventions against reno-cardiovascular remodelling.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Magdeburger Strasse 6, 06097 Halle, Saale, Germany
| | | |
Collapse
|
58
|
Taboubi S, Milanini J, Delamarre E, Parat F, Garrouste F, Pommier G, Takasaki J, Hubaud JC, Kovacic H, Lehmann M. G alpha(q/11)-coupled P2Y2 nucleotide receptor inhibits human keratinocyte spreading and migration. FASEB J 2007; 21:4047-58. [PMID: 17609252 DOI: 10.1096/fj.06-7476com] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reepithelialization is a critical step in wound healing. It is initiated by keratinocyte migration at the wound edges. After wounding, extracellular nucleotides are released by keratinocytes and other skin cells. Here, we report that activation of P2Y2 nucleotide receptor by ATP/UTP inhibits keratinocyte cell spreading and induces lamellipodium withdrawal. Kymography analysis demonstrates that these effects correlate with a durable decrease of lamellipodium dynamics. P2Y2 receptor activation also induces a dramatic dismantling of the actin network, the loss of alpha3 integrin expression at the cell periphery, and the dissolution of focal contacts as indicated by the alteration of alpha(v) integrins and focal contact protein distribution. In addition, activation of P2Y2R prevents growth factor-induced phosphorylation of Erk(1,2) and Akt/PkB. The use of a specific pharmacological inhibitor (YM-254890), the depletion of G alpha(q/11) by siRNA, or the expression of a constitutively active G alpha(q/11) mutant (Q209L) show that activation of G alpha(q/11) is responsible for these ATP/UTP-induced effects. Finally, we report that ATP delays growth factor-induced wound healing of keratinocyte monolayers. Collectively, these findings provide evidence for a unique and important role for extracellular nucleotides as efficient autocrine/paracrine regulators of keratinocyte shape and migration during wound healing.
Collapse
Affiliation(s)
- Salma Taboubi
- CISMET, FRE CNRS 2737, Faculté de Pharmacie, Université d'Aix-Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Pullar CE, Zhao M, Song B, Pu J, Reid B, Ghoghawala S, McCaig C, Isseroff RR. Beta-adrenergic receptor agonists delay while antagonists accelerate epithelial wound healing: evidence of an endogenous adrenergic network within the corneal epithelium. J Cell Physiol 2007; 211:261-72. [PMID: 17226783 DOI: 10.1002/jcp.20934] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wound healing is a complex and well-orchestrated biological process. Corneal epithelial cells (CECs) must respond quickly to trauma to rapidly restore barrier function and protect the eye from noxious agents. They express a high level of beta2-adrenergic receptors but their function is unknown. Here, we report the novel finding that they form part of a regulatory network in the corneal epithelium, capable of modulating corneal epithelial wound repair. Beta-adrenergic receptor agonists delay CEC migration via a protein phosphatase 2A-mediated mechanism and decrease both electric field-directed migration and corneal wound healing. Conversely, beta-adrenergic receptor antagonists accelerate CEC migration, enhance electric field-mediated directional migration, and promote corneal wound repair. We demonstrate that CECs express key enzymes required for epinephrine (beta-adrenergic receptor agonist) synthesis in the cytoplasm and can detect epinephrine in cell extracts. We propose that the mechanism for the pro-motogenic effect of the beta-adrenergic antagonist is blockade of the beta2-adrenergic receptor preventing autocrine catecholamine binding. Further investigation of this network will improve our understanding of one of the most frequently prescribed class of drugs.
Collapse
Affiliation(s)
- Christine E Pullar
- Department of Dermatology, University of California Davis, Davis, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|