51
|
Landman J, Schelling MPM, Tuinier R, Vis M. Repulsive and attractive depletion forces mediated by nonadsorbing polyelectrolytes in the Donnan limit. J Chem Phys 2021; 154:164904. [PMID: 33940853 DOI: 10.1063/5.0044749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mixtures of colloids and nonadsorbing polyelectrolytes, a Donnan potential arises across the region between surfaces that are depleted of the polyelectrolyte and the rest of the system. This Donnan potential tends to shift the polyelectrolyte density profile toward the colloidal surface and leads to the local accumulation of polyelectrolytes. We derive a zero-field theory for the disjoining pressure between two parallel flat plates. The polyelectrolyte is allowed to enter the confined interplate region at the cost of a conformational free energy penalty. The resulting disjoining pressure shows a crossover to a repulsive regime when the interplate separation gets smaller than the size of the polyelectrolyte chain, followed by an attractive part. We find a quantitative match between the model and self-consistent field computations that take into account the full Poisson-Boltzmann electrostatics.
Collapse
Affiliation(s)
- Jasper Landman
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Max P M Schelling
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mark Vis
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
52
|
Grant NA, Abdel Magid A, Franklin J, Dufour Y, Lenski RE. Changes in Cell Size and Shape during 50,000 Generations of Experimental Evolution with Escherichia coli. J Bacteriol 2021; 203:e00469-20. [PMID: 33649147 PMCID: PMC8088598 DOI: 10.1128/jb.00469-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with Escherichia coli showed that populations evolved larger cells and, in some cases, cells that were less rod-like. That experiment has now run for over two more decades. Meanwhile, genome sequence data are available for these populations, and new computational methods enable high-throughput microscopic analyses. In this study, we measured stationary-phase cell volumes for the ancestor and 12 populations at 2,000, 10,000, and 50,000 generations, including measurements during exponential growth at the last time point. We measured the distribution of cell volumes for each sample using a Coulter counter and microscopy, the latter of which also provided data on cell shape. Our data confirm the trend toward larger cells while also revealing substantial variation in size and shape across replicate populations. Most populations first evolved wider cells but later reverted to the ancestral length-to-width ratio. All but one population evolved mutations in rod shape maintenance genes. We also observed many ghost-like cells in the only population that evolved the novel ability to grow on citrate, supporting the hypothesis that this lineage struggles with maintaining balanced growth. Lastly, we show that cell size and fitness remain correlated across 50,000 generations. Our results suggest that larger cells are beneficial in the experimental environment, while the reversion toward ancestral length-to-width ratios suggests partial compensation for the less favorable surface area-to-volume ratios of the evolved cells.IMPORTANCE Bacteria exhibit great morphological diversity, yet we have only a limited understanding of how their cell sizes and shapes evolve and of how these features affect organismal fitness. This knowledge gap reflects, in part, the paucity of the fossil record for bacteria. In this study, we revived and analyzed samples extending over 50,000 generations from 12 populations of experimentally evolving Escherichia coli to investigate the relation between cell size, shape, and fitness. Using this "frozen fossil record," we show that all 12 populations evolved larger cells concomitant with increased fitness, with substantial heterogeneity in cell size and shape across the replicate lines. Our work demonstrates that cell morphology can readily evolve and diversify, even among populations living in identical environments.
Collapse
Affiliation(s)
- Nkrumah A Grant
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Ali Abdel Magid
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Joshua Franklin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Yann Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
53
|
Davis CM, Gruebele M. Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation. J Phys Chem B 2021; 125:3815-3823. [PMID: 33826329 DOI: 10.1021/acs.jpcb.1c00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While extensive studies have been carried out to determine protein-RNA binding affinities, mechanisms, and dynamics in vitro, such studies do not take into consideration the effect of the many weak nonspecific interactions in a cell filled with potential binding partners. Here we experimentally tested the role of the cellular environment on affinity and binding dynamics between a protein and RNA in living U-2 OS cells. Our model system is the spliceosomal protein U1A and its binding partner SL2 of the U1 snRNA. The binding equilibrium was perturbed by a laser-induced temperature jump and monitored by Förster resonance energy transfer. The apparent binding affinity in live cells was reduced by up to 2 orders of magnitude compared to in vitro. The measured in-cell dissociation rate coefficients were up to 2 orders of magnitude larger, whereas no change in the measured association rate coefficient was observed. The latter is not what would be anticipated due to macromolecular crowding or nonspecific sticking of the uncomplexed U1A and SL2 in the cell. A quantitative model fits our experimental results, with the major cellular effect being that U1A and SL2 sticking to cellular components are capable of binding, just not as strongly as the free complex. This observation suggests that high binding affinities measured or designed in vitro are necessary for proper binding in vivo, where competition with many nonspecific interactions exists, especially for strongly interacting species with high charge or large hydrophobic surface areas.
Collapse
|
54
|
Nasreen K, Parray ZA, Shamsi A, Ahmad F, Ahmed A, Malik A, Lakhrm NA, Hassan MI, Islam A. Crowding Milleu stabilizes apo-myoglobin against chemical-induced denaturation: Dominance of hardcore repulsions in the heme devoid protein. Int J Biol Macromol 2021; 181:552-560. [PMID: 33744250 DOI: 10.1016/j.ijbiomac.2021.03.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
Macromolecular crowding can have significant consequences on the structure and dynamics of a protein. The size and shape of a co-solute molecule and the nature of protein contribute significantly in macromolecular crowding, which results in different outcomes in similar conditions. The structure of apo-myoglobin (apo-Mb) both in the absence and presence of denaturants (GdmCl and urea) was investigated in crowded conditions at pH 7.0, with a comparable size of crowders (~70 kDa) but of different shapes (ficoll and dextran) at various concentrations using spectroscopic techniques like absorption and circular dichroism to monitor changes in secondary and tertiary structure, respectively. The crowders in the absence of denaturants showed structural stabilization of the tertiary structure while no significant change in the secondary structure was observed. The effect of crowders on the stability of the protein was also investigated using probes such as Δε291 and θ222 using chemical denaturants. The analysis of chemical-induced denaturation curves showed that both the crowders stabilize apo-Mb by increasing the values of the midpoint of transition (Cm) and change in free energy in the absence of denaturant (∆GD°), and it was observed that dextran 70 shows more stabilization than ficoll 70 under similar conditions. In this study apo-Mb showed stabilization under crowded conditions, which is a deviation from earlier work from our group where holo form of the same protein was destabilized. This study emphasizes that volume exclusion is a dominant force in a simple protein while soft interactions may play important role in the proteins that are possessing prosthetic group. Hence, the effect of crowders is protein-dependent, and excluded volume plays a great role in the stabilization of apo-Mb, which does not interact with the crowders.
Collapse
Affiliation(s)
- Khalida Nasreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anwar Ahmed
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Abobakr Lakhrm
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
55
|
Wilcox XE, Chung CB, Slade KM. Macromolecular crowding effects on the kinetics of opposing reactions catalyzed by alcohol dehydrogenase. Biochem Biophys Rep 2021; 26:100956. [PMID: 33665382 PMCID: PMC7905371 DOI: 10.1016/j.bbrep.2021.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
In order to better understand how the complex, densely packed, heterogeneous milieu of a cell influences enzyme kinetics, we exposed opposing reactions catalyzed by yeast alcohol dehydrogenase (YADH) to both synthetic and protein crowders ranging from 10 to 550 kDa. The results reveal that the effects from macromolecular crowding depend on the direction of the reaction. The presence of the synthetic polymers, Ficoll and dextran, decrease Vmax and Km for ethanol oxidation. In contrast, these crowders have little effect or even increase these kinetic parameters for acetaldehyde reduction. This increase in Vmax is likely due to excluded volume effects, which are partially counteracted by viscosity hindering release of the NAD+ product. Macromolecular crowding is further complicated by the presence of a depletion layer in solutions of dextran larger than YADH, which diminishes the hindrance from viscosity. The disparate effects from 25 g/L dextran or glucose compared to 25 g/L Ficoll or sucrose reveals that soft interactions must also be considered. Data from binary mixtures of glucose, dextran, and Ficoll support this “tuning” of opposing factors. While macromolecular crowding was originally proposed to influence proteins mainly through excluded volume effects, this work compliments the growing body of evidence revealing that other factors, such as preferential hydration, chemical interactions, and the presence of a depletion layer also contribute to the overall effect of crowding. Yeast alcohol dehydrogenase reduction of acetaldehyde is enhanced by crowding. Crowding effects on YADH kinetics depend on the direction of the reaction. Crowders like dextran can be used as a tool to elucidate enzyme mechanism. Excluded volume optimizes YADH hydride transfer; viscosity hinders product release. The presence of a depletion layer with large crowders mitigates their effects.
Collapse
Affiliation(s)
- Xander E Wilcox
- Department of Chemistry, University of California at Davis, CA, 95616, USA
| | - Charmaine B Chung
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| |
Collapse
|
56
|
Li S, Yi Y, Cui K, Zhang Y, Chen Y, Han D, Sun L, Zhang X, Chen F, Zhang Y, Yang Y. A Single-Chain Variable Fragment Antibody Inhibits Aggregation of Phosphorylated Tau and Ameliorates Tau Toxicity in vitro and in vivo. J Alzheimers Dis 2021; 79:1613-1629. [PMID: 33459708 DOI: 10.3233/jad-191266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common cause of dementia among elderly people. Hyperphosphorylation and aggregation of tau correlates with the clinical progression of AD; therefore, therapies targeting the aggregation of tau may have potential applications for anti-AD drug development. Several inhibitors of tau aggregation, including small molecules and antibodies, have been found to decrease the aggregation of tau and the corresponding pathology. OBJECTIVE To screen one kind of single-chain variable fragment (scFv) antibody which could inhibit the aggregation of tau and ameliorate its cytotoxicity. METHODS/RESULTS Using phosphorylated tau (pTau) as an antigen, we obtained a scFv antibody via the screening of a high-capacity phage antibody library. Biochemical analysis revealed that this scFv antibody (scFv T1) had a strong ability to inhibit pTau aggregation both in dilute solutions and under conditions of macromolecular crowding. ScFv T1 could also depolymerize preformed pTau aggregates in vitro. Furthermore, scFv T1 was found to be able to inhibit the cytotoxicity of extracellular pTau aggregates and ameliorate tau-mediated toxicity when coexpressed with a hTauR406W mutant in the eye of transgenic Drosophila flies. CONCLUSION This scFv T1 antibody may be a potential new therapeutic agent against AD. Our methods can be used to develop novel strategies against protein aggregation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yushan Yi
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Ke Cui
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yanqiu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yange Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Dou Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Xiaohui Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| |
Collapse
|
57
|
Brudzynski K, Sjaarda CP. Colloidal structure of honey and its influence on antibacterial activity. Compr Rev Food Sci Food Saf 2021; 20:2063-2080. [PMID: 33569893 DOI: 10.1111/1541-4337.12720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023]
Abstract
Honey colloidal structure emerges as a new trend in research on honey functions since it became recognized as a major factor altering bioactivity of honey compounds. In honey complex matrix, macromolecules self-associate to colloidal particles at the critical concentration, driven by honey viscosity. Sequestration of macromolecules into colloids changes their activities and affects honey antibacterial function. This review fills the 80-year-old gap in research on honey colloidal structure. It summarizes past and current status of the research on honey colloids and describes physicochemical properties and the mechanisms of colloid formation and their dissociation upon honey dilution. The experimental observations are explained in the context of theoretical background of colloidal science. The functional changes and bioactivity of honey macromolecules bound to colloidal particles are illustrated here by the production of H2 O2 by glucose oxidase and the effect they have on antibacterial activity of honey. The changes in the production of H2 O2 and antibacterial activity of honey were coordinated with the changes in the aggregation-dissociation states of honey colloidal particles upon dilution. In all cases, these changes were nonlinear, assuming an inverted U-shaped dose-response curve. At the curve maximum, the production of H2 O2 and antibacterial activity reached the peak. The curve maximum signaled the minimum honey concentration required for the phase separation. With phase transition from two-phase colloidal condense state to dilute state dispersion, the change to opposite effects of dilution on these honey's activities occurred. Thus, the colloidal structure strongly influences bioactivity of honey compounds and affects its antibacterial activity.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Bimedical Inc., St. Catharines, Ontario, Canada.,Department of Biological Sciences, Brock University and Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, Ontario, Canada
| | - Calvin P Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Kingston, Ontario, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
58
|
Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-Schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM. Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. Mol Biol Cell 2021; 32:186-210. [PMID: 33237849 PMCID: PMC8120688 DOI: 10.1091/mbc.e20-08-0530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Most of the fascinating phenomena studied in cell biology emerge from interactions among highly organized multimolecular structures embedded into complex and frequently dynamic cellular morphologies. For the exploration of such systems, computer simulation has proved to be an invaluable tool, and many researchers in this field have developed sophisticated computational models for application to specific cell biological questions. However, it is often difficult to reconcile conflicting computational results that use different approaches to describe the same phenomenon. To address this issue systematically, we have defined a series of computational test cases ranging from very simple to moderately complex, varying key features of dimensionality, reaction type, reaction speed, crowding, and cell size. We then quantified how explicit spatial and/or stochastic implementations alter outcomes, even when all methods use the same reaction network, rates, and concentrations. For simple cases, we generally find minor differences in solutions of the same problem. However, we observe increasing discordance as the effects of localization, dimensionality reduction, and irreversible enzymatic reactions are combined. We discuss the strengths and limitations of commonly used computational approaches for exploring cell biological questions and provide a framework for decision making by researchers developing new models. As computational power and speed continue to increase at a remarkable rate, the dream of a fully comprehensive computational model of a living cell may be drawing closer to reality, but our analysis demonstrates that it will be crucial to evaluate the accuracy of such models critically and systematically.
Collapse
Affiliation(s)
- M. E. Johnson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218
| | - A. Chen
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218
| | - J. R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - P. Henning
- Institute for Visual and Analytic Computing, University of Rostock, 18055 Rostock, Germany
| | - I. I. Moraru
- Department of Cell Biology, Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - M. Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - R. F. Murphy
- Computational Biology Department, Department of Biological Sciences, Department of Biomedical Engineering, Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15289
| | - T. Prüstel
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - J. A. Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - A. M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
59
|
Harusawa K, Watanabe C, Kobori Y, Tomita K, Kitamura A, Kinjo M, Yanagisawa M. Membrane Surface Modulates Slow Diffusion in Small Crowded Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:437-444. [PMID: 33351626 DOI: 10.1021/acs.langmuir.0c03086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes are ubiquitous structures in cells. The effects of membranes on various functional molecules have been reported, but their behaviors under macromolecular crowding and cell-sized confinement have not fully been understood. In this study, we model an intracellular environment by crowding micrometer-sized droplets and investigate the effects of membrane properties on molecular diffusion. The molecular diffusion inside small droplets covered with a lipid layer of phosphatidylcholine (PC) becomes slower compared with that of the corresponding bulk solutions under a crowding condition of polysaccharide dextran but not of its monomer unit, glucose. The addition of a poly(ethylene glycol) conjugated lipid (PEGylated lipid) to the PC membrane significantly alters the degree of slow diffusion observed inside small droplets of concentrated dextran. Interestingly, the change is not monotonic against dextran concentration; that is, the PEGylated membrane increases and decreases the degree of slow diffusion with increasing dextran concentration. We explain the nonmonotonic alternation from the increase in effective dextran concentration and the hindered temporal adsorption of dextran to the membrane. Because diffusion alteration by adding PEGylated lipid is observed for condensed small droplets of linear polymer PEG and hydrophilic protein bovine serum albumin, the phenomenon is general for other polymer systems as well. Furthermore, our findings may facilitate the understanding of intracellular molecular behaviors based on membrane effects as well as the development of numerous applications using polymer droplets.
Collapse
Affiliation(s)
- Kanae Harusawa
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Yuta Kobori
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kazuho Tomita
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Akira Kitamura
- Faculty of Advanced Life Science, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Basic Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
60
|
Wang L, DeRose PC, Inwood SL, Gaigalas AK. Stochastic Reaction-Diffusion Model of the Binding of Monoclonal Antibodies to CD4 Receptors on the Surface of T Cells. Int J Mol Sci 2020; 21:E6086. [PMID: 32846978 PMCID: PMC7504294 DOI: 10.3390/ijms21176086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
A stochastic reaction-diffusion model was developed to describe the binding of labeled monoclonal antibodies (mAbs) to CD4 receptors on the surface of T cells. The mAbs diffused to, adsorbed on, and underwent monovalent and bivalent binding to CD4 receptors on the cell surface. The model predicted the time-dependent nature of all populations involved in the labeling process. At large time, the populations reached equilibrium values, giving the number of antibodies bound to the T cell (ABC) defined as the sum of monovalently and bivalently bound mAbs. The predicted coefficient of variation (CV%) of the (ABC) values translated directly to a corresponding CV% of the measured mean fluorescence intensity (MFI). The predicted CV% was about 0.2% from the intrinsic fluctuations of the stochastic reaction process, about 5% after inclusion of the known fluctuations in the number of available CD4 receptors, and about 11% when fluctuations in bivalent binding affinity were included. The fluorescence detection process is expected to contribute approximately 7%. The abovementioned contributions to CV% sum up to approximately 13%. Work is underway to reconcile the predicted values and the measured values of 17% to 22%.
Collapse
Affiliation(s)
- Lili Wang
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (L.W.); (P.C.D.); (S.L.I.)
| | - Paul C. DeRose
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (L.W.); (P.C.D.); (S.L.I.)
| | - Sarah L. Inwood
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (L.W.); (P.C.D.); (S.L.I.)
| | - Adolfas K. Gaigalas
- Fluorescence Spectroscopy Consultant, 2650 Lake Shore Drive, Riviera Beach, FL 33404, USA
| |
Collapse
|
61
|
Nolan V, Collin A, Rodriguez C, Perillo MA. Effect of Polyethylene Glycol-Induced Molecular Crowding on the Enzymatic Activity and Thermal Stability of β-Galactosidase from Kluyveromyces lactis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8875-8882. [PMID: 32686401 DOI: 10.1021/acs.jafc.0c02316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we report the effect of polyethylene glycol (PEG6000)-induced molecular crowding (MC) on the catalytic activity and thermal stability of Kluyveromyces lactis β-galactosidase (β-Gal). The β-Gal-catalyzed hydrolysis of o-nitrophenyl-β-d-galactopyranoside followed a Michaelian kinetics at [PEG6000] ≤ 25% w/v and positive cooperativity at higher concentrations (35% w/v PEG6000). Compared with dilute solutions, in the MC media, β-Gal exhibited stronger thermal stability, as shown by the increase in the residual activity recovered after preincubation at high temperatures (e.g., 45 °C) and by the slower inactivation kinetics. Considering the effects of water thermodynamic activity on the reaction kinetics and protein structure and the effect of the exclusion volume on protein conformation, we suggest that changes in the protein oligomerization state and hydration could be the responsible for the behavior observed at the highest MC levels assayed. These results could be relevant and should be taken into account in industrial food processes applying β-Gal from K. lactis.
Collapse
Affiliation(s)
- Verónica Nolan
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Fı́sicas y Naturales. ICTA and Departamento de Quı́mica, Cátedra de Quı́mica Biológica, Avenue Vélez Sársfield 1611, 5016 Córdoba, Argentina
- CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), 5016 Córdoba, Argentina
| | - Alejandro Collin
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Fı́sicas y Naturales. ICTA and Departamento de Quı́mica, Cátedra de Quı́mica Biológica, Avenue Vélez Sársfield 1611, 5016 Córdoba, Argentina
- CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), 5016 Córdoba, Argentina
| | - Carolina Rodriguez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Fı́sicas y Naturales. ICTA and Departamento de Quı́mica, Cátedra de Quı́mica Biológica, Avenue Vélez Sársfield 1611, 5016 Córdoba, Argentina
- CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), 5016 Córdoba, Argentina
| | - María A Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Fı́sicas y Naturales. ICTA and Departamento de Quı́mica, Cátedra de Quı́mica Biológica, Avenue Vélez Sársfield 1611, 5016 Córdoba, Argentina
- CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), 5016 Córdoba, Argentina
| |
Collapse
|
62
|
In-cell destabilization of a homodimeric protein complex detected by DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:20566-20575. [PMID: 32788347 DOI: 10.1073/pnas.2005779117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The complexity of the cellular medium can affect proteins' properties, and, therefore, in-cell characterization of proteins is essential. We explored the stability and conformation of the first baculoviral IAP repeat (BIR) domain of X chromosome-linked inhibitor of apoptosis (XIAP), BIR1, as a model for a homodimer protein in human HeLa cells. We employed double electron-electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+ spin labels at three representative protein residues, C12 (flexible region), E22C, and N28C (part of helical residues 26 to 31) in the N-terminal region. In contrast to predictions by excluded-volume crowding theory, the dimer-monomer dissociation constant K D was markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was partially recapitulated under conditions of high salt concentrations, given that conserved salt bridges at the dimer interface are critically required for association. Unexpectedly, however, also the addition of the crowding agent Ficoll destabilized the dimer while the addition of bovine serum albumin (BSA) and lysozyme, often used to represent interaction with charged macromolecules, had no effect. Our results highlight the potential of DEER for in-cell study of proteins as well as the complexities of the effects of the cellular milieu on protein structures and stability.
Collapse
|
63
|
González García Á, Tuinier R, de With G, Cuetos A. Directional-dependent pockets drive columnar-columnar coexistence. SOFT MATTER 2020; 16:6720-6724. [PMID: 32578661 DOI: 10.1039/d0sm00802h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The rational design of materials requires a fundamental understanding of the mechanisms driving their self-assembly. This may be particularly challenging in highly dense and shape-asymmetric systems. Here we show how the addition of tiny non-adsorbing spheres (depletants) to a dense system of hard disc-like particles (discotics) leads to coexistence between two distinct, highly dense (liquid)-crystalline columnar phases. This coexistence emerges due to the directional-dependent free-volume pockets for depletants. Theoretical results are confirmed by simulations explicitly accounting for the binary mixture of interest. We define the stability limits of this columnar-columnar coexistence and quantify the directional-dependent depletant partitioning.
Collapse
Affiliation(s)
- Álvaro González García
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands. and Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry & Debye Institute, Utrecht University, The Netherlands.
| | - Remco Tuinier
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry & Debye Institute, Utrecht University, The Netherlands.
| | - Gijsbertus de With
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry & Debye Institute, Utrecht University, The Netherlands.
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Universidad Pablo Olavide, 41013 Sevilla, Spain
| |
Collapse
|
64
|
Kokolaki ML, Fauquier A, Renner M. Molecular Crowding and Diffusion-Capture in Synapses. iScience 2020; 23:101382. [PMID: 32739837 PMCID: PMC7399191 DOI: 10.1016/j.isci.2020.101382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Cell membranes often contain domains with important physiological functions. A typical example are neuronal synapses, whose capacity to capture receptors for neurotransmitters is central to neuronal functions. Receptors diffuse in the membrane until they are stabilized by interactions with stable elements, the scaffold. Single particle tracking experiments demonstrated that these interactions are rather weak and that lateral diffusion is strongly impaired in the post-synaptic membrane due to molecular crowding. We investigated how the distribution of scaffolding molecules and molecular crowding affect the capture of receptors. In particle-based Monte Carlo simulations, based on experimental data of molecular diffusion and organization, crowding enhanced the receptor-scaffold interaction but reduced the capture of new molecules. The distribution of scaffolding sites in several clusters reduced crowding and fostered the exchange of molecules accelerating synaptic plasticity. Synapses could switch between two regimes, becoming more stable or more plastic depending on the internal distribution of molecules. The good: molecular crowding enhances the interaction receptors-scaffold The bad: the exchange of molecules with extrasynaptic areas is reduced by crowding Molecular crowding helps synapses to be stable Nanoclusters of scaffold sites reduce crowding effects and favor synaptic plasticity
Collapse
Affiliation(s)
| | - Aurélien Fauquier
- Sorbonne Université UMR-S 1270 INSERM, Institut du Fer à Moulin (IFM), 75005 Paris, France
| | - Marianne Renner
- Sorbonne Université UMR-S 1270 INSERM, Institut du Fer à Moulin (IFM), 75005 Paris, France.
| |
Collapse
|
65
|
Davis CM, Gruebele M. Cytoskeletal Drugs Modulate Off-Target Protein Folding Landscapes Inside Cells. Biochemistry 2020; 59:2650-2659. [PMID: 32567840 DOI: 10.1021/acs.biochem.0c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dynamic cytoskeletal network of microtubules and actin filaments can be disassembled by drugs. Cytoskeletal drugs work by perturbing the monomer-polymer equilibrium, thus changing the size and number of macromolecular crowders inside cells. Changes in both crowding and nonspecific surface interactions ("sticking") following cytoskeleton disassembly can affect the protein stability, structure, and function directly or indirectly by changing the fluidity of the cytoplasm and altering the crowding and sticking of other macromolecules in the cytoplasm. The effect of cytoskeleton disassembly on protein energy landscapes inside cells has yet to be observed. Here we have measured the effect of several cytoskeletal drugs on the folding energy landscape of two FRET-labeled proteins with different in vitro sensitivities to macromolecular crowding. Phosphoglycerate kinase (PGK) was previously shown to be more sensitive to crowding, whereas variable major protein-like sequence expressed (VlsE) was previously shown to be more sensitive to sticking. The in-cell effects of drugs that depolymerize either actin filaments (cytochalasin D and latrunculin B) or microtubules (nocodazole and vinblastine) were compared. The crowding sensor protein CrH2-FRET verified that cytoskeletal drugs decrease the extent of crowding inside cells despite also reducing the overall cell volume. The decreased compactness and folding stability of PGK could be explained by the decreased extent of crowding induced by these drugs. VlsE's opposite response to the drugs shows that depolymerization of the cytoskeleton also changes sticking in the cellular milieu. Our results demonstrate that perturbation of the monomer-polymer cytoskeletal equilibrium, for example, during natural cell migration or stresses from drug treatment, has off-target effects on the energy landscapes of proteins in the cell.
Collapse
|
66
|
Li GF, Huang BC, Cheng YF, Ma WJ, Li ST, Gong B, Guan YF, Fan NS, Jin RC. Determination of the response characteristics of anaerobic ammonium oxidation bioreactor disturbed by temperature change with the spectral fingerprint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137513. [PMID: 32120111 DOI: 10.1016/j.scitotenv.2020.137513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium oxidation (anammox) bacteria are sensitive and susceptible to operating condition fluctuations that can lead to the instability of a bioreactor. Through multivariate spectral analysis, the dynamic changes of intracellular and extracellular metabolites of anammox sludge under the declined temperature stress were characterized. It was found that effluent fluorescence components were positively related to the bacterial activity, and the response of the protein-like substances to the temperature change was more sensitive than that of humic substances. Under the transient disturbance during temperature change from 35 to 15 °C, anammox system tended to considerably excrete extracellular polymeric substances to resist the low temperature inhibition. However, the long-term exposure of the sludge at 10 °C resulted in the considerably inhibition of sludge activity, granular disintegration and heterotrophic denitrification bacteria increase. The two-dimensional correlation analysis further revealed that the humic acid in extracellular polymeric substances was preferentially responded to the temperature change than protein. Anammox bacteria tended to increase the intracellular protein and electron transfer-related reactive substance excretion to counteract the low temperature inhibition. Herein, both the intra- and extra-cellular response characteristics of anammox sludge to temperature variation were successfully resolved via the combined spectra. This work provides a comprehensive understanding on the mechanism of anammox sludge to temperature variation and may be valuable for the development of bioreactor monitoring techniques.
Collapse
Affiliation(s)
- Gui-Feng Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shu-Ting Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
67
|
Yurenya AY, Gabbasov RR, Nikitin AA, Cherepanov VM, Polikarpov MA, Chuev MA, Abakumov MA, Majouga AG, Panchenko VY. Synthesis and In Vitro Study of the Biodegradation Resistance of Magnetic Nanoparticles Designed for Studying the Viscoelasticity of Cytoplasm. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520030359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Garenne D, Noireaux V. Analysis of Cytoplasmic and Membrane Molecular Crowding in Genetically Programmed Synthetic Cells. Biomacromolecules 2020; 21:2808-2817. [DOI: 10.1021/acs.biomac.0c00513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
69
|
Molecular and macromolecular crowding-induced stabilization of proteins: Effect of dextran and its building block alone and their mixtures on stability and structure of lysozyme. Int J Biol Macromol 2020; 150:1238-1248. [DOI: 10.1016/j.ijbiomac.2019.10.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
|
70
|
Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts 2020. [DOI: 10.3390/catal10050466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the performance of a commercial protease (Novo-Pro D (NPD)), both in soluble and immobilized forms, in the hydrolysis of proteins (using casein as model protein). Immobilization of the protease NPD on 6% agarose activated with glyoxyl groups for 24 h at 20 °C and pH 10.0 allowed preparing immobilized biocatalyst with around 90% immobilization yield, 92% recovered activity versus small substrate, and a thermal stability 5.3-fold higher than the dialyzed soluble enzyme at 50 °C and pH 8.0. Immobilization times longer than 24 h lead to a decrease in the recovered activity and did not improve the biocatalyst stability. At 50 °C and pH 6.5, the immobilized NPD was around 20-fold more stable than the dialyzed soluble protease. Versus casein, the immobilized NDP presented a 10% level of activity, but it allowed hydrolyzing casein (26 g/L) at 50 °C and pH 6.5 up to a 40% degree of hydrolysis (DH) after 2 h reaction, while under the same conditions, only a 34% DH was achieved with soluble NPD. In addition, the immobilized NPD showed good reusability, maintaining the DH of casein for at least ten 2h-reaction batches.
Collapse
|
71
|
Interactions Under Crowding Milieu: Chemical-Induced Denaturation of Myoglobin is Determined by the Extent of Heme Dissociation on Interaction with Crowders. Biomolecules 2020; 10:biom10030490. [PMID: 32210191 PMCID: PMC7175338 DOI: 10.3390/biom10030490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, in vivo function and structural changes are studied by probing proteins in a dilute solution under in vitro conditions, which is believed to be mimicking proteins in intracellular milieu. Earlier, thermal-induced denaturation of myoglobin, in the milieu of crowder molecule showed destabilization of the metal protein. Destabilization of protein by thermal-induced denaturation involves a large extrapolation, so, the reliability is questionable. This led us to measure the effects of macromolecular crowding on its stability by chemical-induced denaturation of the protein using probes like circular dichroism and absorption spectroscopy in the presence of dextran 70 and ficoll 70 at various pHs (acidic: 6.0, almost neutral: 7.0 and basic: 8.0). Observations showed that the degree of destabilization of myoglobin was greater due to ficoll 70 as compared to that of dextran 70 so it can be understood that the nature of the crowder or the shape of the crowder has an important role towards the stability of proteins. Additionally, the degree of destabilization was observed as pH dependent, however the pH dependence is different for different crowders. Furthermore, isothermal titration calorimetry and molecular docking studies confirmed that both the crowders (ficoll and dextran) bind to heme moiety of myoglobin and a single binding site was observed for each.
Collapse
|
72
|
Watanabe C, Kobori Y, Yamamoto J, Kinjo M, Yanagisawa M. Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion. J Phys Chem B 2020; 124:1090-1098. [PMID: 31939302 DOI: 10.1021/acs.jpcb.9b10558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.
Collapse
Affiliation(s)
- Chiho Watanabe
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| | - Yuta Kobori
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Applied Physics , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16 , Koganei , Tokyo 184-8588 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Central 6, Higashi 1-1-1 , Tsukuba , Ibaraki 305-8568 , Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science , Hokkaido University , Kita-21 Nishi-11 Kita-ku , Sapporo , Hokkaido 001-0021 , Japan
| | - Miho Yanagisawa
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Basic Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| |
Collapse
|
73
|
Honegger P, Steinhauser O. The nuclear Overhauser Effect (NOE) as a tool to study macromolecular confinement: Elucidation and disentangling of crowding and encapsulation effects. J Chem Phys 2020; 152:024120. [PMID: 31941328 DOI: 10.1063/1.5135816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a methodology to capture short-lived but biophysically important contacts of biomacromolecules using the biomolecule-water nuclear Overhauser effect as an indirect microscope. Thus, instead of probing the direct correlation with the foreign biomolecule, we detect its presence by the disturbance it causes in the surrounding water. In addition, this information obtained is spatially resolved and can thus be attributed to specific sites. We extend this approach to the influence of more than one change in chemical environment and show a methodological way of resolution. This is achieved by taking double differences of corresponding σNOE/σROE ratios of the systems studied and separating specific, unspecific, and intermediate influence. While applied to crowding and encapsulation in this study, this method is generally suitable for any combination of changes in chemical environment.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Othmar Steinhauser
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
74
|
Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. Proc Natl Acad Sci U S A 2020; 117:1902-1909. [PMID: 31932440 DOI: 10.1073/pnas.1914656117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Executing gene circuits by cell-free transcription-translation into cell-sized compartments, such as liposomes, is one of the major bottom-up approaches to building minimal cells. The dynamic synthesis and proper self-assembly of macromolecular structures inside liposomes, the cytoskeleton in particular, stands as a central limitation to the development of cell analogs genetically programmed. In this work, we express the Escherichia coli gene mreB inside vesicles with bilayers made of lipid-polyethylene glycol (PEG). We demonstrate that two-dimensional molecular crowding, emulated by the PEG molecules at the lipid bilayer, is enough to promote the polymerization of the protein MreB at the inner membrane into a sturdy cytoskeleton capable of transforming spherical liposomes into elongated shapes, such as rod-like compartments. We quantitatively describe this mechanism with respect to the size of liposomes, lipid composition of the membrane, crowding at the membrane, and strength of MreB synthesis. So far unexplored, molecular crowding at the surface of synthetic cells emerges as an additional development with potential broad applications. The symmetry breaking observed could be an important step toward compartment self-reproduction.
Collapse
|
75
|
Honegger P, Heid E, Schröder C, Steinhauser O. Dielectric spectroscopy and time dependent Stokes shift: two faces of the same coin? Phys Chem Chem Phys 2020; 22:18388-18399. [DOI: 10.1039/d0cp02840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different types of spectroscopy capture different aspects of dynamics and different ranges of intermolecular contributions.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| |
Collapse
|
76
|
Honegger P, Steinhauser O. The protein-water nuclear Overhauser effect (NOE) as an indirect microscope for molecular surface mapping of interaction patterns. Phys Chem Chem Phys 2019; 22:212-222. [PMID: 31799520 DOI: 10.1039/c9cp04752b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this computational study, the intermolecular solute-solvent Nuclear Overhauser Effect (NOE) of the model protein ubiquitin in different chemical environments (free, bound to a partner protein and encapsulated) is investigated. Short-ranged NOE observables such as the NOE/ROE ratio reveal hydration phenomena on absolute timescales such as fast hydration sites and slow water clefts. We demonstrate the ability of solute-solvent NOE differences measured of the same protein in different chemical environments to reveal hydration changes on the relative timescale. The resulting NOE/ROE-surface maps are shown to be a central key for analyzing biologically relevant chemical influences such as complexation and confinement: the presence of a complexing macromolecule or a confining surface wall modulates the water mobility in the vicinity of the probe protein, hence revealing which residues of said protein are proximate to the foreign interface and which are chemically unaffected. This way, hydration phenomena can serve to indirectly map the precise influence (position) of other molecules or interfaces onto the protein surface. This proposed one-protein many-solvents approach may offer experimental benefits over classical one-protein other-protein pseudo-intermolecular transient NOEs. Furthermore, combined influences such as complexation and confinement may exert non-additive influences on the protein compared to a reference state. We offer a mathematical method to disentangle the influence of these two different chemical environments.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria.
| | | |
Collapse
|
77
|
Synergistic interaction between exogenous and endogenous emulsifiers and its impact on in vitro digestion of lipid in crowded medium. Food Chem 2019; 299:125164. [PMID: 31319345 DOI: 10.1016/j.foodchem.2019.125164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
Abstract
Control of lipid digestibility by various food components has received great attention in recent decades. However, there is limited literature on investigating the synergistic effect of exogenous emulsifiers and endogenous sodium cholate (SC) on lipid digestion in a simulated physiological crowded medium. In this work, the synergistic interaction of Tween80 and SC according to the regular solution theory, and the hydrolysis of lipid emulsions containing tricaprylin, glyceryltrioleate or soybean oil in crowding medium was studied. The results show that emulsions stabilized by a combination of Tween80 and SC showed higher digestion rate and transformation than those with Tween80 or SC. The digestion rate could be increased by polyethylene glycols (PEGn) with varying crowding degree. The denaturation temperature of the lipase was increased in macromolecular crowded medium. This work allows for better understanding of the interaction between the amphiphiles and the macromolecular crowding effect on lipase digestion in the physiological environment.
Collapse
|
78
|
Muta H, So M, Sakurai K, Kardos J, Naiki H, Goto Y. Amyloid Formation under Complicated Conditions in Which β 2-Microglobulin Coexists with Its Proteolytic Fragments. Biochemistry 2019; 58:4925-4934. [PMID: 31724398 DOI: 10.1021/acs.biochem.9b00917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid formation in vivo occurs under complicated conditions in which various amyloidogenic and non-amyloidogenic components coexist, often under crowding. Controversy surrounds the role of additional components under complicated conditions. They have been suggested to accelerate amyloid formation because molecular crowding or interactions with additives increase effective concentrations and, thus, break the supersaturation of amyloidogenic proteins. On the other hand, cellular crowding conditions with various heterogeneous components may retard or prevent amyloid formation because they impede homologous amyloidogenic associations. To elucidate the roles of these additional components, we examined the amyloid formation of β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, with a simplified model system in which intact β2m and its proteolytic peptides coexist. Among the nine proteolytic peptides of β2m produced in vitro with lysyl endopeptidase, the 22-residue K3 peptide is highly amyloidogenic. The amyloid formation of the K3 peptide, which occurred with a lag time of 1 h at pH 2 and 37 °C, was significantly retarded by the coexistence of β2m or a mixture of the proteolytic digests. To identify the sites of inhibitory interactions, we performed paramagnetic relaxation enhancement measurements using spin-labeled K3 and uniformly 15N-labeled β2m with nuclear magnetic resonance detection. The results revealed that K3 interacted weakly with a broad cluster of the hydrophobic residues of β2m, which accommodated the residues located in some distant sequence, leading to competitive inhibition. The results showed that relatively weak and broad interactions formed a nonproductive complex, implying a role for heterogeneous interactions under complicated conditions.
Collapse
Affiliation(s)
- Hiroya Muta
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Masatomo So
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology , Kindai University , Wakayama 649-6493 , Japan
| | - Jozsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry , Eötvös Loránd University , Pázmány P. sétány 1/C , Budapest 1117 , Hungary
| | - Hironobu Naiki
- Faculty of Medical Sciences , University of Fukui , Fukui 910-1193 , Japan
| | - Yuji Goto
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
79
|
Carbohydrate-Based Macromolecular Crowding-Induced Stabilization of Proteins: Towards Understanding the Significance of the Size of the Crowder. Biomolecules 2019; 9:biom9090477. [PMID: 31547256 PMCID: PMC6769620 DOI: 10.3390/biom9090477] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022] Open
Abstract
There are a large number of biomolecules that are accountable for the extremely crowded intracellular environment, which is totally different from the dilute solutions, i.e., the idealized conditions. Such crowded environment due to the presence of macromolecules of different sizes, shapes, and composition governs the level of crowding inside a cell. Thus, we investigated the effect of different sizes and shapes of crowders (ficoll 70, dextran 70, and dextran 40), which are polysaccharide in nature, on the thermodynamic stability, structure, and functional activity of two model proteins using UV-Vis spectroscopy and circular dichroism techniques. We observed that (a) the extent of stabilization of α-lactalbumin and lysozyme increases with the increasing concentration of the crowding agents due to the excluded volume effect and the small-sized and rod-shaped crowder, i.e., dextran 40 resulted in greater stabilization of both proteins than dextran 70 and ficoll 70; (b) structure of both the proteins remains unperturbed; and (c) enzymatic activity of lysozyme decreases with the increasing concentration of the crowder.
Collapse
|
80
|
Chung S, Lerner E, Jin Y, Kim S, Alhadid Y, Grimaud LW, Zhang IX, Knobler CM, Gelbart WM, Weiss S. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase. Nucleic Acids Res 2019; 47:1440-1450. [PMID: 30590739 PMCID: PMC6379708 DOI: 10.1093/nar/gky1277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
Previous works have reported significant effects of macromolecular crowding on the structure and behavior of biomolecules. The crowded intracellular environment, in contrast to in vitro buffer solutions, likely imparts similar effects on biomolecules. The enzyme serving as the gatekeeper for the genome, RNA polymerase (RNAP), is among the most regulated enzymes. Although it was previously demonstrated that macromolecular crowding affects association of RNAP to DNA, not much is known about how crowding acts on late initiation and promoter clearance steps, which are considered to be the rate-determining steps for many promoters. Here, we demonstrate that macromolecular crowding enhances the rate of late initiation and promoter clearance using in vitro quenching-based single-molecule kinetics assays. Moreover, the enhancement's dependence on crowder size notably deviates from predictions by the scaled-particle theory, commonly used for description of crowding effects. Our findings shed new light on how enzymatic reactions could be affected by crowded conditions in the cellular milieu.
Collapse
Affiliation(s)
- SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yan Jin
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Soohong Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yazan Alhadid
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
| | - Logan Wilson Grimaud
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Irina X Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Present address: Irina X. Zhang, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute (MBI), University of California Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Correspondence may also be addressed to William M. Gelbart. Tel: +1 310 825 2005; Fax: +1 310 206 4038;
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute (MBI), University of California Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
- To whom correspondence should be addressed. Tel: +1 310 794 0093; Fax: +1 310 267 4672;
| |
Collapse
|
81
|
Navikas V, Gavutis M, Rakickas T, Valiokas RN. Scanning Probe-Directed Assembly and Rapid Chemical Writing Using Nanoscopic Flow of Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28449-28460. [PMID: 31287949 DOI: 10.1021/acsami.9b07547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanofluidic systems offer a huge potential for discovery of new molecular transport and chemical phenomena that can be employed for future technologies. Herein, we report on the transport behavior of surface-reactive compounds in a nanometer-scale flow of phospholipids from a scanning probe. We have investigated microscopic deposit formation on polycrystalline gold by lithographic printing and writing of 1,2-dioleoyl-sn-glycero-3-phosphocholine and eicosanethiol mixtures, with the latter compound being a model case for self-assembled monolayers (SAMs). By analyzing the ink transport rates, we found that the transfer of thiols was fully controlled by the fluid lipid matrix allowing to achieve a certain jetting regime, i.e., transport rates previously not reported in dip-pen nanolithography (DPN) studies on surface-reactive, SAM-forming molecules. Such a transport behavior deviated significantly from the so-called molecular diffusion models, and it was most obvious at the high writing speeds, close to 100 μm s-1. Moreover, the combined data from imaging ellipsometry, scanning electron microscopy, atomic force microscopy (AFM), and spectroscopy revealed a rapid and efficient ink phase separation occurring in the AFM tip-gold contact zone. The force curve analysis indicated formation of a mixed ink meniscus behaving as a self-organizing liquid. Based on our data, it has to be considered as one of the co-acting mechanisms driving the surface reactions and self-assembly under such highly nonequilibrium, crowded environment conditions. The results of the present study significantly extend the capabilities of DPN using standard AFM instrumentation: in the writing regime, the patterning speed was already comparable to that achievable by using electron beam systems. We demonstrate that lipid flow-controlled chemical patterning process is directly applicable for rapid prototyping of solid-state devices having mesoscopic features as well as for biomolecular architectures.
Collapse
Affiliation(s)
- Vytautas Navikas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Martynas Gavutis
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Tomas Rakickas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Ramu Nas Valiokas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| |
Collapse
|
82
|
Honegger P, Steinhauser O. Hydration dynamics of proteins in reverse micelles probed by 1H-NOESY/ 1H-ROESY NMR and 17O-nuclear quadrupole resonance (NQR). Phys Chem Chem Phys 2019; 21:14571-14582. [PMID: 31237595 DOI: 10.1039/c9cp02654a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study is based on extensive MD simulations of a protein in a reverse micelle to mimic the effect of confinement on biomolecules. This permits the calculation of measurable quantities appearing in NQR and Nuclear Overhauser-NMR despite the high computational effort. We address the long-standing debate about the intermolecular NOE showing that absolute quantities derived from NOESY and ROESY spectra do indeed contain considerable long-range contributions, while ratios thereof are effectively short-ranged due to almost perfect compensation effects. Based on NQR relaxation times, we predict strong rotational retardation of interstitial water between the protein and the surfactant surface. The computed NOE to ROE ratio correlates fairly with experimental results. The solvation dynamics mapped onto the protein surface reflects the spatial heterogeneity of a cell-like system with slow water dynamics in proximity to the cell wall and almost bulk-like behaviour in the water core.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria.
| | - Othmar Steinhauser
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria.
| |
Collapse
|
83
|
Qing J, Chen A, Zhao N. Quantifying the protein-protein association rate in polymer solutions: crowding-induced diffusion and energy modifications. Phys Chem Chem Phys 2019; 20:27937-27948. [PMID: 30379153 DOI: 10.1039/c8cp05203d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical framework is developed to study protein-protein association in polymer solutions under diffusion-limited conditions. Starting from the basal association rate, two fundamental aspects concerning macromolecular crowding are particularly taken into account. One is the effect of microviscosity on protein diffusion. The length-scale dependent relations of translational and rotational diffusion coefficients are incorporated. Another is relevant to the crowding-induced effective interaction between the pair of proteins. The resultant energy modifications to the basal association rate are properly introduced, following an instructive classification with increasing crowder size: repulsive interaction dominant, repulsive and attractive interactions competitive, and attractive interaction prevailing. With specific energy modification terms, we are able to investigate the deviations of the association rate from the Stokes-Einstein (SE) behavior (i.e., the linear relationship with respect to the reciprocal of macroviscosity) in a quantitative manner. Our theory is applied to study the association of TEM1-β-lactamase (TEM) and the β-lactamase inhibitor protein (BLIP) in polyethylene glycol (PEG) solutions, with varying concentration and polymerization. We explicitly evaluate the relative association rate constant as a function of the solution macroviscosity. The theoretical results demonstrate very good agreement with the experimental data. Moreover, the complicated non-trivial deviations, either positive (slower than SE) or negative (faster than SE), are systematically rationalized. The precise role of energy modifications and the microviscosity effect on diffusion, in particular on rotational diffusion, are clearly unraveled.
Collapse
Affiliation(s)
- Jing Qing
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | |
Collapse
|
84
|
Dias RS. Role of Protein Self-Association on DNA Condensation and Nucleoid Stability in a Bacterial Cell Model. Polymers (Basel) 2019; 11:E1102. [PMID: 31261873 PMCID: PMC6680993 DOI: 10.3390/polym11071102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Bacterial cells do not have a nuclear membrane that encompasses and isolates the genetic material. In addition, they do not possess histone proteins, which are responsible for the first levels of genome condensation in eukaryotes. Instead, there is a number of more or less specific nucleoid-associated proteins that induce DNA bridging, wrapping and bending. Many of these proteins self-assemble into oligomers. The crowded environment of cells is also believed to contribute to DNA condensation due to excluded volume effects. Ribosomes are protein-RNA complexes found in large concentrations in the cytosol of cells. They are overall negatively charged and some DNA-binding proteins have been reported to also bind to ribosomes. Here the effect of protein self-association on DNA condensation and stability of DNA-protein complexes is explored using Monte Carlo simulations and a simple coarse-grained model. The DNA-binding proteins are described as positively charged dimers with the same linear charge density as the DNA, described using a bead and spring model. The crowding molecules are simply described as hard-spheres with varying charge density. It was found that applying a weak attractive potential between protein dimers leads to their association in the vicinity of the DNA (but not in its absence), which greatly enhances the condensation of the model DNA. The presence of neutral crowding agents does not affect the DNA conformation in the presence or absence of protein dimers. For weakly self-associating proteins, the presence of negatively charged crowding particles induces the dissociation of the DNA-protein complex due to the partition of the proteins between the DNA and the crowders. Protein dimers with stronger association potentials, on the other hand, stabilize the nucleoid, even in the presence of highly charged crowders. The interactions between protein dimers and crowding agents are not completely prevented and a few crowding molecules typically bind to the nucleoid.
Collapse
Affiliation(s)
- Rita S Dias
- Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
85
|
Bian Y, Yan R, Li P, Zhao N. Unusual crowding-induced chain looping kinetics in hard-sphere fluids: a contrastive study with polymer solutions. SOFT MATTER 2019; 15:4976-4988. [PMID: 31173026 DOI: 10.1039/c9sm00400a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A theoretical framework is developed to investigate the looping kinetics of a chain in hard-sphere (HS) fluids, based on a generalized Smoluchowski diffusion-reaction equation. A contrastive study with polymer solutions is performed. The crowding-associated effective viscosity and collapse effects are properly taken into account, which obey different scaling relations in HS and polymer fluids. We examine the dependence of the looping time on both concentration and size of crowders, demonstrating unusual and distinct discrepancies in the two crowded media. Firstly, in the solution of large polymers, the looping rate grows monotonically with polymer concentration. On the other hand, in the solution of large HSs, a caging regime can be observed, where the looping time tends to the value in the absence of crowders. Secondly, polymers in moderate size generally impede chain looping due to the enhanced viscosity. However, in HS fluids, the looping time exhibits a rather complicated variation with increasing HS size. We show a possible mechanism where in the case of small crowders with a relatively strong compaction in the probed chain, the looping kinetics can be facilitated. As the crowder size increases, the collapse effect is reduced and looping is dominated by viscosity-induced inhibition. Simultaneously, our theory rationalizes another possibility of the mechanism observed by recent simulation work. We conclude that the looping kinetics in specific systems actually should be governed by the critical competition between the two crowding factors. By giving reasonable measurements of effective viscosity and collapse, our theoretical framework can provide a unified strategy to analyze crowding effects on the looping rate in a systematic manner.
Collapse
Affiliation(s)
- Yukun Bian
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
86
|
Siemonsmeier A, Hadersdorfer J, Neumüller M, Schwab W, Treutter D. A LAMP Protocol for the Detection of ' Candidatus Phytoplasma pyri', the Causal Agent of Pear Decline. PLANT DISEASE 2019; 103:1397-1404. [PMID: 31012821 DOI: 10.1094/pdis-12-18-2150-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytoplasmas are cell-wall-less bacteria that cause diseases in approximately 1,000 plant species. 'Candidatus Phytoplasma pyri', the causal agent of pear decline, induces various symptoms on its hosts, leading to weakening and dieback of the plants, reduced fruit size and yield, and, consequently, considerable financial losses in all pear-growing areas. Fighting this disease requires a reliable and inexpensive method for pathogen detection in propagation material as well as plant stocks in orchards and breeding facilities. Here, we present a field-suitable detection protocol for 'Ca. P. pyri' based on loop-mediated isothermal amplification (LAMP) targeting the phytoplasmal 16S ribosomal DNA sequence. The combination of a simplified sample preparation method based on sodium hydroxide and colorimetric visualization of LAMP results enables a laboratory-independent pathogen detection. The detection limit is comparable with analysis by polymerase chain reaction; however, the pear decline LAMP detection method is superior in terms of ease of use, cost, and time effectiveness for obtaining results.
Collapse
Affiliation(s)
- A Siemonsmeier
- 1 Associate Professorship of Fruit Science, Technical University of Munich, Dürnast 2, 85354 Freising, Germany
| | - J Hadersdorfer
- 1 Associate Professorship of Fruit Science, Technical University of Munich, Dürnast 2, 85354 Freising, Germany
| | - M Neumüller
- 2 Bavarian Fruit Center, Am Süßbach 1, 85399 Hallbergmoos, Germany
| | - W Schwab
- 3 Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - D Treutter
- 1 Associate Professorship of Fruit Science, Technical University of Munich, Dürnast 2, 85354 Freising, Germany
| |
Collapse
|
87
|
Cinar S, Cinar H, Chan HS, Winter R. Pressure-Sensitive and Osmolyte-Modulated Liquid–Liquid Phase Separation of Eye-Lens γ-Crystallins. J Am Chem Soc 2019; 141:7347-7354. [DOI: 10.1021/jacs.8b13636] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Süleyman Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
88
|
Takahashi S, Okura H, Sugimoto N. Bisubstrate Function of RNA Polymerases Triggered by Molecular Crowding Conditions. Biochemistry 2019; 58:1081-1093. [DOI: 10.1021/acs.biochem.8b01204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Hiromichi Okura
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| |
Collapse
|
89
|
Honegger P, Heid E, Schmode S, Schröder C, Steinhauser O. Changes in protein hydration dynamics by encapsulation or crowding of ubiquitin: strong correlation between time-dependent Stokes shift and intermolecular nuclear Overhauser effect. RSC Adv 2019; 9:36982-36993. [PMID: 35539058 PMCID: PMC9075347 DOI: 10.1039/c9ra08008b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The local changes in protein hydration dynamics upon encapsulation of the protein or macromolecular crowding are essential to understand protein function in cellular environments. We were able to obtain a spatially-resolved picture of the influence of confinement and crowding on the hydration dynamics of the protein ubiquitin by analyzing the time-dependent Stokes shift (TDSS), as well as the intermolecular Nuclear Overhauser Effect (NOE) at different sites of the protein by large-scale computer simulation of single and multiple proteins in water and confined in reverse micelles. Besides high advanced space resolved information on hydration dynamics we found a strong correlation of the change in NOE upon crowding or encapsulation and the change in the integral TDSS relaxation times in all investigated systems relative to the signals in a diluted protein solution. Changes in local protein hydration dynamics caused by encapsulation or crowding are reflected in the TDSS and the intermolecular NOE alike.![]()
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Stella Schmode
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| |
Collapse
|
90
|
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Subcell Biochem 2019; 93:83-141. [PMID: 31939150 DOI: 10.1007/978-3-030-28151-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany.
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- ZMBH, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany
| |
Collapse
|
91
|
Estimating Metabolic Equilibrium Constants: Progress and Future Challenges. Trends Biochem Sci 2018; 43:960-969. [DOI: 10.1016/j.tibs.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/03/2023]
|
92
|
Wang Y, Sukenik S, Davis CM, Gruebele M. Cell Volume Controls Protein Stability and Compactness of the Unfolded State. J Phys Chem B 2018; 122:11762-11770. [PMID: 30289261 DOI: 10.1021/acs.jpcb.8b08216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Macromolecular crowding is widely accepted as one of the factors that can alter protein stability, structure, and function inside cells. Less often considered is that crowding can be dynamic: as cell volume changes, either as a result of external duress or in the course of the cell cycle, water moves in or out through membrane channels, and crowding changes in tune. Both theory and in vitro experiments predict that protein stability will be altered as a result of crowding changes. However, it is unclear how much the structural ensemble is altered as crowding changes in the cell. To test this, we look at the response of a FRET-labeled kinase to osmotically induced volume changes in live cells. We examine both the folded and unfolded states of the kinase by changing the temperature of the media surrounding the cell. Our data reveals that crowding compacts the structure of its unfolded ensemble but stabilizes the folded protein. We propose that the structure of proteins lacking a rigid, well-defined tertiary structure could be highly sensitive to both increases and decreases in cell volume. Our findings present a possible mechanism for disordered proteins to act as sensors and actuators of cell cycle or external stress events that coincide with a change in macromolecular crowding.
Collapse
Affiliation(s)
- Yuhan Wang
- Center for Biophysics and Computational Biology , University of Illinois , Urbana , Illinois 61801 , United States
| | - Shahar Sukenik
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Caitlin M Davis
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Center for Biophysics and Computational Biology , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
93
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
94
|
Serrano-Luginbühl S, Ruiz-Mirazo K, Ostaszewski R, Gallou F, Walde P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0042-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Kumar R, Sharma D, Kumar V, Kumar R. Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Arch Biochem Biophys 2018; 654:146-162. [DOI: 10.1016/j.abb.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
96
|
Endo A, Kurinomaru T, Shiraki K. Hyperactivation of serine proteases by the Hofmeister effect. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
97
|
Zheng S, Shing KS, Sahimi M. Dynamics of proteins aggregation. II. Dynamic scaling in confined media. J Chem Phys 2018; 148:104305. [PMID: 29544316 DOI: 10.1063/1.5008543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this paper, the second in a series devoted to molecular modeling of protein aggregation, a mesoscale model of proteins together with extensive discontinuous molecular dynamics simulation is used to study the phenomenon in a confined medium. The medium, as a model of a crowded cellular environment, is represented by a spherical cavity, as well as cylindrical tubes with two aspect ratios. The aggregation process leads to the formation of β sheets and eventually fibrils, whose deposition on biological tissues is believed to be a major factor contributing to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis diseases. Several important properties of the aggregation process, including dynamic evolution of the total number of the aggregates, the mean aggregate size, and the number of peptides that contribute to the formation of the β sheets, have been computed. We show, similar to the unconfined media studied in Paper I [S. Zheng et al., J. Chem. Phys. 145, 134306 (2016)], that the computed properties follow dynamic scaling, characterized by power laws. The existence of such dynamic scaling in unconfined media was recently confirmed by experiments. The exponents that characterize the power-law dependence on time of the properties of the aggregation process in spherical cavities are shown to agree with those in unbounded fluids at the same protein density, while the exponents for aggregation in the cylindrical tubes exhibit sensitivity to the geometry of the system. The effects of the number of amino acids in the protein, as well as the size of the confined media, have also been studied. Similarities and differences between aggregation in confined and unconfined media are described, including the possibility of no fibril formation, if confinement is severe.
Collapse
Affiliation(s)
- Size Zheng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Katherine S Shing
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
98
|
Abstract
The motion of small probe molecules in a two-dimensional system containing frozen polymer chains was studied by means of Monte Carlo simulations. The model macromolecules were coarse-grained and restricted to vertices of a triangular lattice. The cooperative motion algorithm was used to generate representative configurations of macromolecular systems of different polymer concentrations. The remaining unoccupied lattice sites of the system were filled with small molecules. The structure of the polymer film, especially near the percolation threshold, was determined. The dynamic lattice liquid algorithm was then employed for studies of the dynamics of small objects in the polymer matrix. The influence of chain length and polymer concentration on the mobility and the character of motion of small molecules were studied. Short- and long-time dynamic behaviors of solvent molecules were also described. Conditions of anomalous diffusions' appearance in such systems are discussed. The influence of the structure of the matrix of obstacles on the molecular transport was discussed.
Collapse
Affiliation(s)
- Piotr Polanowski
- Department of Molecular Physics, Technical University of Łódź, 90-924 Łódź, Poland
| | - Andrzej Sikorski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
99
|
Rivas G, Minton AP. Toward an understanding of biochemical equilibria within living cells. Biophys Rev 2018; 10:241-253. [PMID: 29235084 PMCID: PMC5899707 DOI: 10.1007/s12551-017-0347-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Four types of environmental effects that can affect macromolecular reactions in a living cell are defined: nonspecific intermolecular interactions, side reactions, partitioning between microenvironments, and surface interactions. Methods for investigating these interactions and their influence on target reactions in vitro are reviewed. Methods employed to characterize conformational and association equilibria in vivo are reviewed and difficulties in their interpretation cataloged. It is concluded that, in order to be amenable to unambiguous interpretation, in vivo studies must be complemented by in vitro studies carried out in well-characterized and controllable media designed to contain key elements of selected intracellular microenvironments.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Allen P. Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
100
|
Cheng RH, Chen JM, Chen YW, Cai H, Cui X, Hwang DW, Chen Z, Ding S. Macromolecular Crowding May Significantly Affect the Performance of an MRI Contrast Agent: A 1H NMR Spectroscopy, Microimaging, and Fast-Field-Cycling NMR Relaxometry Study. ChemistryOpen 2018; 7:288-296. [PMID: 29657915 PMCID: PMC5891664 DOI: 10.1002/open.201700192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Contrast enhancement agents are often employed in magnetic resonance imaging (MRI) for clinical diagnosis and biomedical research. However, the current theory on MRI contrast generation does not consider the ubiquitous presence of macromolecular crowders in biological systems, which poses the risk of inaccurate data interpretation and misdiagnosis. To address this issue, herein the macromolecular crowding effects on MRI contrast agent are investigated with the 1H relaxation rate of water in aqueous solutions of Dotarem with different concentrations of macromolecules. Two representative macromolecular crowder systems are used: polyethylene glycol (with no specific secondary structure) and bovine serum albumin (with compact secondary and tertiary structures). The water 1H relaxation rates in various solutions are measured in a fixed magnetic field and in variable magnetic fields. The results show significant crowding effects for both crowders. The relaxation rate is proportional to the concentration of the MRI contrast agent but shows conspicuous superlinearity with respect to the concentration of the crowder. The size of polyethylene glycol does not affect the relaxivity of water in Dotarem solutions. The above effects are verified with T1- and T2-weighted NMR microimages. These results highlight the importance of the effect of macromolecular crowding on the MRI contrast agent and are valuable for understanding the mechanism of MRI contrast agents and designing new-generation MRI contrast agents.
Collapse
Affiliation(s)
- Ren-Hao Cheng
- Department of Chemistry and Center for Nanoscience & Nanotechnology National Sun Yat-sen University 70 Lien-Hai Road, Kaohsiung Taiwan 80424 Republic of China)
| | - Jie-Min Chen
- Department of Chemistry and Center for Nanoscience & Nanotechnology National Sun Yat-sen University 70 Lien-Hai Road, Kaohsiung Taiwan 80424 Republic of China)
| | - Yu-Wen Chen
- Institute of Biomedical Sciences Academia Sinica Taipei (Taiwan) 115 Republic of China
| | - Honghao Cai
- Department of Chemistry and Center for Nanoscience & Nanotechnology National Sun Yat-sen University 70 Lien-Hai Road, Kaohsiung Taiwan 80424 Republic of China).,Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen University 422 Siming South Road Xiamen 361005 P.R. China.,School of Science Jimei University 183 Yinjiang Road Xiamen 361021 P.R. China
| | - Xiaohong Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen University 422 Siming South Road Xiamen 361005 P.R. China
| | - Dennis W Hwang
- Institute of Biomedical Sciences Academia Sinica Taipei (Taiwan) 115 Republic of China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen University 422 Siming South Road Xiamen 361005 P.R. China
| | - Shangwu Ding
- Department of Chemistry and Center for Nanoscience & Nanotechnology National Sun Yat-sen University 70 Lien-Hai Road, Kaohsiung Taiwan 80424 Republic of China)
| |
Collapse
|