51
|
Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie 2015; 112:196-201. [DOI: 10.1016/j.biochi.2015.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
|
52
|
Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol 2015; 82:36-47. [PMID: 25748040 DOI: 10.1016/j.yjmcc.2015.02.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
Abstract
The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.
Collapse
|
53
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
54
|
Gemel J, Simon AR, Patel D, Xu Q, Matiukas A, Veenstra RD, Beyer EC. Degradation of a connexin40 mutant linked to atrial fibrillation is accelerated. J Mol Cell Cardiol 2014; 74:330-9. [PMID: 24973497 PMCID: PMC4135452 DOI: 10.1016/j.yjmcc.2014.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022]
Abstract
Several Cx40 mutants have been identified in patients with atrial fibrillation (AF). We have been working to identify physiological or cell biological abnormalities of several of these human mutants that might explain how they contribute to disease pathogenesis. Wild type (wt) Cx40 or four different mutants (P88S, G38D, V85I, and L229M) were expressed by the transfection of communication-deficient HeLa cells or HL-1 cardiomyocytes. Biophysical channel properties and the sub-cellular localization and protein levels of Cx40 were characterized. Wild type Cx40 and all mutants except P88S formed gap junction plaques and induced significant gap junctional conductances. The functional mutants showed only modest alterations of single channel conductances or gating by trans-junctional voltage as compared to wtCx40. However, immunoblotting indicated that the steady state levels of G38D, V85I, and L229M were reduced relative to wtCx40; most strikingly, G38D was only 20-31% of wild type levels. After the inhibition of protein synthesis with cycloheximide, G38D (and to a lesser extent the other mutants) disappeared much faster than wtCx40. Treatment with the proteasomal inhibitor, epoxomicin, greatly increased levels of G38D and restored the abundance of gap junctions and the extent of intercellular dye transfer. Thus, G38D, V85I, and L229M are functional mutants of Cx40 with small alterations of physiological properties, but accelerated degradation by the proteasome. These findings suggest a novel mechanism (protein instability) for the pathogenesis of AF due to a connexin mutation and a novel approach to therapy (protease inhibition).
Collapse
Affiliation(s)
- Joanna Gemel
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Adria R Simon
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Dakshesh Patel
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Qin Xu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Arvydas Matiukas
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Richard D Veenstra
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
55
|
Li H, Spagnol G, Naslavsky N, Caplan S, Sorgen PL. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication. J Cell Sci 2014; 127:3269-79. [PMID: 24849651 DOI: 10.1242/jcs.145193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health.
Collapse
Affiliation(s)
- Hanjun Li
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
56
|
Kopanic JL, Al-mugotir MH, Kieken F, Zach S, Trease AJ, Sorgen PL. Characterization of the connexin45 carboxyl-terminal domain structure and interactions with molecular partners. Biophys J 2014; 106:2184-95. [PMID: 24853747 PMCID: PMC4052358 DOI: 10.1016/j.bpj.2014.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 02/02/2023] Open
Abstract
Mechanisms underlying the initiation and persistence of lethal cardiac rhythms are of significant clinical and scientific interests. Gap junctions are principally involved in forming the electrical connections between myocytes, and changes in distribution, density, and properties are consistent characteristics in arrhythmic heart disease. Therefore, understanding the structure and function of gap junctions during normal and abnormal impulse propagation are essential in the control of arrhythmias. For example, Cx45 is predominately expressed in the specialized myocytes of the impulse generation and conduction system. In both ventricular and atrial human working myocytes, Cx45 is present in very low quantities. However, a reduction in Cx43 coupled with an increased Cx45 protein levels within the ventricles have been observed after myocardial infarction and end-stage heart failure. Cx45 may influence electrical and/or metabolic coupling as a result of pathophysiological overexpression. Our goal was to identify mechanisms that could cause cellular coupling to be different between the cardiac connexins. Based upon the conserved transmembrane and extracellular loop segments, our focus was on identifying features within the divergent cytoplasmic portions. Here, we biophysically characterize the carboxyl-terminal domain of Cx45 (Cx45CT). Purification revealed the possibility of oligomeric species, which was confirmed by analytical ultracentrifugation experiments. Sedimentation equilibrium and circular dichroism studies of different Cx45CT constructs identified one region of α-helical structure (A333-N361) that mediates CT dimerization through hydrophobic contacts. Interestingly, the binding affinity of Cx45CT dimerization is 1000-fold stronger than Cx43CT dimerization. Cx45CT resonance assignments were also used to identify the binding sites and affinities of molecular partners involved in the Cx45 regulation; although none disrupted dimerization, many of these proteins interacted within one intrinsically disordered region (P278-P285). This domain has similarities with other cardiac connexins, and we propose they constitute a master regulatory domain, which contains overlapping molecular partner binding, cis-trans proline isomerization, and phosphorylation sites.
Collapse
Affiliation(s)
- Jennifer L Kopanic
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mona H Al-mugotir
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fabien Kieken
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sydney Zach
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
57
|
Falk MM, Kells RM, Berthoud VM. Degradation of connexins and gap junctions. FEBS Lett 2014; 588:1221-9. [PMID: 24486527 DOI: 10.1016/j.febslet.2014.01.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting for degradation.
Collapse
Affiliation(s)
- Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, D-218, Bethlehem, PA 18015, USA.
| | - Rachael M Kells
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, D-218, Bethlehem, PA 18015, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, 900 East 57th St., KCBD, Room 5150, Chicago, IL 60637, USA.
| |
Collapse
|
58
|
Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett 2014; 588:1212-20. [PMID: 24457202 DOI: 10.1016/j.febslet.2014.01.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/21/2022]
Abstract
Intercellular communication can occur through gap junction channels, which are comprised of connexin proteins. Therefore, levels of connexins can directly correlate with gap junctional intercellular communication. Because gap junctions have a critical role in maintaining cellular homeostasis, the regulation of connexin protein levels is important. In the connexin life cycle, connexin protein levels can be modified through differential gene transcription or altered through trafficking and degradation mechanisms. More recently, significant attention has been directed to the pathways that cells utilize to increase or decrease connexin levels and thus indirectly, gap junctional communication. Here, we review the studies revealing the mechanisms that affect connexin protein levels and gap junctional intercellular communication.
Collapse
|
59
|
Abstract
Human papillomavirus (HPV) infection is clinically very common. It is usually a major risk factor in the development of cutaneous benign lesions, cervical cancer and a variety of other malignancies. The biological function of ubiquitination as an intracellular proteasomal-mediated form of protein degradation and an important modulator in the regulation of many fundamental cellular processes has been increasingly recognized over the last decade. HPV proteins have been demonstrated to evolve different strategies to utilize the ubiquitin system for their own purposes. The putative roles of E3 ubiquitin ligases in HPV-induced carcinogenesis have become increasingly apparent, although the mechanisms remain unclear. In this review we provide an update on the mechanisms of the involvement of E3 ubiquitin ligases in HPV-induced carcinogenesis, focusing on their interaction with HPV proteins and their roles in several signalling pathways. Targeting the E3 ubiquitin ligases might offer potential therapeutic strategies for HPV-related diseases in future.
Collapse
Affiliation(s)
- Zhifeng Lou
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | |
Collapse
|
60
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
61
|
Mutation of Human Connexin43 Amino Acids S279/S282 Increases Protein Stability Upon Treatment with Epidermal Growth Factor. Cell Biochem Biophys 2014; 69:379-84. [DOI: 10.1007/s12013-013-9811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
62
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
63
|
Dunn CA, Lampe PD. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 2013; 127:455-64. [PMID: 24213533 DOI: 10.1242/jcs.142497] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The proteins that form vertebrate gap junctions, the connexins, are highly regulated and have short (<2 hour) half-lives. Phosphorylation of connexin43 (Cx43) affects gap junction assembly, channel gating and turnover. After finding dramatic effects on gap junctions with Akt inhibitors, we created an antibody specific for Cx43 phosphorylated on S373, a potential Akt substrate. We found S373 phosphorylation in cells and skin or heart almost exclusively in larger gap-junctional structures that increased dramatically after wounding or hypoxia. We were able to mechanistically show that Akt-dependent phosphorylation of S373 increases gap junction size and communication by completely eliminating the interaction between Cx43 and ZO-1. Thus, phosphorylation on S373 acts as a molecular 'switch' to rapidly increase gap-junctional communication, potentially leading to initiation of activation and migration of keratinocytes or ischemic injury response in the skin and the heart, respectively.
Collapse
Affiliation(s)
- Clarence A Dunn
- Translational Research Program, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
64
|
Axelsen LN, Calloe K, Holstein-Rathlou NH, Nielsen MS. Managing the complexity of communication: regulation of gap junctions by post-translational modification. Front Pharmacol 2013; 4:130. [PMID: 24155720 PMCID: PMC3804956 DOI: 10.3389/fphar.2013.00130] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022] Open
Abstract
Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated, and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins.
Collapse
Affiliation(s)
- Lene N Axelsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | | | | | | |
Collapse
|
65
|
Fong JT, Kells RM, Falk MM. Two tyrosine-based sorting signals in the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Mol Biol Cell 2013; 24:2834-48. [PMID: 23885125 PMCID: PMC3771946 DOI: 10.1091/mbc.e13-02-0111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three tyrosine-based sorting signals in the gap junction protein connexin 43 were identified, two of which function cooperatively as adaptor protein complex-2 binding sites. The analyses provide a molecular model for clathrin to efficiently internalize large plasma membrane structures and suggest a mechanism for regulating constitutive versus acute gap junction internalization. Gap junction (GJ) channels that electrically and chemically couple neighboring cells are formed when two hemichannels (connexons) of apposed cells dock head-on in the extracellular space. Remarkably, docked connexons are inseparable under physiological conditions, and we and others have shown that GJs are internalized in whole, utilizing the endocytic clathrin machinery. Endocytosis generates double-membrane vesicles (annular GJs or connexosomes) in the cytoplasm of one of the apposed cells that are degraded by autophagosomal and, potentially, endo/lysosomal pathways. In this study, we investigated the structural motifs that mediate Cx43 GJ endocytosis. We identified three canonical tyrosine-based sorting signals of the type “YXXΦ” in the Cx43 C-terminus, two of which function cooperatively as AP-2 binding sites. We generated a set of green fluorescent protein–tagged and untagged Cx43 mutants that targeted these two sites either individually or together. Mutating both sites completely abolished Cx43-AP-2/Dab2/clathrin interaction and resulted in increased GJ plaque size, longer Cx43 protein half-lives, and impaired GJ internalization. Interestingly, Dab2, an accessory clathrin adaptor found earlier to be important for GJ endocytosis, interacts indirectly with Cx43 via AP-2, permitting the recruitment of up to four clathrin complexes per Cx43 protein. Our analyses provide a mechanistic model for clathrin's efficient internalization of large plasma membrane structures, such as GJs.
Collapse
Affiliation(s)
- John T Fong
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | | |
Collapse
|
66
|
Grosely R, Kopanic JL, Nabors S, Kieken F, Spagnol G, Al-Mugotir M, Zach S, Sorgen PL. Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered connexin43 C-terminal domain. J Biol Chem 2013; 288:24857-70. [PMID: 23828237 DOI: 10.1074/jbc.m113.454389] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the connexin43 C-terminal (Cx43CT) domain regulates gap junction intercellular communication. However, an understanding of the mechanisms by which phosphorylation exerts its effects is lacking. Here, we test the hypothesis that phosphorylation regulates Cx43 gap junction intercellular communication by mediating structural changes in the C-terminal domain. Circular dichroism and nuclear magnetic resonance were used to characterize the effects of phosphorylation on the secondary structure and backbone dynamics of soluble and membrane-tethered Cx43CT domains. Cx43CT phospho-mimetic isoforms, which have Asp substitutions at specific Ser/Tyr sites, revealed phosphorylation alters the α-helical content of the Cx43CT domain only when attached to the membrane. The changes in secondary structure are due to variations in the conformational preference and backbone flexibility of residues adjacent and distal to the site(s) of modification. In addition to the known direct effects of phosphorylation on molecular partner interactions, the data presented here suggest phosphorylation may also indirectly regulate binding affinity by altering the conformational preference of the Cx43CT domain.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Lyon RC, Lange S, Sheikh F. Breaking down protein degradation mechanisms in cardiac muscle. Trends Mol Med 2013; 19:239-49. [PMID: 23453282 DOI: 10.1016/j.molmed.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 12/22/2022]
Abstract
Regulated protein degradation through the ubiquitin-proteasome and lysosomal/autophagy systems is critical for homeostatic protein turnover in cardiac muscle and for proper cardiac function. The discovery of muscle-specific components in these systems has illuminated how aberrations in their levels are pivotal to the development of cardiac stress and disease. New evidence suggests that equal importance in disease development should be given to ubiquitously expressed degradation components. These are compartmentalized within cardiac muscles and, when mislocalized, can be critical in the development of specific cardiac diseases. Here, we discuss how alterations in the compartmentalization of degradation components affect disease states, the tools available to investigate these mechanisms, as well as recent discoveries that highlight the therapeutic value of targeting these pathways in disease.
Collapse
Affiliation(s)
- Robert C Lyon
- Department of Medicine (Cardiology Division), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
68
|
Johnson KE, Mitra S, Katoch P, Kelsey LS, Johnson KR, Mehta PP. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 2013; 24:715-33. [PMID: 23363606 PMCID: PMC3596244 DOI: 10.1091/mbc.e12-07-0537] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell-cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif-deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43's endocytosis and assembly into gap junctions.
Collapse
Affiliation(s)
- Kristen E Johnson
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
69
|
Chen SC, Kennedy BK, Lampe PD. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects. Exp Cell Res 2012; 319:888-96. [PMID: 23261543 DOI: 10.1016/j.yexcr.2012.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/07/2023]
Abstract
An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna(-/-) mouse embryonic fibroblasts (MEFs) compared to Lmna(+/+), and 1.8-fold more pERK1/2 co-precipitated from Lmna(-/-) MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna(-/-) MEFs by immunofluorescence. In an assay of gap junctional function, Lmna(-/-) MEFs transferred dye to 60% fewer partners compared to Lmna(+/+) controls. These results are mirrored in 5-6 week-old Lmna(-/-) mice compared to their Lmna(+/+) littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna(-/-) background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo.
Collapse
Affiliation(s)
- Steven C Chen
- Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
70
|
Chen VC, Kristensen AR, Foster LJ, Naus CC. Association of Connexin43 with E3 Ubiquitin Ligase TRIM21 Reveals a Mechanism for Gap Junction Phosphodegron Control. J Proteome Res 2012; 11:6134-46. [DOI: 10.1021/pr300790h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vincent C. Chen
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, ‡Department
of Cellular and Physiological Sciences, Life Sciences
Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3,
Canada
| | - Anders R. Kristensen
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, ‡Department
of Cellular and Physiological Sciences, Life Sciences
Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3,
Canada
| | - Leonard J. Foster
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, ‡Department
of Cellular and Physiological Sciences, Life Sciences
Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3,
Canada
| | - Christian C. Naus
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, ‡Department
of Cellular and Physiological Sciences, Life Sciences
Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3,
Canada
| |
Collapse
|
71
|
Andrysík Z, Procházková J, Kabátková M, Umannová L, Šimečková P, Kohoutek J, Kozubík A, Machala M, Vondráček J. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch Toxicol 2012; 87:491-503. [DOI: 10.1007/s00204-012-0963-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|
72
|
The role of the C-terminus in functional expression and internalization of rat connexin46 (rCx46). J Bioenerg Biomembr 2012; 45:59-70. [PMID: 23065326 DOI: 10.1007/s10863-012-9480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
The C-terminus (CT) of rCx46 consists of 186 residues (H230-I416). Recent studies showed that rCx46(28.2), truncated after H243, altered the formation of functional hemichannels when expressed in Xenopus oocytes, while rCx46(37.7), truncated after A333 formed gap junction hemichannels similarly to rCx46(wt). To analyze the role of the CT up to A333 in functional expression with cell imaging and dye-transfer techniques, different mutants were generated by C-terminal truncation between H243-A333, labeled with EGFP and expressed in HeLa cells. These rCx46 variants were characterized according to their compartmentalization in organelles, their presence in microscopic detectable vesicles and their ability to form gap junction plaques. rCx46 truncated after A311 (rCx46(35.3)) was compartmentalized, was found in vesicles and formed functional gap junction plaques similarly to rCx46(wt). With a truncation after P284 (rCx46(32.6)), the protein was not compartmentalized and the amount of vesicles containing the protein were reduced; however, functional gap junction plaque formation was not affected as compared to rCx46(35.3). rCx46(28.2) did not form functional gap junction plaques; it was not found in vesicles or in cellular compartments. Live-cell imaging and detection of annular junctions for rCx46(32.6) and rCx46(35.3) revealed that the truncation after P284 reduced the frequency of vesicle budding from gap junction plaques and the formation of annular junctions. These results suggest that the C-terminal region of rCx46 up to A311 (rCx46(35.3)) is necessary for its correct compartmentalization and internalization in the form of annular junctions, while the H230-P284 C-terminal region (rCx46(32.6)) is sufficient for the formation of dye coupled gap junction channels.
Collapse
|
73
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
74
|
Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE. Posttranslational modifications in connexins and pannexins. J Membr Biol 2012; 245:319-32. [PMID: 22739962 DOI: 10.1007/s00232-012-9453-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/08/2012] [Indexed: 01/17/2023]
Abstract
Posttranslational modification is a common cellular process that is used by cells to ensure a particular protein function. This can happen in a variety of ways, e.g., from the addition of phosphates or sugar residues to a particular amino acid, ensuring proper protein life cycle and function. In this review, we assess the evidence for ubiquitination, glycosylation, phosphorylation, S-nitrosylation as well as other modifications in connexins and pannexin proteins. Based on the literature, we find that posttranslational modifications are an important component of connexin and pannexin regulation.
Collapse
Affiliation(s)
- Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
75
|
Gilleron J, Carette D, Chevallier D, Segretain D, Pointis G. Molecular connexin partner remodeling orchestrates connexin traffic: from physiology to pathophysiology. Crit Rev Biochem Mol Biol 2012; 47:407-23. [PMID: 22551357 DOI: 10.3109/10409238.2012.683482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state. Recent findings demonstrate that interactions of connexins with numerous protein partners, which take place throughout connexin trafficking, are essential for gap junction formation, membranous stabilization and degradation. In the present study, we give an overview of the physiological molecular machinery and of the specific interactions between connexins and their partners, which are involved in connexin trafficking, and we highlight their changes in pathological situations.
Collapse
Affiliation(s)
- Jérôme Gilleron
- INSERM U 1065, University Nice Sophia Antipolis, Team 5, C3M, 151 route Saint-Antoine de Ginestière, France
| | | | | | | | | |
Collapse
|
76
|
Wayakanon P, Bhattacharjee R, Nakahama KI, Morita I. The role of the Cx43 C-terminus in GJ plaque formation and internalization. Biochem Biophys Res Commun 2012; 420:456-61. [PMID: 22430144 DOI: 10.1016/j.bbrc.2012.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/03/2012] [Indexed: 11/30/2022]
Abstract
Connexin 43 (Cx43) is a major gap junction (GJ) protein found in many mammalian cell types. The C-terminal (CT) domain of Cx43 has unique characteristics in terms of amino acid (aa) sequence and its length differs from other connexins. This CT domain can be associated with protein partners to regulate GJ assembly and degradation, which results in the direct control of gap junction intercellular communication (GJIC). However, the essential roles of the CT regions involved in these mechanisms have not been fully elucidated. In this study, we aimed to investigate the specific regions of Cx43CT involved in GJ formation and internalization. Wild type Cx43((382aa)) and 10 CT truncated mutants were stably expressed in HeLa cells as GFP or DsRed tagged proteins. First, we found that the deletion of 235-382aa from Cx43 resulted in failure to make GJ and establish GJIC. Second, the Cx43 with 242-382aa CT deletion could form functional GJs and be internalized as annular gap junctions (AGJs). However, the plaques consisting of Cx43 with CT deletions (Δ242-382aa to Δ271-382aa) were longer than the plaques consisting of Cx43 with CT deletions (Δ302-382aa). Third, co-culture experiments of cells expressing wild type Cx43((382)) with cells expressing Cx43CT mutants revealed that the directions of GJ internalization were dependent on the length of the respective CT. Moreover, a specific region, 325-342aa residues of Cx43, played an important role in the direction of GJ internalization. These results showed the important roles of the Cx43 C-terminus in GJ expression and its turnover.
Collapse
Affiliation(s)
- Praween Wayakanon
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
77
|
Su V, Lau AF. Ubiquitination, intracellular trafficking, and degradation of connexins. Arch Biochem Biophys 2012; 524:16-22. [PMID: 22239989 DOI: 10.1016/j.abb.2011.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 12/19/2022]
Abstract
Gap junction channels provide a conduit for communication between neighboring cells. The function of gap junction channels is regulated by posttranslational modifications of connexins, the proteins that comprise these channels. Ubiquitination of connexins has increasingly been viewed as one mechanism by which cells regulate the level of connexins present in cells, as well as the corresponding intercellular communication. Here we review the current knowledge of connexin ubiquitination and the effects this may have on gap junctional communication.
Collapse
Affiliation(s)
- Vivian Su
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | | |
Collapse
|
78
|
Fykerud TA, Kjenseth A, Schink KO, Sirnes S, Bruun J, Omori Y, Brech A, Rivedal E, Leithe E. Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43. J Cell Sci 2012; 125:3966-76. [DOI: 10.1242/jcs.093500] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junction channels are made of a family of integral membrane proteins called connexins, of which the best-studied member is connexin43. Gap junctions are dynamic plasma membrane domains, and connexin43 has a high turnover rate in most tissue types. However, the mechanisms involved in the regulation of connexin43 endocytosis and transport to lysosomes are still poorly understood. Here, we demonstrate by live-cell imaging analysis that treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) induces endocytosis of subdomains of connexin43 gap junctions. The internalized, connexin43-enriched vesicles were found to fuse with early endosomes, which was followed by transport of connexin43 to the lumen of early endosomes. The HECT E3 ubiquitin ligase smad ubiquitination regulatory factor-2 (Smurf2) was found to be recruited to connexin43 gap junctions in response to TPA treatment. Depletion of Smurf2 by small interfering RNA (siRNA) resulted in enhanced levels of connexin43 gap junctions between adjacent cells and increased gap junction intercellular communication. Smurf2 depletion also counteracted the TPA-induced endocytosis and degradation of connexin43. Collectively, these data identify Smurf2 as a novel regulator of connexin43 gap junctions.
Collapse
|
79
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
80
|
Dunn CA, Su V, Lau AF, Lampe PD. Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability. J Biol Chem 2011; 287:2600-7. [PMID: 22139843 DOI: 10.1074/jbc.m111.276261] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.
Collapse
Affiliation(s)
- Clarence A Dunn
- Molecular Diagnostics Program, Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
81
|
Leithe E, Sirnes S, Fykerud T, Kjenseth A, Rivedal E. Endocytosis and post-endocytic sorting of connexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1870-9. [PMID: 21996040 DOI: 10.1016/j.bbamem.2011.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 12/15/2022]
Abstract
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Cancer Prevention, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
82
|
Mollerup S, Hofgaard JP, Braunstein TH, Kjenseth A, Leithe E, Rivedal E, Holstein-Rathlou NH, Nielsen MS. Norepinephrine inhibits intercellular coupling in rat cardiomyocytes by ubiquitination of connexin43 gap junctions. ACTA ACUST UNITED AC 2011; 18:57-65. [DOI: 10.3109/15419061.2011.611920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
83
|
Arroyo JP, Lagnaz D, Ronzaud C, Vázquez N, Ko BS, Moddes L, Ruffieux-Daidié D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 2011; 22:1707-19. [PMID: 21852580 DOI: 10.1681/asn.2011020132] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Palatinus JA, Rhett JM, Gourdie RG. The connexin43 carboxyl terminus and cardiac gap junction organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1831-43. [PMID: 21856279 DOI: 10.1016/j.bbamem.2011.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 12/09/2022]
Abstract
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
85
|
Kim BG, Lee JH, Yasuda J, Ryoo HM, Cho JY. Phospho-Smad1 modulation by nedd4 E3 ligase in BMP/TGF-β signaling. J Bone Miner Res 2011; 26:1411-24. [PMID: 21308777 DOI: 10.1002/jbmr.348] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A considerable number of studies have focused on the regulation of mothers against decapentaplegic homologue (Smad)-dependent or -independent pathways in the signaling by each transforming growth factor β (TGF-β) superfamily member in diverse biologic contexts. The sophisticated regulation of the actions of these molecules and the underlying molecular mechanisms still remain elusive. Here we show new mechanisms of ambilateral R (receptor-regulated)-Smad regulation of bone morphogenetic protein 2 (BMP-2)/TGF-β1 signals. In a specific context, both signals regulate the nonclassic Smads pathway reciprocally, BMP-2 to Smad2/3 and TGF-β1 to Smad1/5/8, as well as their own classic linear Smad pathway. Interestingly, in this study, we found that C-terminal phosphorylated forms of each pathway Smad degraded rapidly 3 hours after stimulation of nonclassic signals but are dramatically restored by treatment with via proteasomal inhibition. Furthermore, an E3 ligase, neural precursor cell expressed, developmentally down-regulated 4 (Nedd4), also was found as one of the important modulators of the p-Smad1 in both BMP-2 and TGF-β1 action. Overexpressed Nedd4 suppressed the BMP-induced osteoblast transdifferentiation process of premyoblast C2C12 cells or alkaline phosphatase (ALP) level of human osteosarcoma cells and promoted TGF-β1-induced degradation of p-Smad1 via physical interaction and polyubiquitination. Conversely, siNedd4 potentiated BMP signals through upregulation of p-Smad1 and ALP activity, the effect of which led to an increased the rate of P(i) -induced calcification of human vascular smooth muscle cells. These new insights about proteasomal degradation-mediated phosphorylated nonclassic Smad regulation of BMP-2/TGF-β1 could, in part, help to unravel the complex mechanisms of abnormal nonosseous calcification by the aberrant activity of BMP/TGF-β/Smads.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and Second BK21 Program, Daegu 700-422, Korea
| | | | | | | | | |
Collapse
|
86
|
Ubiquitin-mediated internalization of connexin43 is independent of the canonical endocytic tyrosine-sorting signal. Biochem J 2011; 437:255-67. [DOI: 10.1042/bj20102059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gap junctions are specialized cell–cell contacts that provide direct intercellular communication between eukaryotic cells. The tyrosine-sorting signal (YXXØ), present at amino acids 286–289 of Cx43 (connexin43), has been implicated in the internalization of the protein. In recent years, ubiquitination of Cx43 has also been proposed to regulate gap junction intercellular communication; however, the underlying mechanism and molecular players involved remain elusive. In the present study, we demonstrate that ubiquitinated Cx43 is internalized through a mechanism that is independent of the YXXØ signal. Indeed, expression of a Cx43–Ub (ubiquitin) chimaera was shown to drive the internalization of a mutant Cx43 in which the YXXØ motif was eliminated. Immunofluorescence, cycloheximide-chase and cell-surface-protein biotinylation experiments demonstrate that oligomerization of Cx43–Ub into hemichannels containing wild-type Cx43 or mutant Cx43Y286A is sufficient to drive the internalization of the protein. Furthermore, the internalization of Cx43 induced by Cx43–Ub was shown to depend on its interaction with epidermal growth factor receptor substrate 15.
Collapse
|
87
|
Remo BF, Qu J, Volpicelli FM, Giovannone S, Shin D, Lader J, Liu FY, Zhang J, Lent DS, Morley GE, Fishman GI. Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ Res 2011; 108:1459-66. [PMID: 21527737 PMCID: PMC3126103 DOI: 10.1161/circresaha.111.244046] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/21/2011] [Indexed: 11/16/2022]
Abstract
RATIONALE Posttranslational phosphorylation of connexin43 (Cx43) has been proposed as a key regulatory event in normal cardiac gap junction expression and pathological gap junction remodeling. Nonetheless, the role of Cx43 phosphorylation in the context of the intact organism is poorly understood. OBJECTIVE To establish whether specific Cx43 phosphorylation events influence gap junction expression and pathological remodeling. METHODS AND RESULTS We generated Cx43 germline knock-in mice in which serines 325/328/330 were replaced with phosphomimetic glutamic acids (S3E) or nonphosphorylatable alanines (S3A). The S3E mice were resistant to acute and chronic pathological gap junction remodeling and displayed diminished susceptibility to the induction of ventricular arrhythmias. Conversely, the S3A mice showed deleterious effects on cardiac gap junction formation and function, developed electric remodeling, and were highly susceptible to inducible arrhythmias. CONCLUSIONS These data demonstrate a mechanistic link between posttranslational phosphorylation of Cx43 and gap junction formation, remodeling, and arrhythmic susceptibility.
Collapse
Affiliation(s)
- Benjamin F Remo
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Ave, Smilow 801, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Ohzono C, Etoh S, Matsumoto M, Nakayama KI, Hirota Y, Tanaka Y, Fujita H. Nedd4-interacting protein 2, a short half-life membrane protein degraded in lysosomes, negatively controls down-regulation of connexin43. Biol Pharm Bull 2011; 33:951-7. [PMID: 20522958 DOI: 10.1248/bpb.33.951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nedd4-interacting protein 2 (NDFIP2) has three transmembrane domains and interacts with multiple Nedd4 family ubiquitin ligases through polyprolinetyrosine (PY) motifs located in its N-terminal cytoplasmic domain. It has been postulated that NDFIP2 acts as an adaptor for the ubiquitylation of substrates with Nedd4 ubiquitin ligase. However, whether NDFIP2 promotes or inhibits the ubiquitylation of Nedd4 substrates is still under debate. We show here that although NDFIP2 is detected in the Golgi/trans-Golgi network (TGN) area, it is rapidly delivered to and degraded in lysosomes with its half-life ca. 1.5 h. Intriguingly, knockdown (KD) of NDFIP2 with small interfering RNA (siRNA) impaired both the formation and function of gap junctions. Indeed, KD of NDFIP2 destabilized the gap junction protein connexin43 that contains PY motif. In support of this, overexpression of NDFIP2 stabilized connexin43 and enhanced the formation of gap junctions. Furthermore, the PY motifs of NDFIP2, which are required for its interaction with Nedd4, Atrophin-1 interacting protein (AIP) 4 (AIP4)/Itch, and AIP2/WWP2, were necessary for the targeting of NDFIP2 to lysosomes and/or the stability of connexin43 and gap junctions. Collectively these findings suggest that NDFIP2 may inhibit the Nedd4-dependent ubiquitylation of membrane proteins containing PY motifs, such as connexin43, in a competitive manner.
Collapse
Affiliation(s)
- Chiho Ohzono
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Cardiac ion channels play an essential role in the generation of the action potential of cardiomyocytes. Over the past 15 years, a new field of research called channelopathies has emerged; it regroups all diseases caused by ion channel dysfunction. Investigators have largely determined the physiological roles of cardiac ion channels, but little is known about the molecular determinants of their regulation. Two posttranslational mechanisms that are crucial in determining the fate of proteins are the ubiquitylation and the SUMOylation pathways, which lead to the degradation and/or regulation of modified proteins. Recently, several groups have investigated the physiological impacts of these mechanisms on the regulation of different classes of cardiac ion channels. The objective of this review was to summarize and briefly discuss these results.
Collapse
|
90
|
Role of the ubiquitin system in regulating ion transport. Pflugers Arch 2010; 461:1-21. [PMID: 20972579 DOI: 10.1007/s00424-010-0893-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022]
Abstract
Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.
Collapse
|
91
|
Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 2010; 316:2377-89. [DOI: 10.1016/j.yexcr.2010.05.026] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/31/2022]
|
92
|
Alonso A, Reinz E, Jenne JW, Fatar M, Schmidt-Glenewinkel H, Hennerici MG, Meairs S. Reorganization of gap junctions after focused ultrasound blood-brain barrier opening in the rat brain. J Cereb Blood Flow Metab 2010; 30:1394-402. [PMID: 20332798 PMCID: PMC2949216 DOI: 10.1038/jcbfm.2010.41] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/18/2010] [Accepted: 02/25/2010] [Indexed: 11/08/2022]
Abstract
Ultrasound-induced opening of the blood-brain barrier (BBB) is an emerging technique for targeted drug delivery to the central nervous system. Gap junctions allow transfer of information between adjacent cells and are responsible for tissue homeostasis. We examined the effect of ultrasound-induced BBB opening on the structure of gap junctions in cortical neurons, expressing Connexin 36, and astrocytes, expressing Connexin 43, after focused 1-MHz ultrasound exposure at 1.25 MPa of one hemisphere together with intravenous microbubble (Optison, Oslo, Norway) application. Quantification of immunofluorescence signals revealed that, compared with non-insonicated hemispheres, small-sized Connexin 43 and 36 gap-junctional plaques were markedly reduced in areas with BBB breakdown after 3 to 6 hours (34.02+/-6.04% versus 66.49+/-2.16%, P=0.02 for Connexin 43; 33.80+/-1.24% versus 36.77+/-3.43%, P=0.07 for Connexin 36). Complementing this finding, we found significant increases in large-sized gap-junctional plaques (5.76+/-0.96% versus 1.02+/-0.84%, P=0.05 for Connexin 43; 5.62+/-0.22% versus 4.65+/-0.80%, P=0.02 for Connexin 36). This effect was reversible at 24 hours after ultrasound exposure. Western blot analyses did not show any change in the total connexin amount. These results indicate that ultrasound-induced BBB opening leads to a reorganization of gap-junctional plaques in both neurons and astrocytes. The plaque-size increase may be a cellular response to imbalances in extracellular homeostasis after BBB leakage.
Collapse
Affiliation(s)
- Angelika Alonso
- Department of Neurology, Universitätsklinikum Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eileen Reinz
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Jürgen W Jenne
- Department of Neurology, Universitätsklinikum Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marc Fatar
- Department of Neurology, Universitätsklinikum Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Michael G Hennerici
- Department of Neurology, Universitätsklinikum Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stephen Meairs
- Department of Neurology, Universitätsklinikum Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
93
|
Abstract
Gap junctions (GJs) allow direct communication between cells. In the heart, GJs mediate the electrical coupling of cardiomyocytes and as such dictate the speed and direction of cardiac conduction. A prominent feature of acquired structural heart disease is remodeling of GJ protein expression and localization concomitant with increased susceptibility to lethal arrhythmias, leading many to hypothesize that the two are causally linked. Detailed understanding of the cellular mechanisms that regulate GJ localization and function within cardiomyocytes may therefore uncover potential therapeutic strategies for a significant clinical problem. This review will outline our current understanding of GJ cell biology with the intent of highlighting cellular mechanisms responsible for GJ remodeling associated with cardiac disease.
Collapse
|
94
|
Kawabe H, Neeb A, Dimova K, Young SM, Takeda M, Katsurabayashi S, Mitkovski M, Malakhova OA, Zhang DE, Umikawa M, Kariya KI, Goebbels S, Nave KA, Rosenmund C, Jahn O, Rhee J, Brose N. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65:358-72. [PMID: 20159449 PMCID: PMC2825371 DOI: 10.1016/j.neuron.2010.01.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2009] [Indexed: 11/29/2022]
Abstract
Nedd4-1 is a "neuronal precursor cell expressed and developmentally downregulated protein" and among the most abundant E3 ubiquitin ligases in mammalian neurons. In analyses of conventional and conditional Nedd4-1-deficient mice, we found that Nedd4-1 plays a critical role in dendrite formation. Nedd4-1, the serine/threonine kinase TNIK, and Rap2A form a complex that controls Nedd4-1-mediated ubiquitination of Rap2A. Ubiquitination by Nedd4-1 inhibits Rap2A function, which reduces the activity of Rap2 effector kinases of the TNIK family and promotes dendrite growth. We conclude that a Nedd4-1/Rap2A/TNIK signaling pathway regulates neurite growth and arborization in mammalian neurons.
Collapse
Affiliation(s)
- Hiroshi Kawabe
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, 37075 Göttingen, Germany
| | - Antje Neeb
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, 37075 Göttingen, Germany
| | - Kalina Dimova
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, 37075 Göttingen, Germany
- Max Planck Institute of Experimental Medicine and DFG-CMPB, Proteomics Group, 37075 Göttingen, Germany
| | - Samuel M. Young
- Max Planck Institute of Biophysical Chemistry, Department of Membrane Biophysics, 37077 Göttingen, Germany
| | - Michiko Takeda
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, 37075 Göttingen, Germany
| | - Shutaro Katsurabayashi
- Max Planck Institute of Biophysical Chemistry, Department of Membrane Biophysics, 37077 Göttingen, Germany
| | - Miso Mitkovski
- Max Planck Institute of Experimental Medicine, Imaging Facility, 37075 Göttingen, Germany
| | - Oxana A. Malakhova
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dong-Er Zhang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Pathology and Division of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Masato Umikawa
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Ken-ichi Kariya
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, 37075 Göttingen, Germany
| | - Christian Rosenmund
- Max Planck Institute of Biophysical Chemistry, Department of Membrane Biophysics, 37077 Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine and DFG-CMPB, Proteomics Group, 37075 Göttingen, Germany
| | - JeongSeop Rhee
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, 37075 Göttingen, Germany
- Max Planck Institute of Biophysical Chemistry, Department of Membrane Biophysics, 37077 Göttingen, Germany
| | - Nils Brose
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, 37075 Göttingen, Germany
| |
Collapse
|
95
|
Yang B, Kumar S. Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ 2010; 17:68-77. [PMID: 19557014 PMCID: PMC2818775 DOI: 10.1038/cdd.2009.84] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Nedd4 (neural precursor cell-expressed developmentally downregulated gene 4) family of ubiquitin ligases (E3s) is characterized by a distinct modular domain architecture, with each member consisting of a C2 domain, 2-4 WW domains, and a HECT-type ligase domain. Of the nine mammalian members of this family, Nedd4 and its close relative, Nedd4-2, represent the ancestral ligases with strong similarity to the yeast, Rsp5. In Saccharomyces cerevisiae Rsp5 has a key role in regulating the trafficking, sorting, and degradation of a large number of proteins in multiple cellular compartments. However, in mammals the Nedd4 family members, including Nedd4 and Nedd4-2, appear to have distinct functions, thereby suggesting that these E3s target specific proteins for ubiquitylation. In this article we focus on the biology and emerging functions of Nedd4 and Nedd4-2, and review recent in vivo studies on these E3s.
Collapse
Affiliation(s)
- B Yang
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - S Kumar
- Centre for Cancer Biology, SA Pathology and Hanson Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
96
|
Girão H, Catarino S, Pereira P. Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Exp Cell Res 2009; 315:3587-97. [PMID: 19835873 DOI: 10.1016/j.yexcr.2009.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/29/2009] [Accepted: 10/02/2009] [Indexed: 02/04/2023]
Abstract
Gap junctions (GJ) are specialized cell-cell contacts that provide direct intercellular communication (IC) between eukaryotic cells. Regulation of GJIC by degradation of Cx43 has been a matter of debate over the last two decades and both the proteasome and the lysosome have been implicated. However, the underlying mechanism and molecular players involved remain elusive. In this paper we demonstrate, for the first time, that the ubiquitin ligase Nedd4 is involved in Cx43 ubiquitination. Indeed, depletion of Nedd4 with siRNA resulted in a decrease of the amount of ubiquitin attached to Cx43. Ubiquitinated membrane proteins are often recognized and targeted by endocytic adaptors containing ubiquitin-binding domains, such as Eps15. By coimmunoprecipitation and immunofluorescence we show interaction of Cx43 with Eps15 and colocalization of these proteins mainly at the plasma membrane. Moreover, depletion of Eps15 results in an accumulation of Cx43 at the plasma membrane. Furthermore, the interaction of Eps15 with Cx43 requires the ubiquitin-interacting motif of Eps15 suggesting that the interaction occurs through the ubiquitin attached to Cx43. Data presented in this manuscript are consistent with a new molecular model in which Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15, through its ubiquitin-interacting motif, and targets ubiquitinated Cx43 to the endocytic pathway. This provides the basis for future studies aiming at identifying the molecular players and mechanisms involved in Cx43 internalization and degradation.
Collapse
Affiliation(s)
- Henrique Girão
- Centre of Ophthalmology and Visual Sciences, Biomedical Institute for Research in Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba 3000-354 Coimbra, Portugal.
| | | | | |
Collapse
|
97
|
Leithe E, Kjenseth A, Sirnes S, Stenmark H, Brech A, Rivedal E. Ubiquitylation of the gap junction protein connexin-43 signals its trafficking from early endosomes to lysosomes in a process mediated by Hrs and Tsg101. J Cell Sci 2009; 122:3883-93. [PMID: 19808888 DOI: 10.1242/jcs.053801] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gap junctions are dynamic plasma membrane domains, and their protein constituents, the connexins, have a high turnover rate in most tissue types. However, the molecular mechanisms involved in degradation of gap junctions have remained largely unknown. Here, we show that ubiquitin is strongly relocalized to connexin-43 (Cx43; also known as Gja1) gap junction plaques in response to activation of protein kinase C. Cx43 remained ubiquitylated during its transition to a Triton X-100-soluble state and along its trafficking to early endosomes. Following internalization, Cx43 partly colocalized with the ubiquitin-binding proteins Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate; also known as Hgs) and Tsg101 (tumor susceptibility gene 101). Depletion of Hrs or Tsg101 by small interfering RNA abrogated trafficking of Cx43 from early endosomes to lysosomes. Under these conditions, Cx43 was able to undergo dephosphorylation and deubiquitylation, locate to the plasma membrane and form functional gap junctions. Simultaneous depletion of Hrs and Tsg101 caused accumulation of a phosphorylated and ubiquitylated subpopulation of Cx43 in early endosomes and in hybrid organelles between partly degraded annular gap junctions and endosomes. Collectively, these data reveal a central role of early endosomes in sorting of ubiquitylated Cx43, and identify Hrs and Tsg101 as crucial regulators of trafficking of Cx43 to lysosomes.
Collapse
Affiliation(s)
- Edward Leithe
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo and Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
98
|
Ey B, Eyking A, Gerken G, Podolsky DK, Cario E. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J Biol Chem 2009; 284:22332-22343. [PMID: 19528242 DOI: 10.1074/jbc.m901619200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.
Collapse
Affiliation(s)
- Birgit Ey
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Annette Eyking
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Guido Gerken
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel K Podolsky
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elke Cario
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
99
|
Abstract
Vertebrate gap junctions, composed of proteins from the connexin gene family, play critical roles in embryonic development, co-ordinated contraction of excitable cells, tissue homoeostasis, normal cell growth and differentiation. Phosphorylation of connexin43, the most abundant and ubiquitously expressed connexin, has been implicated in the regulation of gap junctional communication at several stages of the connexin 'life cycle', including hemichannel oligomerization, export of the protein to the plasma membrane, hemichannel activity, gap junction assembly, gap junction channel gating and connexin degradation. Consistent with a short (1-5 h) protein half-life, connexin43 phosphorylation is dynamic and changes in response to activation of many different kinases. The present review assesses our current understanding of the effects of phosphorylation on connexin43 structure and function that in turn regulate gap junction biology, with an emphasis on events occurring in heart and skin.
Collapse
Affiliation(s)
- Joell L Solan
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5C800 Box 19024, Seattle, WA 98109, USA
| | | |
Collapse
|
100
|
Abstract
The inositol phosphatase, MTMR4 (myotubularin-related protein 4), was identified as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4). hMTMR4 (human MTMR4) and Nedd4 co-immunoprecipitated and co-localized to late endosomes. The PY (Pro-Tyr) motif of hMTMR4 binds to WW (Trp-Trp) domains of hNedd4. MTMR4 expression was decreased in atrophying muscle, whereas Nedd4 expression was increased and hMTMR4 was ubiquitinated by hNedd4, suggesting that this novel interaction may underlie the biological process of muscle breakdown.
Collapse
|