51
|
Edemir B, Pavenstädt H, Schlatter E, Weide T. Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflugers Arch 2011; 461:607-21. [PMID: 21327781 DOI: 10.1007/s00424-011-0928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
The kidneys participate in whole-body homeostasis, regulating acid-base balance, electrolyte concentrations, extracellular fluid volume, and regulation of blood pressure. Many of the kidney's functions are accomplished by relatively simple mechanisms of filtration, reabsorption, and secretion, which take place in the nephron. The kidneys generate 140-180 l of primary urine per day, while reabsorbing a large percentage, allowing for only the excretion of approximately 2 l of urine. Within the nephron, the majority of the filtered water and solutes are reabsorbed. This is mainly facilitated by specialized transporters and channels which are localized at different segments of the nephron and asymmetrically localized within the polarized epithelial cells. The asymmetric localization of these transporters and channels is essential for the physiological tasks of the renal tissues. One family of these proteins are the water-permeable aquaporins which are selectively expressed in cells along the nephron and localized at different compartments. Here, we discuss potential molecular links between mechanisms involved in the establishment of cell polarity and the members of the aquaporin family. In the first part of this review, we will focus on aspects of apical cell polarity. In the second part, we will review the motifs identified so far that are involved in aquaporin sorting and point out potential molecular links.
Collapse
Affiliation(s)
- Bayram Edemir
- Medizinische Klinik und Poliklinik D, Experimentelle und Molekulare Nephrologie, Universität Münster, Germany.
| | | | | | | |
Collapse
|
52
|
Tervonen TA, Partanen JI, Saarikoski ST, Myllynen M, Marques E, Paasonen K, Moilanen A, Wohlfahrt G, Kovanen PE, Klefstrom J. Faulty epithelial polarity genes and cancer. Adv Cancer Res 2011; 111:97-161. [PMID: 21704831 DOI: 10.1016/b978-0-12-385524-4.00003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epithelial architecture is formed in tissues and organs when groups of epithelial cells are organized into polarized structures. The epithelial function and integrity as well as signaling across the epithelial layer is orchestrated by apical junctional complexes (AJCs), which are landmarks for PAR/CRUMBS and lateral SCRIB polarity modules and by dynamic interactions of the cells with underlying basement membrane (BM). These highly organized epithelial architectures are demolished in cancer. In all advanced epithelial cancers, malignant cells have lost polarity and connections to the basement membrane and they have become proliferative, motile, and invasive. Clearly, loss of epithelial integrity associates with tumor progression but does it contribute to tumor development? Evidence from studies in Drosophila and recently also in vertebrate models have suggested that even the oncogene-driven enforced cell proliferation can be conditional, dependant on the influence of cell-cell or cell-microenvironment contacts. Therefore, loss of epithelial integrity may not only be an obligate consequence of unscheduled proliferation of malignant cells but instead, malignant epithelial cells may need to acquire capacity to break free from the constraints of integrity to freely and autonomously proliferate. We discuss how epithelial polarity complexes form and regulate epithelial integrity, highlighting the roles of enzymes Rho GTPases, aPKCs, PI3K, and type II transmembrane serine proteases (TTSPs). We also discuss relevance of these pathways to cancer in light of genetic alterations found in human cancers and review molecular pathways and potential pharmacological strategies to revert or selectively eradicate disorganized tumor epithelium.
Collapse
|
53
|
Letizia A, Sotillos S, Campuzano S, Llimargas M. Regulated Crb accumulation controls apical constriction and invagination in Drosophila tracheal cells. J Cell Sci 2010; 124:240-51. [PMID: 21172808 DOI: 10.1242/jcs.073601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many epithelial tissues undergo extensive remodelling during morphogenesis. How their epithelial features, such as apicobasal polarity or adhesion, are maintained and remodelled and how adhesion and polarity proteins contribute to morphogenesis are two important questions in development. Here, we approach these issues by investigating the role of the apical determinant protein Crumbs (Crb) during the morphogenesis of the embryonic Drosophila tracheal system. Crb accumulates differentially throughout tracheal development and is required for different tracheal events. The earliest requirement for Crb is for tracheal invagination, which is preceded by an enhanced accumulation of Crb in the invagination domain. There, Crb, acting in parallel with the epidermal growth factor receptor (Egfr) pathway, is required for tracheal cell apical constriction and for organising an actomyosin complex, which we propose is mediated by Crb recruitment of moesin (Moe). The ability of a Crb isoform unable to rescue polarity in crb mutants to otherwise rescue their invagination phenotype, and the converse inability of a FERM-binding domain mutant Crb to rescue faulty invagination, support our hypothesis that it is the absence of Crb-dependent Moe enrichment, and not the polarity defect, that mainly underlies the crb invagination phenotype. This hypothesis is supported by the phenotype of lethal giant larvae (lgl); crb double mutants. These results unveil a link between Crb and the organisation of the actin cytoskeleton during morphogenesis.
Collapse
Affiliation(s)
- Annalisa Letizia
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
54
|
Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol 2010; 20:618-26. [PMID: 20833047 DOI: 10.1016/j.tcb.2010.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 01/24/2023]
Abstract
Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular, defects in the expression or function of these recycling endosome-associated and endosome-regulating proteins have been implicated in cell surface polarity defects and diseases, including microvillus inclusion disease, arthrogryposis-renal dysfunction-cholestasis syndrome, and virus susceptibility. Key findings are that recycling endosomes recruit and deliver core polarity proteins to lateral cell surfaces and initiate the biogenesis of apical plasma membrane domains and epithelial cell polarity. Here, we review recent data that implicate recycling endosomes in the establishment and maintenance of epithelial cell polarity.
Collapse
|
55
|
Beyer J, Zhao XC, Yee R, Khaliq S, McMahon TT, Ying H, Yue BYJT, Malicki JJ. The role of crumbs genes in the vertebrate cornea. Invest Ophthalmol Vis Sci 2010; 51:4549-56. [PMID: 20805571 DOI: 10.1167/iovs.09-4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the role of crumbs genes and related epithelial polarity loci in the vertebrate cornea. METHODS The authors used histologic analysis and electron microscopy to evaluate the corneas of zebrafish mutant for a crumbs locus oko meduzy (ome) and in mutants of four other loci, nagie oko (nok), heart and soul (has), mosaic eyes (moe), and ncad (formerly glass onion), that function in the same or related genetic pathways. In parallel, they performed an evaluation of corneas in human carriers of a crumbs gene, CRB1, and mutations using topography and biomicroscopy. The expression of the CRB1 gene in the normal human cornea was examined by polymerase chain reaction (PCR) and immunohistochemical staining. RESULTS The corneas of zebrafish mutants display severe abnormalities of the epithelial and stromal layers. The epithelial cells do not properly adhere to each other, and fluid-filled spaces form between them. In addition, the layering of the corneal stroma is poorly formed or absent. The corneas of human carriers of CRB1 mutations display shape deviations compared with what has been observed in normal individuals. A PCR product of the correct size was obtained from normal human corneal samples. Sequence analyses confirmed its identity to be the human CRB1 gene. Immunohistochemical staining using anti-CRB1 yielded positive brown deposits in the human cornea. CONCLUSIONS crumbs genes play a role in the differentiation of the vertebrate cornea. Corneal defects associated with crumbs gene mutations are very severe in the zebrafish model and, in comparison, appear clinically less pronounced in the human eye.
Collapse
Affiliation(s)
- Jill Beyer
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Campbell K, Casanova J, Skaer H. Mesenchymal-to-epithelial transition of intercalating cells in Drosophila renal tubules depends on polarity cues from epithelial neighbours. Mech Dev 2010; 127:345-57. [PMID: 20382220 PMCID: PMC2963794 DOI: 10.1016/j.mod.2010.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 01/08/2023]
Abstract
The intercalation of mesenchymal cells into epithelia, through mesenchymal-to-epithelial transition (MET), underlies organogenesis, for example, in nephrogenesis, and tissue regeneration, during cell renewal and wound repair. Despite its importance, surprisingly little is known about the mechanisms that bring about MET in comparison with the related and much-studied, reverse process, epithelial-to-mesenchymal transition (EMT). We analyse the molecular events that regulate MET as stellate cells integrate into the established epithelium of the developing renal tubules in Drosophila. We show that stellate cells polarise as they integrate between epithelial principal cells and that the normal, localised expression of cell polarity proteins in principal cells is required for stellate cells to become epithelial. While the basolateral and apical membranes act as cues for stellate cell polarity, adherens junction integrity is required to regulate their movement through the epithelium; in the absence of these junctions stellate cells continue migrating into the tubule lumen. We also show that expression of basolateral proteins in stellate cells is a prerequisite for their ingression between principal cells. We present a model in which the contacts with successive principal cell membrane domains made by stellate cells as they integrate between them act as a cue for the elaboration of stellate cell polarity. We suggest that the formation of zonula adherens junctions between new cell neighbours establishes their apico-basal positions and stabilises them in the epithelium.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Cientific de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Biomèdica de Barcelona, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Cientific de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Biomèdica de Barcelona, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Helen Skaer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
57
|
Walther RF, Pichaud F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol 2010; 20:1065-74. [PMID: 20493700 DOI: 10.1016/j.cub.2010.04.049] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In Drosophila epithelial cells, specification and maintenance of the zonula adherens (za) is crucial to ensure epithelial tissue integrity. This depends on the intertwined function of Bazooka (Baz), Par6-DaPKC, and the Crumbs (Crb)-Stardust (Sdt)-PATJ complex. However, the detailed molecular basis for the interplay between these factors during this process is not fully understood. RESULTS We demonstrate that during photoreceptor apicobasal polarity remodeling, Crb is required to exclude Baz from the subapical domain. This is achieved by recruiting Par6 and DaPKC to this membrane domain. This molecular sorting depends on Baz phosphorylation by DaPKC at the conserved serine 980 and on the activity of the small GTPase Cdc42 associated with Par6. Our data indicate that although Cdc42 binding to Par6 is not required for Baz phosphorylation by DaPKC, it is required for optimum recruitment of Crb at the subapical membrane, a process necessary for delineating the nascent za from this membrane domain. CONCLUSION Binding of Cdc42 to the DaPKC regulatory subunit Par6 is required to promote Crb- and DaPKC-dependent apical exclusion of Baz. This molecular sorting mechanism results in setting up the boundary between the photoreceptor subapical membrane and the za.
Collapse
Affiliation(s)
- Rhian F Walther
- Medical Research Council (MRC) Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, WC1E 6BT London, UK
| | | |
Collapse
|
58
|
Morais-de-Sá E, Mirouse V, St Johnston D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 2010; 141:509-23. [PMID: 20434988 PMCID: PMC2885938 DOI: 10.1016/j.cell.2010.02.040] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/08/2010] [Accepted: 02/23/2010] [Indexed: 12/15/2022]
Abstract
Bazooka (PAR-3), PAR-6, and aPKC form a complex that plays a key role in the polarization of many cell types. In epithelial cells, however, Bazooka localizes below PAR-6 and aPKC at the apical/lateral junction. Here, we show that Baz is excluded from the apical aPKC domain in epithelia by aPKC phosphorylation, which disrupts the Baz/aPKC interaction. Removal of Baz from the complex is epithelial-specific because it also requires the Crumbs complex, which prevents the Baz/PAR-6 interaction. In the absence of Crumbs or aPKC phosphorylation of Baz, mislocalized Baz recruits adherens junction components apically, leading to a loss of the apical domain and an expansion of lateral. Thus, apical exclusion of Baz by Crumbs and aPKC defines the apical/lateral border. Although Baz acts as an aPKC targeting and specificity factor in nonepithelial cells, our results reveal that it performs a complementary function in positioning the adherens junction in epithelia.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Vincent Mirouse
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
59
|
Richardson ECN, Pichaud F. Crumbs is required to achieve proper organ size control during Drosophila head development. Development 2010; 137:641-50. [PMID: 20110329 DOI: 10.1242/dev.041913] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crumbs (Crb) is a conserved apical polarity determinant required for zonula adherens specification and remodelling during Drosophila development. Interestingly, crb function in maintaining apicobasal polarity appears largely dispensable in primary epithelia such as the imaginal discs. Here, we show that crb function is not required for maintaining epithelial integrity during the morphogenesis of the Drosophila head and eye. However, although crb mutant heads are properly developed, they are also significantly larger than their wild-type counterparts. We demonstrate that in the eye, this is caused by an increase in cell proliferation that can be attributed to an increase in ligand-dependent Notch (N) signalling. Moreover, we show that in crb mutant cells, ectopic N activity correlates with an increase in N and Delta endocytosis. These data indicate a role for Crb in modulating endocytosis at the apical epithelial plasma membrane, which we demonstrate is independent of Crb function in apicobasal polarity. Overall, our work reveals a novel function for Crb in limiting ligand-dependent transactivation of the N receptor at the epithelial cell membrane.
Collapse
Affiliation(s)
- Emily C N Richardson
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London, UK
| | | |
Collapse
|
60
|
Richard M, Muschalik N, Grawe F, Ozüyaman S, Knust E. A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells. Eur J Cell Biol 2009; 88:765-77. [PMID: 19717208 DOI: 10.1016/j.ejcb.2009.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022] Open
Abstract
Morphogenesis of Drosophila photoreceptor cells includes the subdivision of the apical membrane into the photosensitive rhabdomere and the associated stalk membrane, as well as a considerable elongation of the cell. Drosophila Crumbs (Crb), an evolutionarily conserved transmembrane protein, organizes an apical protein scaffold, which is required for elongation of the photoreceptor cell and extension of the stalk membrane. To further elucidate the role played by different Crb domains during eye morphogenesis, we performed a structure-function analysis in the eye. The analysis showed that the three variants tested, namely full-length Crb, the membrane-bound intracellular domain and the extracellular domain were able to rescue the elongation defects of crb mutant rhabdomeres. However, only full-length Crb and the membrane-bound intracellular domain could partially restore the length of the stalk membrane, while the extracellular domain failed to do so. This failure was associated with the inability of the extracellular domain to recruit beta(Heavy)-spectrin to the stalk membrane. These results highlight the functional importance of the extracellular domain of Crb in the Drosophila eye. They are in line with previous observations, which showed that mutations in the extracellular domain of human CRB1 are associated with retinitis pigmentosa 12 and Leber congenital amaurosis, two severe forms of retinal dystrophy.
Collapse
Affiliation(s)
- Mélisande Richard
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
61
|
Bulgakova NA, Knust E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 2009; 122:2587-96. [DOI: 10.1242/jcs.023648] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The evolutionarily conserved Crumbs protein complex is a key regulator of cell polarity and cell shape in both invertebrates and vertebrates. The important role of this complex in normal cell function is illustrated by the finding that mutations in one of its components, Crumbs, are associated with retinal degeneration in humans, mice and flies. Recent results suggest that the Crumbs complex plays a role in the development of other disease processes that are based on epithelial dysfunction, such as tumorigenesis or the formation of cystic kidneys. Localisation of the complex is restricted to a distinct region of the apical plasma membrane that abuts the zonula adherens in epithelia and photoreceptor cells of invertebrates and vertebrates, including humans. In addition to the core components, a variety of other proteins can be recruited to the complex, depending on the cell type and/or developmental stage. Together with diverse post-transcriptional and post-translational mechanisms that regulate the individual components, this provides an enormous functional diversity and flexibility of the complex. In this Commentary, we summarise findings concerning the organisation and modification of the Crumbs complex, and the conservation of its constituents from flies to mammals. In addition, we discuss recent results that suggest its participation in various human diseases, including blindness and tumour formation.
Collapse
Affiliation(s)
- Natalia A. Bulgakova
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| |
Collapse
|