51
|
Hao J, Li W, Dan J, Ye X, Wang F, Zeng X, Wang L, Wang H, Cheng Y, Liu L, Shui W. Reprogramming- and pluripotency-associated membrane proteins in mouse stem cells revealed by label-free quantitative proteomics. J Proteomics 2013; 86:70-84. [DOI: 10.1016/j.jprot.2013.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/10/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022]
|
52
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
53
|
Fanelli F, Sepe S, D’Amelio M, Bernardi C, Cristiano L, Cimini A, Cecconi F, Ceru' MP, Moreno S. Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer's disease. Mol Neurodegener 2013; 8:8. [PMID: 23374228 PMCID: PMC3599312 DOI: 10.1186/1750-1326-8-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/29/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is a progressive neurodegenerative disease, especially affecting the hippocampus. Impairment of cognitive and memory functions is associated with amyloid β-peptide-induced oxidative stress and alterations in lipid metabolism. In this scenario, the dual role of peroxisomes in producing and removing ROS, and their function in fatty acids β-oxidation, may be critical. This work aims to investigating the possible involvement of peroxisomes in AD onset and progression, as studied in a transgenic mouse model, harboring the human Swedish familial AD mutation. We therefore characterized the peroxisomal population in the hippocampus, focusing on early, advanced, and late stages of the disease (3, 6, 9, 12, 18 months of age). Several peroxisome-related markers in transgenic and wild-type hippocampal formation were comparatively studied, by a combined molecular/immunohistochemical/ultrastructural approach. RESULTS Our results demonstrate early and significant peroxisomal modifications in AD mice, compared to wild-type. Indeed, the peroxisomal membrane protein of 70 kDa and acyl-CoA oxidase 1 are induced at 3 months, possibly reflecting the need for efficient fatty acid β-oxidation, as a compensatory response to mitochondrial dysfunction. The concomitant presence of oxidative damage markers and the altered expression of antioxidant enzymes argue for early oxidative stress in AD. During physiological and pathological brain aging, important changes in the expression of peroxisome-related proteins, also correlating with ongoing gliosis, occur in the hippocampus. These age- and genotype-based alterations, strongly dependent on the specific marker considered, indicate metabolic and/or numerical remodeling of peroxisomal population. CONCLUSIONS Overall, our data support functional and biogenetic relationships linking peroxisomes to mitochondria and suggest peroxisomal proteins as biomarkers/therapeutic targets in pre-symptomatic AD.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Biology-LIME, University “Roma Tre”, viale Marconi 446, 00146, Rome, Italy
- University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Sara Sepe
- Department of Biology-LIME, University “Roma Tre”, viale Marconi 446, 00146, Rome, Italy
| | - Marcello D’Amelio
- IRCCS S. Lucia Foundation, via del Fosso di Fiorano 65, 00143, Rome, Italy
- University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Cinzia Bernardi
- Department of Radiological Sciences and Laboratory Medicine, UOC Pathological Anatomy, San Filippo Neri Hospital, via Martinotti 20, 00135, Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, piazzale Salvatore Tommasi 1, 67100, Coppito, (AQ), Italy
| | - AnnaMaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, piazzale Salvatore Tommasi 1, 67100, Coppito, (AQ), Italy
| | - Francesco Cecconi
- IRCCS S. Lucia Foundation, via del Fosso di Fiorano 65, 00143, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Maria Paola Ceru'
- Department of Life, Health and Environmental Sciences, University of L’Aquila, piazzale Salvatore Tommasi 1, 67100, Coppito, (AQ), Italy
| | - Sandra Moreno
- Department of Biology-LIME, University “Roma Tre”, viale Marconi 446, 00146, Rome, Italy
| |
Collapse
|
54
|
Schrader M, Grille S, Fahimi HD, Islinger M. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell Biochem 2013; 69:1-22. [PMID: 23821140 DOI: 10.1007/978-94-007-6889-5_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Peroxisomes are remarkably plastic and dynamic organelles, which fulfil important functions in hydrogen peroxide and lipid metabolism rendering them essential for human health and development. Despite great advances in the identification and characterization of essential components and molecular mechanisms associated with the biogenesis and function of peroxisomes, our understanding of how peroxisomes are incorporated into metabolic pathways and cellular communication networks is just beginning to emerge. Here we address the interaction of peroxisomes with other subcellular compartments including the relationship with the endoplasmic reticulum, the peroxisome-mitochondria connection and the association with lipid droplets. We highlight metabolic cooperations and potential cross-talk and summarize recent findings on peroxisome-peroxisome interactions and the interaction of peroxisomes with microtubules in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
56
|
Yu S, Wang F, Zhang K, Zhang Y, Yang K, Cheng M, Song C, Jin B. Immunocytochemical and Immunohistochemical Application of Monoclonal Antibodies Against Peroxisomal Biogenesis Factor 14. Hybridoma (Larchmt) 2012; 31:142-5. [PMID: 22509920 DOI: 10.1089/hyb.2011.0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shaojuan Yu
- Department of Cardiology, First Hospital of Xi'an, Xi'an, P.R. China
- Department of Immunology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Xi'an, P.R. China
| | - Kui Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, P.R. China
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, P.R. China
| | - Manli Cheng
- Department of Cardiology, First Hospital of Xi'an, Xi'an, P.R. China
| | - Chaojun Song
- Department of Immunology, Fourth Military Medical University, Xi'an, P.R. China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|