51
|
Yang Q, Yu J, Yu B, Huang Z, Zhang K, Wu D, He J, Mao X, Zheng P, Chen D. PAX3 + skeletal muscle satellite cells retain long-term self-renewal and proliferation. Muscle Nerve 2016; 54:943-951. [PMID: 27014961 DOI: 10.1002/mus.25117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Different populations of satellite cells (SCs) have been identified, but their functional difference remains unclear. METHODS We used cell-surface markers and paired box transcription factor 3 (Pax3)/paired box transcription factor 7 (Pax7) expression to separate SC populations. In addition, self-renewal, proliferation, and differentiation abilities of each population were analyzed. RESULTS Pax3+ /Pax7- SCs exhibited higher proliferation ability characterized by forming clusters of myogenic colonies with more self-renewing cells after several passages, while Pax3- /Pax7+ SCs had faster differentiation. The myotubes derived from Pax3+ /Pax7- SCs tended to express slow-myosin heavy chain and exhibited rhythmic contraction, while myotubes originating from Pax3- /Pax7+ SCs primarily formed fast-myosin heavy chains characterized by transitory contraction. CONCLUSIONS Pax3+ /Pax7- SCs exhibited the ability of long-term self-renewal and proliferation, whereas Pax3- /Pax7+ SCs demonstrated faster differentiation. Muscle Nerve 54: 943-951, 2016.
Collapse
Affiliation(s)
- Qiumei Yang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
52
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
53
|
Mahmoudifard M, Soleimani M, Hatamie S, Zamanlui S, Ranjbarvan P, Vossoughi M, Hosseinzadeh S. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. ACTA ACUST UNITED AC 2016; 11:025006. [PMID: 26962722 DOI: 10.1088/1748-6041/11/2/025006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were cultured in the following and their proliferation and differentiation behavior studied by MTT, Real-Time PCR assays and 4', 6-diamidino-2-phenylindole (DAPI) staining. The cultured cells on composite nanofibrous PAN/PANI-CSA/G confirmed a higher proliferation and differentiation value compared to other groups including PAN/PANI-CSA/GO and PAN/PANI-CSA scaffolds. Furthermore, the higher stiffness of the former scaffold showed a lower cell spreading as a function of stem cell activation into more proliferative cells. It is supposed that the enhanced conductivity value in addition to relative higher stiffness of the PAN/PANI-CSA/G composite nanofibers plays a favorable role for proliferation and differentiation of satellite cells.
Collapse
Affiliation(s)
- Matin Mahmoudifard
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran. Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
54
|
Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 2016; 17:267-79. [PMID: 26956195 DOI: 10.1038/nrm.2016.7] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Satellite cells are adult myogenic stem cells that repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, their differentiation to produce myoblasts that can reconstitute damaged fibres and their self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulation of satellite cell fate and function can contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne muscular dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration and ageing, and in the context of DMD, is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine.
Collapse
Affiliation(s)
- Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
55
|
Tierney MT, Sacco A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol 2016; 26:434-444. [PMID: 26948993 DOI: 10.1016/j.tcb.2016.02.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.
Collapse
Affiliation(s)
- Matthew T Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016; 2016:1078686. [PMID: 27042182 PMCID: PMC4794588 DOI: 10.1155/2016/1078686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
Collapse
|
57
|
Manabe Y, Fujii NL. Experimental research models for skeletal muscle contraction. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University
| | - Nobuharu L. Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University
| |
Collapse
|
58
|
Abstract
Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses "stemness" and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Shizuka Ogawa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan.
| |
Collapse
|
59
|
Seko D, Ogawa S, Li TS, Taimura A, Ono Y. μ-Crystallin controls muscle function through thyroid hormone action. FASEB J 2015; 30:1733-40. [PMID: 26718889 DOI: 10.1096/fj.15-280933] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
Abstract
μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action.
Collapse
Affiliation(s)
- Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and Institute of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki, Japan
| | - Shizuka Ogawa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| | - Akihiro Taimura
- Institute of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, and
| |
Collapse
|
60
|
Fujita R, Tamai K, Aikawa E, Nimura K, Ishino S, Kikuchi Y, Kaneda Y. Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice. Stem Cells 2015; 33:962-75. [PMID: 25408548 DOI: 10.1002/stem.1900] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 02/02/2023]
Abstract
The physiological role of "endogenous" bone marrow (BM) mesenchymal stromal cells (MSCs) in tissue regeneration is poorly understood. Here, we show the significant contribution of unique endogenous BM-MSC populations to muscle regeneration in Duchenne muscular dystrophy (DMD) mice (mdx). Transplantation of BM cells (BMCs) from 10-week-old mdx into 3-4-week-old mdx mice increased inflammation and fibrosis and reduced muscle function compared with mdx mice that received BMCs from 10-week-old wild-type mice, suggesting that the alteration of BMC populations in mdx mice affects the progression of muscle pathology. Two distinct MSC populations in BM, that is, hematopoietic lineage (Lin)(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) cells, were significantly reduced in 10-week-old mdx mice in disease progression. The results of a whole-transcriptome analysis indicated that these two MSC populations have distinct gene expression profiles, indicating that the Lin(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) MSC populations are proliferative- and dormant-state populations in BM, respectively. BM-derived Lin(-) /CD106(+) /CD44(+) MSCs abundantly migrated to damaged muscles and highly expressed tumor necrosis factor-alpha-stimulated gene/protein-6 (TSG-6), an anti-inflammatory protein, in damaged muscles. We also demonstrated that TSG-6 stimulated myoblast proliferation. The injection of Lin(-) /ckit(-) /CD106(+) /CD44(+) MSCs into the muscle of mdx mice successfully ameliorated muscle dysfunction by decreasing inflammation and enhancing muscle regeneration through TSG-6-mediated activities. Thus, we propose a novel function of the unique endogenous BM-MSC population, which countered muscle pathology progression in a DMD model.
Collapse
Affiliation(s)
- Ryo Fujita
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 2015; 21:1455-63. [PMID: 26569381 PMCID: PMC4839960 DOI: 10.1038/nm.3990] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.
Collapse
Affiliation(s)
- Nicolas A. Dumont
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yu Xin Wang
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia von Maltzahn
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alessandra Pasut
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - C. Florian Bentzinger
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Caroline E. Brun
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A. Rudnicki
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
62
|
Manabe Y, Ogino S, Ito M, Furuichi Y, Takagi M, Yamada M, Goto-Inoue N, Ono Y, Fujii NL. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes. Anal Biochem 2015; 497:36-8. [PMID: 26548957 DOI: 10.1016/j.ab.2015.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
To construct an in vitro contraction model with the primary cultured myotubes, we isolated satellite cells from the mouse extensor digitorum longus. Differentiated myotubes possessed a greater number of sarcomere assemblies and higher expression levels of myosin heavy chain, cytochrome c oxidase IV, and myoglobin than in C2C12 myotubes. In agreement with these results regarding the sarcomere assemblies and protein expressions, the primary myotubes showed higher contractile activity stimulated by the electric pulses than that in the C2C12 myotubes. These data suggest that mouse primary myotubes will be a valuable research tool as an in vitro muscle contraction model.
Collapse
Affiliation(s)
- Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Shinya Ogino
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Miyuki Ito
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Mayumi Takagi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Mio Yamada
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Naoko Goto-Inoue
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan; Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan.
| |
Collapse
|
63
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
64
|
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 2015; 142:1572-81. [PMID: 25922523 PMCID: PMC4419274 DOI: 10.1242/dev.114223] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles. Summary: This Review discusses how satellite stem cell behaviour is regulated during regeneration and degeneration by a complex balance between extrinsic cues and intrinsic regulatory mechanisms.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
65
|
Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell Therapy for Stress Urinary Incontinence. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:365-76. [PMID: 25789845 DOI: 10.1089/ten.teb.2014.0627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.
Collapse
Affiliation(s)
- Melanie L Hart
- 1 Clinical Research Group KFO 273, Department of Urology, University of Tübingen , Tübingen, Germany
| | - Ander Izeta
- 2 Tissue Engineering Laboratory, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | - Bastian Amend
- 4 Department of Urology, University of Tübingen , Tuebingen, Germany
| | - Jan E Brinchmann
- 5 Department of Immunology, Oslo University Hospital, Oslo, Norway
- 6 Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|
66
|
Masuda S, Hisamatsu T, Seko D, Urata Y, Goto S, Li TS, Ono Y. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells. Physiol Rep 2015; 3:3/4/e12377. [PMID: 25869487 PMCID: PMC4425979 DOI: 10.14814/phy2.12377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsubasa Hisamatsu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
67
|
Ono Y, Urata Y, Goto S, Nakagawa S, Humbert PO, Li TS, Zammit PS. Muscle stem cell fate is controlled by the cell-polarity protein Scrib. Cell Rep 2015; 10:1135-48. [PMID: 25704816 DOI: 10.1016/j.celrep.2015.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/12/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.
Collapse
Affiliation(s)
- Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shunsuke Nakagawa
- Department of Obstetrics and Gynecology, School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Patrick O Humbert
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Molecular Biology and Biochemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Peter S Zammit
- Kings College London, Randall Division of Cellular and Molecular Biophysics, London SE1 1UL, UK
| |
Collapse
|
68
|
Abstract
Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment.
Collapse
Affiliation(s)
- Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
69
|
Abstract
As stem cells (SCs) in adult organs continue to be identified and characterized, it becomes clear that their survival, quiescence, and activation depend on specific signals in their microenvironment, or niche. Although adult SCs of diverse tissues differ by their developmental origin, cycling activity, and regenerative capacity, there appear to be conserved similarities regarding the cellular and molecular components of the SC niche. Interestingly, many organs house both slow-cycling and fast-cycling SC populations, which rely on the coexistence of quiescent and inductive niches for proper regulation. In this review we present a general definition of adult SC niches in the most studied mammalian systems. We further focus on dissecting their cellular organization and on highlighting recently identified key molecular regulators. Finally, we detail the potential involvement of the SC niche in tissue degeneration, with a particular emphasis on aging and cancer.
Collapse
Affiliation(s)
- Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
70
|
Specific pattern of cell cycle during limb fetal myogenesis. Dev Biol 2014; 392:308-23. [DOI: 10.1016/j.ydbio.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
|
71
|
Chakkalakal JV, Christensen J, Xiang W, Tierney MT, Boscolo FS, Sacco A, Brack AS. Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development 2014; 141:1649-59. [PMID: 24715455 PMCID: PMC3978835 DOI: 10.1242/dev.100842] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Across different niches, subsets of highly functional stem cells are maintained in a relatively dormant rather than proliferative state. Our understanding of proliferative dynamics in tissue-specific stem cells during conditions of increased tissue turnover remains limited. Using a TetO-H2B-GFP reporter of proliferative history, we identify skeletal muscle stem cell, or satellite cells, that retain (LRC) or lose (nonLRC) the H2B-GFP label. We show in mice that LRCs and nonLRCs are formed at birth and persist during postnatal growth and adult muscle repair. Functionally, LRCs and nonLRCs are born equivalent and transition during postnatal maturation into distinct and hierarchically organized subsets. Adult LRCs give rise to LRCs and nonLRCs; the former are able to self-renew, whereas the latter are restricted to differentiation. Expression analysis revealed the CIP/KIP family members p21(cip1) (Cdkn1a) and p27(kip1) (Cdkn1b) to be expressed at higher levels in LRCs. In accordance with a crucial role in LRC fate, loss of p27(kip1) promoted proliferation and differentiation of LRCs in vitro and impaired satellite cell self-renewal after muscle injury. By contrast, loss of p21(cip1) only affected nonLRCs, in which myogenic commitment was inhibited. Our results provide evidence that restriction of self-renewal potential to LRCs is established early in life and is maintained during increased tissue turnover through the cell cycle inhibitor p27(kip1). They also reveal the differential role of CIP/KIP family members at discrete steps within the stem cell hierarchy.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Massachusetts General Hospital, Center of Regenerative Medicine, Harvard University, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 2014; 5:99. [PMID: 24672488 PMCID: PMC3955994 DOI: 10.3389/fphys.2014.00099] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/27/2014] [Indexed: 12/25/2022] Open
Abstract
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.
Collapse
Affiliation(s)
- Naomi E Brooks
- Health and Exercise Science Research Group, School of Sport, University of Stirling Stirling, UK
| | - Kathryn H Myburgh
- Muscle Research Group, Department of Physiological Sciences, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
73
|
Marker-independent method for isolating slow-dividing cancer stem cells in human glioblastoma. Neoplasia 2014; 15:840-7. [PMID: 23814495 DOI: 10.1593/neo.13662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a devastating brain tumor with a poor survival outcome. It is generated and propagated by a small subpopulation of rare and hierarchically organized cells that share stem-like features with normal stem cells but, however, appear dysregulated in terms of self-renewal and proliferation and aberrantly differentiate into cells forming the bulk of the disorganized cancer tissues. The complexity and heterogeneity of human GBMs underlie the lack of standardized and effective treatments. This study is based on the assumption that available markers defining cancer stem cells (CSCs) in all GBMs are not conclusive and further work is required to identify the CSC. We implemented a method to isolate CSCs independently from cell surface markers: four patient-derived GBM neurospheres containing stem, progenitors, and differentiated cells were labeled with PKH-26 fluorescent dye that reliably selects for cells that divide at low rate. Through in vitro and in vivo assays, we investigated the growth and self-renewal properties of the two different compartments of high- and slow-dividing cells. Our data demonstrate that only slow-dividing cells retain the ability of a long-lasting self-renewal capacity after serial in vitro passaging, while high-dividing cells eventually exhaust. Moreover, orthotopic transplantation assay revealed that the incidence of tumors generated by the slow-dividing compartment is significantly higher in the four patient-derived GBM neurospheres analyzed. Importantly, slow-dividing cells feature a population made up of homogeneous stem cells that sustain tumor growth and therefore represent a viable target for GBM therapy development.
Collapse
|
74
|
Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2014; 2:1. [PMID: 25364710 PMCID: PMC4206996 DOI: 10.3389/fcell.2014.00001] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/17/2023] Open
Abstract
Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA
| | - Atsushi Asakura
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA
| |
Collapse
|
75
|
Ono Y. Satellite cell heterogeneity and hierarchy in skeletal muscle. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
76
|
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment -- relevance for therapy. FEBS J 2013; 280:4281-93. [PMID: 23560812 PMCID: PMC3795440 DOI: 10.1111/febs.12273] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
There is currently no cure for muscular dystrophies, although several promising strategies are in basic and clinical research. One such strategy is cell transplantation with satellite cells (or their myoblast progeny) to repair damaged muscle and provide dystrophin protein with the aim of preventing subsequent myofibre degeneration and repopulating the stem cell niche for future use. The present review aims to cover recent advances in satellite cell/myoblast therapy and to discuss the challenges that remain for it to become a realistic therapy.
Collapse
Affiliation(s)
- Deborah Briggs
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| |
Collapse
|
77
|
Montarras D, L'honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 2013; 280:4036-50. [DOI: 10.1111/febs.12372] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Didier Montarras
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Aurore L'honoré
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| |
Collapse
|
78
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
79
|
Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PLoS One 2012; 7:e49860. [PMID: 23166781 PMCID: PMC3500318 DOI: 10.1371/journal.pone.0049860] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 10/18/2012] [Indexed: 12/25/2022] Open
Abstract
Satellite cells (SCs) are essential for postnatal muscle growth and regeneration, however, their expansion potential in vitro is limited. Recently, hypoxia has been used to enhance proliferative abilities in vitro of various primary cultures. Here, by isolating SCs from single mouse hindlimb skeletal myofibers, we were able to distinguish two subpopulations of clonally cultured SCs (Low Proliferative Clones - LPC - and High Proliferative Clones - HPC), which, as shown in rat skeletal muscle, were present at a fixed proportion. In addition, culturing LPC and HPC at a low level of oxygen we observed a two fold increased proliferation both for LPC and HPC. LPC showed higher myogenic regulatory factor (MRF) expression than HPC, particularly under the hypoxic condition. Notably, a different myogenic potential between LPC and HPC was retained in vivo: green fluorescent protein (GFP)+LPC transplantation in cardiotoxin-injured Tibialis Anterior led to a higher number of new GFP+muscle fibers per transplanted cell than GFP+HPC. Interestingly, the in vivo myogenic potential of a single cell from an LPC is similar if cultured both in normoxia and hypoxia. Therefore, starting from a single satellite cell, hypoxia allows a larger expansion of LPC than normal O2 conditions, obtaining a consistent amount of cells for transplantation, but maintaining their myogenic regeneration potential.
Collapse
|
80
|
Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 2012; 139:2845-56. [PMID: 22833472 DOI: 10.1242/dev.069088] [Citation(s) in RCA: 598] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following their discovery in 1961, it was speculated that satellite cells were dormant myoblasts, held in reserve until required for skeletal muscle repair. Evidence for this accumulated over the years, until the link between satellite cells and the myoblasts that appear during muscle regeneration was finally established. Subsequently, it was demonstrated that, when grafted, satellite cells could also self-renew, conferring on them the coveted status of 'stem cell'. The emergence of other cell types with myogenic potential, however, questioned the precise role of satellite cells. Here, we review recent recombination-based studies that have furthered our understanding of satellite cell biology. The clear consensus is that skeletal muscle does not regenerate without satellite cells, confirming their pivotal and non-redundant role.
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW This review focuses on stem cell-based therapies to treat skeletal muscle disorders, with a special emphasis on muscular dystrophies. RECENT FINDINGS We briefly review previous attempts at cell therapy by the use of donor myoblasts, explaining the likely reasons for the poor clinical results; we then describe the use of the same cells in current promising trials for localized treatments of different diseases of skeletal muscle. Moreover, we discuss important novel findings on muscle stem/progenitor cell biology and their promise for future clinical translation. Preclinical and clinical applications of novel myogenic stem/progenitor cells are also described. SUMMARY We summarize several ongoing clinical trials for different muscle disorders and the advances in the understanding of the biology of the myogenic progenitors used in such trials. On the basis of the currently available information, a prediction of developments in the field is proposed.
Collapse
Affiliation(s)
- Francesco S Tedesco
- Department of Cell and Developmental Biology and Centre for Stem Cells and Regenerative Medicine, University College London, London, UK
| | | |
Collapse
|
82
|
Abstract
The niche is a conserved regulator of stem cell quiescence and function. During aging, stem cell function declines. To what extent and by which means age-related changes within the niche contribute to this phenomenon are unknown. We demonstrate that the aged muscle stem cell niche, the muscle fiber, expresses FGF2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose self-renewing capacity. We show that relatively dormant aged satellite cells robustly express Sprouty1 (spry1), an inhibitor of FGF signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing spry1, results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of FGFR1 signalling or overexpression of spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.
Collapse
|
83
|
Ono Y, Masuda S, Nam HS, Benezra R, Miyagoe-Suzuki Y, Takeda S. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. Development 2012. [DOI: 10.1242/dev.080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
84
|
Affiliation(s)
- Norio Motohashi
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, MN, USA
| |
Collapse
|