51
|
Ye XS, Fincher RR, Tang A, McNeal KK, Gygax SE, Wexler AN, Ryan KB, James SW, Osmani SA. Proteolysis and tyrosine phosphorylation of p34cdc2/cyclin B. The role of MCM2 and initiation of DNA replication to allow tyrosine phosphorylation of p34cdc2. J Biol Chem 1997; 272:33384-93. [PMID: 9407133 DOI: 10.1074/jbc.272.52.33384] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously, it has been shown that Aspergillus cells lacking the function of nimQ and the anaphase-promoting complex (APC) component bimEAPC1 enter mitosis without replicating DNA. Here nimQ is shown to encode an MCM2 homologue. Although mutation of nimQMCM2 inhibits initiation of DNA replication, a few cells do enter mitosis. Cells arrested at G1/S by lack of nimQMCM2 contain p34(cdc2)/cyclin B, but p34(cdc2) remains tyrosine dephosphorylated, even after DNA damage. However, arrest of DNA replication using hydroxyurea followed by inactivation of nimQMCM2 and bimEAPC1 does not abrogate the S phase arrest checkpoint over mitosis. nimQMCM2, likely via initiation of DNA replication, is therefore required to trigger tyrosine phosphorylation of p34(cdc2) during the G1 to S transition, which may occur by inactivation of nimTcdc25. Cells lacking both nimQMCM2 and bimEAPC1 are deficient in the S phase arrest checkpoint over mitosis because they lack both tyrosine phosphorylation of p34(cdc2) and the function of bimEAPC1. Initiation of DNA replication, which requires nimQMCM2, is apparently critical to switch mitotic regulation from the APC to include tyrosine phosphorylation of p34(cdc2) at G1/S. We also show that cells arrested at G1/S due to lack of nimQMCM2 continue to replicate spindle pole bodies in the absence of DNA replication and can undergo anaphase in the absence of APC function.
Collapse
Affiliation(s)
- X S Ye
- Henry Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Norbury C. Principles of Cell Cycle Control. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
53
|
Abstract
The duplication cycle encompasses the spectrum of events required for the growth and division of individual cells within a fungal hyphae. Recent advances in understanding the mechanisms which underlie nuclear division and cellular morphogenesis in the filamentous fungus Aspergillus nidulans have shown that in many respects, the duplication cycle differs significantly from the cell cycles of both budding and fission yeast. The purpose of this review is to summarize these advances and to highlight the fundamental differences between the duplication cycle and the yeast cell cycles. In addition, it is argued that the duplication cycle is controlled by cellular regulatory networks which integrate the processes of nuclear division, cellular morphogenesis, and cell growth with each other. Functional dissection of these networks should help to reveal features that are unique to the hyphal mode of growth.
Collapse
Affiliation(s)
- S D Harris
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut, 06030-3205, USA
| |
Collapse
|
54
|
Dayton JS, Sumi M, Nanthakumar NN, Means AR. Expression of a constitutively active Ca2+/calmodulin-dependent kinase in Aspergillus nidulans spores prevents germination and entry into the cell cycle. J Biol Chem 1997; 272:3223-30. [PMID: 9013558 DOI: 10.1074/jbc.272.6.3223] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The unique gene for Ca2+/calmodulin-dependent protein kinase (CaMK) has been shown to be essential in Aspergillus nidulans. Disruption of the gene prevents entry of spores into the nuclear division cycle. Here we show that expression of a constitutively active form of CaMK also prevents spores from entering the first S phase in response to a germinating stimulus. Expression of the constitutively active kinase induces premature activation of NIMEcyclin B/NIMXcdc2 in G0/G1. As NIMXcdc2 is present in spores, the elevation of maturation promotion factor activity may be secondary to the early production of NIMEcyclin B or post-translation modification of maturation promotion factor. The expression of the constitutively active CaMK also results in the appearance of NIMA kinase activity within 1 h of the germinating signal. These results support the contention that the activities of maturation promotion factor and NIMA are coincidentally regulated in A. nidulans and suggest that the unscheduled appearance of one or both of these activities may be sufficient to prevent A. nidulans spores from entering into DNA synthesis.
Collapse
Affiliation(s)
- J S Dayton
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
55
|
Wolkow TD, Harris SD, Hamer JE. Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J Cell Sci 1996; 109 ( Pt 8):2179-88. [PMID: 8856514 DOI: 10.1242/jcs.109.8.2179] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mycelium of Aspergillus nidulans is composed of multinucleate cellular compartments delimited by crosswalls called septa. Septum formation is dependent on mitosis and requires the recruitment of actin to the site of septum formation. Employing a collection of temperature sensitive nuclear distribution (nudA2, nudC3 and nudF7), nuclear division (nimA5, hfaB3), and septation (sepD5, sepG1) mutants, we have investigated the interdependency among nuclear positioning, mitosis, and cell growth in structuring the cellular compartments of A. nidulans. The cellular compartments of nud+ strains were highly uniform with regard to nuclear distribution and averaged 38 microns in length. Incubation of nud mutants at semi-restrictive temperature resulted in aberrant nuclear distribution that appeared to direct the formation of variable-sized cellular compartments, ranging from 5 microns to greater than 81 microns. In germinating spores, the first septum forms at the basal end of the germ tube following the third round of nuclear division. Germlings must undergo mitosis in order to form a septum. Temperature-sensitive mitotic mutants were used to show that a single nuclear division is sufficient to activate septum formation, provided a critical cell size has been attained. In mitotic mutants and wild-type cells, delays in nuclear division resulted in the misplacement of the first septum. These results strongly support the role of mitotic nuclei in determining septal placement, and suggest that cell size control is post-mitotic in A. nidulans.
Collapse
Affiliation(s)
- T D Wolkow
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | |
Collapse
|
56
|
Damagnez V, Cottarel G. Candida albicans CDK1 and CYB1: cDNA homologues of the cdc2/CDC28 and cdc13/CLB1/CLB2 cell cycle control genes. Gene 1996; 172:137-41. [PMID: 8654974 DOI: 10.1016/0378-1119(95)00893-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Major transitions in the eukaryotic cell cycle are regulated by the cyclin-dependent protein kinases (CDK). In particular, the G2/M transition is initiated by the activity of a complex formed by a CDK of the Cdc2/Cdc28 family and B-type cyclins of the Cdc13/C1b family in the yeasts, Schizosaccharomyces pombe (Sp) and Saccharomyces cerevisiae (Sc). To study the molecular mechanisms that control the G2/M transition in the dimorphic pathogenic yeast, Candida albicans, we have cloned and characterized cDNAs corresponding to CDK1 and CYB1. The CDK1 cDNA encodes a 317-amino-acid (aa) protein that shares 76.8 and 62.3% identity with the Sc CDC28 and Sp cdc2 gene products, respectively. The CYB1 cDNA encodes a 493-aa protein that is 34.8, 34.4 and 35.5% identical to Sc C1b1 and C1b2, and to Sp Cdc13, respectively. Cyb1 contains characteristic mitotic destruction and cyclin boxes. The CDK1 and CYB1 cDNAs are functional homologues, as they are able to complement Sp cdc2 and cdc13 temperature-sensitive (ts) mutations, respectively, and their gene products interact in vivo in Sc to form an active histone H1 kinase.
Collapse
|
57
|
Chevalier S, Couturier A, Chartrain I, Le Guellec R, Beckhelling C, Le Guellec K, Philippe M, Ford CC. Xenopus cyclin E, a nuclear phosphoprotein, accumulates when oocytes gain the ability to initiate DNA replication. J Cell Sci 1996; 109 ( Pt 6):1173-84. [PMID: 8799808 DOI: 10.1242/jcs.109.6.1173] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity to initiate DNA replication appears during oocyte maturation in Xenopus. Initiation of S phase is driven by several components which include active cyclin/cdk complexes. We have identified three Xenopus cyclin E clones showing 59% amino acid identity with human cyclin E. The recruitment of cyclin E mRNA, like cdk2 mRNA, into the polysomal fraction during oocyte maturation, results in the accumulation of the corresponding proteins in unfertilized eggs. Cyclin E mRNA remains polyadenylated during cleavage and anti-cyclin E antibodies detect Xlcyclin E in embryonic nuclei at this time. Cdk2 protein is necessary for the phosphorylation of radiolabelled cyclin E added to egg extracts. Radiolabelled Xlcyclin E enters interphase nuclei and, though stable through interphase and mitosis, is not associated with condensed mitotic chromatin. In egg extracts, endogenous Xlcyclin E rapidly associates with nuclei before S phase and remains nuclear throughout interphase, becoming nucleoplasmic in G2/prophase. Under conditions where initiation of replication is limiting in extracts, Xlcyclin E associates only with those nuclei that undergo S phase. These features are entirely consistent with the view that Xlcyclin E is required for initiation of S phase.
Collapse
Affiliation(s)
- S Chevalier
- Département de Biologie et Génétique du développement, CNRS URA 256, Université de Rennes I, France
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Ye XS, Xu G, Pu RT, Fincher RR, Osmani AH, Osmani SA. Analysis of cell cycle regulation usingAspergillus nidulans. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aspergillus nidulans has proved to be an excellent model system to help unravel the genetic and biochemical control systems that regulate the cell cycle. Many genes that specifically affect progression through G2 into mitosis have been isolated. Study of these genes has helped to formulate concepts about how the cell cycle is regulated. The existence of regulatory networks involving protein phosphorylation and dephosphorylation has been realized, and how the kinases and phosphatases of these networks ensure correct order and timing through the cell cycle is beginning to be understood. Our studies indicate that activation of two protein kinases is essential for progression into mitosis. One, the universal p34cdc2H1 kinase, has been well studied in many systems and is considered the key activator of mitotic initiation. However, in the absence of the NIMA protein kinase p34cdc2cannot promote mitosis. How these two mitotic kinases interact is therefore of great importance to our understanding of cell cycle regulation. The contribution of studies using A. nidulans to the formulation of concepts about how the cell cycle is regulated is the topic of this paper. Key words: Aspergillus nidulans, cell cycle regulation, protein kinase, NIMA, p34cdc2, cyclinB, Cdc25.
Collapse
|
59
|
James SW, Mirabito PM, Scacheri PC, Morris NR. The Aspergillus nidulans bimE (blocked-in-mitosis) gene encodes multiple cell cycle functions involved in mitotic checkpoint control and mitosis. J Cell Sci 1995; 108 ( Pt 11):3485-99. [PMID: 8586660 DOI: 10.1242/jcs.108.11.3485] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bimE (blocked-in-mitosis) gene appears to function as a negative mitotic regulator because the recessive bimE7 mutation can override certain interphase-arresting treatments and mutations, causing abnormal induction of mitosis. We have further investigated the role of bimE in cell cycle checkpoint control by: (1) coordinately measuring mitotic induction and DNA content of bimE7 mutant cells; and (2) analyzing epistasis relationships between bimE7 and 16 different nim mutations. A combination of cytological and flow cytometric techniques was used to show that bimE7 cells at restrictive temperature (44 degrees C) undergo a normal, although somewhat slower cell cycle prior to mitotic arrest. Most bimE7 cells were fully reversible from restrictive temperature arrest, indicating that they are able to enter mitosis normally, and therefore require bimE function in order to finish mitosis. Furthermore, epistasis studies between bimE7 and mutations in cdc2 pathway components revealed that the induction of mitosis caused by inactivation of bimE requires functional p34cdc2 kinase, and that mitotic induction by bimE7 depends upon several other nim genes whose functions are not yet known. The involvement of bimE in S phase function and mitotic checkpoint control was suggested by three lines of evidence. First, at restrictive temperature the bimE7 mutation slowed the cell cycle by delaying the onset or execution of S phase. Second, at permissive temperature (30 degrees C) the bimE7 mutation conferred enhanced sensitivity to the DNA synthesis inhibitor hydroxyurea. Finally, the checkpoint linking M phase to the completion of S phase was abolished when bimE7 was combined with two nim mutations that cause arrest in G1 or S phase. A model for bimE function based on these findings is presented.
Collapse
Affiliation(s)
- S W James
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854-5635, USA.
| | | | | | | |
Collapse
|
60
|
Pu RT, Xu G, Wu L, Vierula J, O'Donnell K, Ye XS, Osmani SA. Isolation of a functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues. J Biol Chem 1995; 270:18110-6. [PMID: 7629122 DOI: 10.1074/jbc.270.30.18110] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To investigate the degree of conservation of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans, and to help direct its functional analysis, we cloned a homolog (designated nim-1) from Neurospora crassa. Over the catalytic domain NIM-1 is 75% identical to NIMA, but overall the identity drops to 52%. nim-1 was able to functionally complement nimA5 in A. nidulans. Mutational analysis of potential activating phosphorylation sites found in NIMA, NIM-1, and related protein kinases was performed on NIMA. Mutation of threonine 199 (conserved in all NIMA-related kinases) inhibited NIMA beta-casein kinase activity and abolished its in vivo function. This site conforms to a minimal consensus phosphorylation site for NIMA (FXXT) and is analogous to the autophosphorylation site of cyclic-AMP-dependent protein kinases. However, mutation of a unique cysteine residue found only in the catalytic site of NIMA and NIM-1 had no effect on NIMA kinase activity or function. Three temperature-sensitive alleles of nimA that cause arrest in G2 were sequenced and shown to generate three different amino acid substitutions. None of the mutations prevented accumulation of NIMA protein during G2 arrest, but all prevented the p34cdc2/cyclin B-dependent phosphorylation of NIMA normally seen during mitotic initiation even though p34cdc2/cyclin B H1 kinase activity was fully activated.
Collapse
Affiliation(s)
- R T Pu
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2617, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Calcium and Calmodulin Regulation of the Nuclear Division Cycle of Aspergillus Nidulans. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1569-2558(08)60008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
62
|
Abstract
How does a cell know if it's in G1 or G2 and should proceed to S phase or mitosis? This is a restatement of the question of how a cell ensures mitosis is dependent upon S phase, and S phase is dependent upon mitosis. Several gene products have been identified which play important roles in maintaining these interdependencies. Central to these controls are oscillations between different complexes of cyclins and cyclin-dependent kinases.
Collapse
Affiliation(s)
- M J O'Connell
- Cell Cycle Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|