51
|
Rice SE, Purcell TJ, Spudich JA. Building and using optical traps to study properties of molecular motors. Methods Enzymol 2003; 361:112-33. [PMID: 12624909 DOI: 10.1016/s0076-6879(03)61008-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sarah E Rice
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
52
|
Cibert C. Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:296-316. [PMID: 12601692 DOI: 10.1002/cm.10100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Radial spokes and the consequences of their relationships with the central apparatus seem to play a very important role in the regulation of axonemal activity. We modeled their behavior and observed that it appears to differ in the cilium and the flagellum with respect to the development of bending as a function of time. Specifically, our calculation raises the question of the real function of the radial spokes in the regulation of the axoneme, because a given curvature of the flagellar axoneme may correspond to two opposite of their tilts. The stable nil/low amplitude shear points that we had characterized along the flagellum allowed us to describe their axoneme as a series of modules [Cibert, 2002: Cell Motil. Cytoskeleton 51:89-111]. We observed that a nil/low shearing point moves along each module during beating when a new bend is created at the base of the flagellum [Cibert, 2001: Cell Motil. Cytoskeleton 49:161-175]. We propose that the structural gradients of isoforms of tubulin could be basic verniers that act as structural references for the axonemal machinery during the beating. This allowed us to interpret the axonemal organization as a segmented structure, that could be analyzed according to the complexion(1) theory and Shannon's information theory, which associate entropy and probability in the creation of information. The important consequence of this interpretation is that regulation of the axonemal machinery appears to be due to the upstream and downstream cross-talk between the axonemal segments that do not involve any dedicated integrative structure but depend on the energy level of the entire length of each module.
Collapse
Affiliation(s)
- Christian Cibert
- Groupe de Morphométrie et de Modélisation Cellulaire, Département de Biologie du Développement, Institut Jacques Monod, CNRS, Universités Paris 6 and Paris 7, Paris, France.
| |
Collapse
|
53
|
Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 2003; 422:399-404. [PMID: 12660775 DOI: 10.1038/nature01529] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 03/03/2003] [Indexed: 11/08/2022]
Abstract
The structural change that generates force and motion in actomyosin motility has been proposed to be tilting of the myosin light chain domain, which serves as a lever arm. Several experimental approaches have provided support for the lever arm hypothesis; however, the extent and timing of tilting motions are not well defined in the motor protein complex of functioning actomyosin. Here we report three-dimensional measurements of the structural dynamics of the light chain domain of brain myosin V using a single-molecule fluorescence polarization technique that determines the orientation of individual protein domains with 20-40-ms time resolution. Single fluorescent calmodulin light chains tilted back and forth between two well-defined angles as the myosin molecule processively translocated along actin. The results provide evidence for lever arm rotation of the calmodulin-binding domain in myosin V, and support a 'hand-over-hand' mechanism for the translocation of double-headed myosin V molecules along actin filaments. The technique is applicable to the study of real-time structural changes in other biological systems.
Collapse
Affiliation(s)
- Joseph N Forkey
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6083, USA
| | | | | | | | | |
Collapse
|
54
|
Abstract
Myosin-V is a motor protein responsible for organelle and vesicle transport in cells. Recent single-molecule experiments have shown that it is an efficient processive motor that walks along actin filaments taking steps of mean size close to 36 nm. A theoretical study of myosin-V motility is presented following an approach used successfully to analyze the dynamics of conventional kinesin but also taking some account of step-size variations. Much of the present experimental data for myosin-V can be well described by a two-state chemical kinetic model with three load-dependent rates. In addition, the analysis predicts the variation of the mean velocity and of the randomness-a quantitative measure of the stochastic deviations from uniform, constant-speed motion-with ATP concentration under both resisting and assisting loads, and indicates a substep of size d(0) approximately 13-14 nm (from the ATP-binding state) that appears to accord with independent observations.
Collapse
|
55
|
Lakämper S, Kallipolitou A, Woehlke G, Schliwa M, Meyhöfer E. Single fungal kinesin motor molecules move processively along microtubules. Biophys J 2003; 84:1833-43. [PMID: 12609885 PMCID: PMC1302752 DOI: 10.1016/s0006-3495(03)74991-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Conventional kinesins are two-headed molecular motors that move as single molecules micrometer-long distances on microtubules by using energy derived from ATP hydrolysis. The presence of two heads is a prerequisite for this processive motility, but other interacting domains, like the neck and K-loop, influence the processivity and are implicated in allowing some single-headed kinesins to move processively. Neurospora kinesin (NKin) is a phylogenetically distant, dimeric kinesin from Neurospora crassa with high gliding speed and an unusual neck domain. We quantified the processivity of NKin and compared it to human kinesin, HKin, using gliding and fluorescence-based processivity assays. Our data show that NKin is a processive motor. Single NKin molecules translocated microtubules in gliding assays on average 2.14 micro m (N = 46). When we tracked single, fluorescently labeled NKin motors, they moved on average 1.75 micro m (N = 182) before detaching from the microtubule, whereas HKin motors moved shorter distances (0.83 micro m, N = 229) under identical conditions. NKin is therefore at least twice as processive as HKin. These studies, together with biochemical work, provide a basis for experiments to dissect the molecular mechanisms of processive movement.
Collapse
Affiliation(s)
- Stefan Lakämper
- Cellular and Molecular Physiology, Medical School Hannover, Germany
| | | | | | | | | |
Collapse
|
56
|
Chen YD, Yan B, Rubin RJ. Fluctuations and randomness of movement of the bead powered by a single kinesin molecule in a force-clamped motility assay: Monte Carlo simulations. Biophys J 2002; 83:2360-9. [PMID: 12414673 PMCID: PMC1302325 DOI: 10.1016/s0006-3495(02)75250-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The motility assay of K. Visscher, M. J. Schnitzer, and S. M. Block (Nature, 400:184-189, 1999) in which the movement of a bead powered by a single kinesin motor can be measured is a very useful tool in characterizing the force-dependent steps of the mechanochemical cycle of kinesin motors, because in this assay the external force applied to the bead can be controlled (clamped) arbitrarily. However, because the bead is elastically attached to the motor and the response of the clamp is not fast enough to compensate the Brownian motion of the bead, interpretation or analysis of the data obtained from the assay is not trivial. In a recent paper (Y. Chen and B. Yan, Biophys. Chem. 91:79-91, 2001), we showed how to evaluate the mean velocity of the bead and the motor in the motility assay for a given mechanochemical cycle. In this paper we extend the study to the evaluation of the fluctuation or the randomness of the velocity using a Monte Carlo simulation method. Similar to the mean, we found that the randomness of the velocity of the motor is also influenced by the parameters that affect the dynamic behavior of the bead, such as the viscosity of the medium, the size of the bead, the stiffness of the elastic element connecting the bead and the motor, etc. The method presented in this paper should be useful in modeling the kinetic mechanism of any processive motor (such as conventional kinesin and myosin V) based on measured force-clamp motility data.
Collapse
Affiliation(s)
- Yi-der Chen
- Mathematical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, BSA Building Suite 350, 9000 Rockville Pike, Bethesda, MD 20892-2690, USA.
| | | | | |
Collapse
|
57
|
Schott DH, Collins RN, Bretscher A. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 2002; 156:35-9. [PMID: 11781333 PMCID: PMC2173574 DOI: 10.1083/jcb.200110086] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.
Collapse
Affiliation(s)
- Daniel H Schott
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
58
|
Abstract
Optical trapping technology now allows investigators in the motility field to measure the forces generated by single motor molecules. A handful of research groups have exploited this approach to further develop our understanding of the actin-based motor, myosin, an ATPase that is capable of converting chemical energy into mechanical work during a cyclical interaction with filamentous actin. In this regard, myosin-II from muscle is the most well-characterized myosin superfamily member. By combining the data obtained from optical trap assays with that from ensemble biochemical and mechanical assays, this review discusses the fundamental properties of the myosin-II power stroke and, perhaps more significantly, how these properties are governed by this molecule's atomic structure and the biochemical transitions that define its catalytic cycle.
Collapse
Affiliation(s)
- Matthew J Tyska
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
59
|
Rock RS, Rice SE, Wells AL, Purcell TJ, Spudich JA, Sweeney HL. Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 2001; 98:13655-9. [PMID: 11707568 PMCID: PMC61096 DOI: 10.1073/pnas.191512398] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin VI is a molecular motor involved in intracellular vesicle and organelle transport. To carry out its cellular functions myosin VI moves toward the pointed end of actin, backward in relation to all other characterized myosins. Myosin V, a motor that moves toward the barbed end of actin, is processive, undergoing multiple catalytic cycles and mechanical advances before it releases from actin. Here we show that myosin VI is also processive by using single molecule motility and optical trapping experiments. Remarkably, myosin VI takes much larger steps than expected, based on a simple lever-arm mechanism, for a myosin with only one light chain in the lever-arm domain. Unlike other characterized myosins, myosin VI stepping is highly irregular with a broad distribution of step sizes.
Collapse
Affiliation(s)
- R S Rock
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
60
|
Moore JR, Krementsova EB, Trybus KM, Warshaw DM. Myosin V exhibits a high duty cycle and large unitary displacement. J Cell Biol 2001; 155:625-35. [PMID: 11706052 PMCID: PMC2198872 DOI: 10.1083/jcb.200103128] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin V is a double-headed unconventional myosin that has been implicated in organelle transport. To perform this role, myosin V may have a high duty cycle. To test this hypothesis and understand the properties of this molecule at the molecular level, we used the laser trap and in vitro motility assay to characterize the mechanics of heavy meromyosin-like fragments of myosin V (M5(HMM)) expressed in the Baculovirus system. The relationship between actin filament velocity and the number of interacting M5(HMM) molecules indicates a duty cycle of > or =50%. This high duty cycle would allow actin filament translocation and thus organelle transport by a few M5(HMM) molecules. Single molecule displacement data showed predominantly single step events of 20 nm and an occasional second step to 37 nm. The 20-nm unitary step represents the myosin V working stroke and is independent of the mode of M5(HMM) attachment to the motility surface or light chain content. The large M5(HMM) working stroke is consistent with the myosin V neck acting as a mechanical lever. The second step is characterized by an increased displacement variance, suggesting a model for how the two heads of myosin V function in processive motion.
Collapse
Affiliation(s)
- J R Moore
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
61
|
Abstract
Myosin VI is the only pointed end-directed myosin identified and is likely regulated by heavy chain phosphorylation (HCP) at the actin-binding site in vivo. We undertook a detailed kinetic analysis of the actomyosin VI ATPase cycle to determine whether there are unique adaptations to support reverse directionality and to determine the molecular basis of regulation by HCP. ADP release is the rate-limiting step in the cycle. ATP binds slowly and with low affinity. At physiological nucleotide concentrations, myosin VI is strongly bound to actin and populates the nucleotide-free (rigor) and ADP-bound states. Therefore, myosin VI is a high duty ratio motor adapted for maintaining tension and has potential to be processive. A mutant mimicking HCP increases the rate of P(i) release, which lowers the K(ATPase) but does not affect ADP release. These measurements are the first to directly measure the steps regulated by HCP for any myosin. Measurements with double-headed myosin VI demonstrate that the heads are not independent, and the native dimer hydrolyzes multiple ATPs per diffusional encounter with an actin filament. We propose an alternating site model for the stepping and processivity of two-headed high duty ratio myosins.
Collapse
Affiliation(s)
- E M De La Cruz
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | |
Collapse
|