51
|
Xiang X, Fischer R. Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 2004; 41:411-9. [PMID: 14998524 DOI: 10.1016/j.fgb.2003.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
Genetic analyses of nuclear distribution mutants have indicated that functions of the microtubule motor, cytoplasmic dynein, and its regulators are important for nuclear positioning in filamentous fungi. Here we review these studies and also present the need to further dissect how dynein and its associated microtubule cytoskeleton are involved mechanistically in nuclear positioning in the multinucleated hyphae.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
52
|
Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pöhlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P. The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome. Science 2004; 304:304-7. [PMID: 15001715 DOI: 10.1126/science.1095781] [Citation(s) in RCA: 478] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We have sequenced and annotated the genome of the filamentous ascomycete Ashbya gossypii. With a size of only 9.2 megabases, encoding 4718 protein-coding genes, it is the smallest genome of a free-living eukaryote yet characterized. More than 90% of A. gossypii genes show both homology and a particular pattern of synteny with Saccharomyces cerevisiae. Analysis of this pattern revealed 300 inversions and translocations that have occurred since divergence of these two species. It also provided compelling evidence that the evolution of S. cerevisiae included a whole genome duplication or fusion of two related species and showed, through inferred ancient gene orders, which of the duplicated genes lost one copy and which retained both copies.
Collapse
Affiliation(s)
- Fred S Dietrich
- Biozentrum der Universität Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
54
|
Abstract
In filamentous fungi, the actin cytoskeleton is required for polarity establishment and maintenance at hyphal tips and for formation of a contractile ring at sites of septation. Recently, formins have been identified as Arp (actin-related protein) 2/3-independent nucleators of actin polymerization, and filamentous fungi contain a single formin that localizes to both sites. Work on cytoplasmic dynein and members of the kinesin and myosin families of motors has continued to reveal new information regarding the function and regulation of motors as well as demonstrate the importance of microtubules in the long-distance transport of vesicles/organelles in the filamentous fungi.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
55
|
Abstract
Cytokinesis is the ultimate step of a cell cycle resulting in the generation of two progeny. Failure of correct cell division may be lethal for both, mother and daughter cells, and thus such a process must be tightly regulated with other events of the cell cycle. Differing solutions to the same problem have been developed in bacteria and plants while cytokinesis in animal and fungal cells is highly similar and requires a contractile ring containing actomyosin. Cytokinesis in fungi can be viewed as a three-stage process: (i) selection of a division site, (ii) orderly assembly of protein complexes, and finally (iii) dynamic events that lead to a constriction of the contractile ring and septum construction. Elaborate mechanisms known as the Mitotic Exit Network (MEN) and the Septation Initiation Network (SIN) have evolved to link these events, particularly the final steps of cytokinesis, with nuclear division. The purpose of this review was to discuss the latest developments in the fungal field and to describe the central known players required for key steps on the road to cell division. Differences in the cytokinesis of yeast-like fungi that result in complete cell separation in contrast to septation which leads to the compartmentalization of fungal hyphae are highlighted.
Collapse
Affiliation(s)
- Andrea Walther
- Department of Microbiology, Hans-Knöll Institute, Friedrich-Schiller University Jena, Winzerlaer, Germany
| | | |
Collapse
|
56
|
Efimov VP. Roles of NUDE and NUDF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. Mol Biol Cell 2003; 14:871-88. [PMID: 12631710 PMCID: PMC151566 DOI: 10.1091/mbc.e02-06-0359] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The NUDF protein of the filamentous fungus Aspergillus nidulans functions in the cytoplasmic dynein pathway. It binds several proteins, including the NUDE protein. Green fluorescent protein-tagged NUDF and NUDA (dynein heavy chain) localize to linearly moving dashes ("comets") that coincide with microtubule ends. Herein, deletion of the nudE gene did not eliminate the comets of NUDF and NUDA, but affected the behavior of NUDA. Comets were also observed with the green fluorescent protein-tagged NUDE and its nonfunctional C-terminal domain. In addition, overexpressed NUDA and NUDE accumulated in specks that were either immobile or bounced randomly. Neither comets nor specks were observed with the functional N-terminal domain of NUDE, indicating that these structures are not essential for NUDE function. Furthermore, NUDF overproduction totally suppressed deletion of the nudE gene. This implies that the function of NUDE is secondary to that of NUDF. Unexpectedly, NUDF overproduction inhibited one conditional nudA mutant and all tested apsA mutants. An allele-specific interaction between the nudF and nudA genes is consistent with a direct interaction between NUDF and dynein heavy chain. Because APSA and its yeast homolog Num1p are cortical proteins, an interaction between the nudF and apsA genes suggests a role for NUDF at the cell cortex.
Collapse
Affiliation(s)
- Vladimir P Efimov
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA.
| |
Collapse
|
57
|
Abstract
The nucleus, like other smaller organelles in the cell, is dynamic and can move about in the cytoplasm. In some cells, nuclear movements are concerned with mitosis or meiosis; in others, they are concerned with orienting nuclear divisions; and in still others, they deal with distributing nuclei through the cytoplasm. Recent interest in nuclear positioning has shown that nuclear movements are often mediated by the interactions of dynein and other proteins at the plus ends of astral microtubules with the cell cortex. How the microtubule minus ends interact with the nucleus also affects nuclear movements.
Collapse
Affiliation(s)
- N Ronald Morris
- Department of Pharmacology, UMDNJ - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
58
|
Riquelme M, Roberson RW, McDaniel DP, Bartnicki-García S. The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet Biol 2002; 37:171-9. [PMID: 12409101 DOI: 10.1016/s1087-1845(02)00506-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have used light and electron microscopy to document the cytoplasmic effects of the ropy (ro-1) mutation in mature hyphae of Neurospora crassa and to better understand the role(s) of dynein during hyphal tip growth. Based on video-enhanced DIC light microscopy, the mature, growing hyphae of N. crassa wild type could be divided into four regions according to cytoplasmic organization and behavior: the apical region (I) and three subapical regions (II, III, and IV). A well-defined Spitzenkörper dominated the cytoplasm of region I. In region II, vesicles ( approximately 0.48 micro m diameter) and mitochondria maintained primarily a constant location within the advancing cytoplasm. This region was typically void of nuclei. Vesicles exhibited anterograde and retrograde motility in regions III and IV and followed generally parallel paths along the longitudinal axis of the cell. A small population of mitochondria displayed rapid anterograde and retrograde movements, while most maintained a constant position in the advancing cytoplasm in regions III and IV. Many nuclei occupied the cytoplasm of regions III and IV. In ro-1 hyphae, discrete cytoplasmic regions were not recognized and the motility and/or positioning of vesicles, mitochondria, and nuclei were altered to varying degrees, relative to the wild type cells. Immunofluorescence microscopy revealed that the microtubule cytoskeleton was severely disrupted in ro-1 cells. Transmission electron microscopy of cryofixed cells confirmed that region I of wild-type hyphae contained a Spitzenkörper composed of an aggregation of small apical vesicles that surrounded entirely or partially a central core composed, in part, of microvesicles embedded in a dense granular to fibrillar matrix. The apex of ro-1 the hypha contained a Spitzenkörper with reduced numbers of apical vesicles but maintained a defined central core. Clearly, dynein deficiency in the mutant caused profound perturbation in microtubule organization and function and, consequently, organelle dynamics and positioning. These perturbations impact negatively on the organization and stability of the Spitzenkörper, which, in turn, led to severe reduction in growth rate and altered hyphal morphology.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | | | | | |
Collapse
|
59
|
Banuett F, Herskowitz I. Bud morphogenesis and the actin and microtubule cytoskeletons during budding in the corn smut fungus, Ustilago maydis. Fungal Genet Biol 2002; 37:149-70. [PMID: 12409100 DOI: 10.1016/s1087-1845(02)00548-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ustilago maydis is a dimorphic Basidiomycete fungus with a yeast-like form and a hyphal form. Here we present a comprehensive analysis of bud formation and the actin and microtubule cytoskeletons of the yeast-like form during the cell cycle. We show that bud morphogenesis entails a series of shape changes, initially a tubular or conical structure, culminating in a cigar-shaped cell connected to the mother cell by a narrow neck. Labelling of cells with concanavalin A demonstrated that growth occurs at bud tip. Indirect immunofluorescence studies revealed that the actin cytoskeleton consists of patches and cables that polarize to the presumptive bud site and the bud tip and an actin ring that forms at the neck region. Because the bud tip corresponds to the site of active cell wall growth, we hypothesize that actin is involved in secretion of cell wall components. The microtubule cytoskeleton has recently been shown to consist of a cytoplasmic network during interphase that disassembles at mitosis when a spindle and astral microtubules are formed. We have carried out studies of U. maydis cells synchronized by the microtubule-depolymerizing drug thiabendazole which allow us to construct a temporal sequence of steps in spindle formation and spindle elongation during the cell cycle. These studies suggest that astral microtubules may be involved in early stages of spindle orientation and migration of the nucleus into the bud and that the spindle pole bodies may be involved in reestablishment of the cytoplasmic microtubule network.
Collapse
Affiliation(s)
- Flora Banuett
- Department of Biochemistry and Biophysics, School of Medicine, University of California-San Francisco, 513 Parnassus Ave, San Francisco, CA 94143-0448, USA.
| | | |
Collapse
|
60
|
Wendland J, Philippsen P. An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet Biol 2002; 37:81-8. [PMID: 12223192 DOI: 10.1016/s1087-1845(02)00034-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In filamentous ascomycetes hyphae are compartmentalized by septation in which the cytoplasm of the compartments are interconnected via septal pores. Thus, septation in filamentous fungi is different from cytokinesis in yeast like fungi. We have identified an Ashbya gossypii orthologue of the Saccharomyces cerevisiae CYK1 gene which belongs to the IQGAP-protein family. In contrast to S. cerevisiae disruption of AgCYK1 yields viable mutant strains that exhibit wildtype-like polarized hyphal growth rates. In the Agcyk1 mutant cortical actin patches localize to growing hyphal tips like wildtype, however, mutant hyphae are totally devoid of actin rings at presumptive septal sites. Septation in wildtype results in the formation of chitin rings. Agcyk1 mutant hyphae are aseptate and do not accumulate chitin in their cell walls. Agcyk1 mutant strains are completely asporogenous indicating that septation is essential for the formation of sporangia in A. gossypii. AgCyk1p-GFP localizes to sites of future septation as a ring prior to chitin depositioning. Furthermore, decrease in Cyk1p-ring diameter was found to be a prerequisite for the accumulation of chitin and septum formation.
Collapse
Affiliation(s)
- Jürgen Wendland
- Department of Microbiology, Friedrich-Schiller University, Winzerlaer Str. 10, Jena, Germany.
| | | |
Collapse
|
61
|
Zhang J, Han G, Xiang X. Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol Microbiol 2002; 44:381-92. [PMID: 11972777 DOI: 10.1046/j.1365-2958.2002.02900.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multisubunit microtubule motor, cytoplasmic dynein, targets to various subcellular locations in eukaryotic cells for various functions. The cytoplasmic dynein heavy chain (HC) contains the microtubule binding and ATP binding sites for motor function, whereas the intermediate chain (IC) is implicated in the in vivo targeting of the HC. Concerning any targeting event, it is not known whether the IC has to form a complex with the HC for targeting or whether the IC can target to a site independently of the HC. In the filamentous fungus Aspergillus nidulans, the dynein HC is localized to the ends of microtubules near the hyphal tip. In this study, we demonstrate that our newly identified dynein IC in A. nidulans is also localized to microtubule ends and is required for HC's localization to microtubule ends in living cells. With the combination of two reagents, an HC loss-of function mutant and the green fluorescent protein (GFP)-fused IC that retains its function, we show that the IC's localization to microtubule ends also requires HC, suggesting that cytoplasmic dynein HC-IC complex formation is important for microtubule end targeting. In addition, we show that the HC localization is not apparently altered in the deletion mutant of NUDF, a LIS1-like protein that interacts directly with the ATP-binding domain of the HC. Our study suggests that, although HC-IC association is important for the targeting of dynein to microtubule ends, other essential components, such as NUDF, may interact with the targeted dynein complex to produce full motor activities in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, USUHS, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
62
|
Requena N, Alberti-Segui C, Winzenburg E, Horn C, Schliwa M, Philippsen P, Liese R, Fischer R. Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol Microbiol 2001; 42:121-32. [PMID: 11679072 DOI: 10.1046/j.1365-2958.2001.02609.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conventional kinesin is a microtubule-dependent motor protein believed to be involved in a variety of intracellular transport processes. In filamentous fungi, conventional kinesin has been implicated in different processes, such as vesicle migration, polarized growth, nuclear distribution, mitochondrial movement and vacuole formation. To gain further insights into the functions of this kinesin motor, we identified and characterized the conventional kinesin gene, kinA, of the established model organism Aspergillus nidulans. Disruption of the gene leads to a reduced growth rate and a nuclear positioning defect, resulting in nuclear cluster formation. These clusters are mobile and display a dynamic behaviour. The mutant phenotypes are pronounced at 37 degrees C, but rescued at 25 degrees C. The hyphal growth rate at 25 degrees C was even higher than that of the wild type at the same temperature. In addition, kinesin-deficient strains were less sensitive to the microtubule destabilizing drug benomyl, and disruption of conventional kinesin suppressed the cold sensitivity of an alpha-tubulin mutation (tubA4). These results suggest that conventional kinesin of A. nidulans plays a role in cytoskeletal dynamics, by destabilizing microtubules. This new role of conventional kinesin in microtubule stability could explain the various phenotypes observed in different fungi.
Collapse
Affiliation(s)
- N Requena
- Department of Microbiology, University of Marburg and Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|