51
|
Plecitá-Hlavatá L, Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 2016; 80:31-50. [PMID: 27640755 DOI: 10.1016/j.biocel.2016.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Ježek
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
52
|
Cavadas MAS, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC, Nolan KA, Rocha LMA, Tambuwala MM, Brown S, Wdowicz A, Corbett D, Murphy KJ, Godson C, Cummins EP, Taylor CT, Cheong A. REST is a hypoxia-responsive transcriptional repressor. Sci Rep 2016; 6:31355. [PMID: 27531581 PMCID: PMC4987654 DOI: 10.1038/srep31355] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Marion Mesnieres
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Bianca Crifo
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Andrew C Selfridge
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Ciara E Keogh
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zsolt Fabian
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Carsten C Scholz
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Liliane M A Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Danielle Corbett
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin P Cummins
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
53
|
Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis. Genes (Basel) 2016; 7:genes7080044. [PMID: 27527217 PMCID: PMC4999832 DOI: 10.3390/genes7080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating that the Hippo pathway does not act alone but crosstalks with other signalling pathways to coordinate network dynamics and cellular outcomes. These crosstalks were characterised by a multitude of complex regulatory mechanisms involving competitive protein-protein interactions and phosphorylation mediated feedback loops. However, how these different mechanisms interplay in different cellular contexts to drive the context-specific network dynamics of Hippo-ERK signalling remains elusive. Using mathematical modelling and computational analysis, we uncovered that the Hippo-ERK network can generate highly diverse dynamical profiles that can be clustered into distinct dose-response patterns. For each pattern, we offered mechanistic explanation that defines when and how the observed phenomenon can arise. We demonstrated that Akt displays opposing, dose-dependent functions towards ERK, which are mediated by the balance between the Raf-1/MST2 protein interaction module and the LATS1 mediated feedback regulation. Moreover, Ras displays a multi-functional role and drives biphasic responses of both MST2 and ERK activities; which are critically governed by the competitive protein interaction between MST2 and Raf-1. Our study represents the first in-depth and systematic analysis of the Hippo-ERK network dynamics and provides a concrete foundation for future studies.
Collapse
|
54
|
Sridharan S, Varghese R, Venkatraj V, Datta A. Hypoxia Stress Response Pathways: Modeling and Targeted Therapy. IEEE J Biomed Health Inform 2016; 21:875-885. [PMID: 28113565 DOI: 10.1109/jbhi.2016.2559460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hypoxia is a consequence of the decrease in the oxygen reaching the tissues of the body. It is a prominent feature of most solid tumors and is known to promote malignant progression, metastatic capacity, resistance to chemotherapy, and leads to poor patient prognosis. When a cell is under hypoxic stress, a cascade of cell signals is initiated through a family of transcription factors named as hypoxia inducible factors (HIFs). During hypoxia, HIF stabilizes and enters the nucleus and binds to the DNA via the hypoxia response element (HRE) and leads to the translation of downstream genes. The decision of adaptation or cell death depends on the extent of hypoxic stress faced by the cells. Proper understanding of hypoxic stress response is critical for understanding the mechanism of tumor cell adaptation to hypoxia and to develop efficient therapeutic interventions. In this paper, we develop a Boolean network model with targeted drug intervention in a cell that mimics persistent hypoxia. This hypoxic pathway is combined with pathways that help the cell adapt to the situation or undergo cell death. It is linked to apoptosis, cell survival, and energy production via the p53/Mdm2, PI3k/Akt/mTOR, and Glycolysis/TCA cycle pathways, respectively. In this model, we have incorporated eight known anticancer drugs that target these pathways. Through simulations, we have identified drug combinations that provided overall benefits to the cell in comparison to the no intervention case. Where applicable, the behavior predicted by this model is in agreement with experimental observations from the published literature.
Collapse
|
55
|
Swartz JE, Pothen AJ, van Kempen PMW, Stegeman I, Formsma FK, Cann EMV, Willems SM, Grolman W. Poor prognosis in human papillomavirus-positive oropharyngeal squamous cell carcinomas that overexpress hypoxia inducible factor-1α. Head Neck 2016; 38:1338-46. [PMID: 27027530 DOI: 10.1002/hed.24445] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypoxia induces stabilization of the transcription factor HIF-1alpha (HIF-1α), associated with (chemo-)radiotherapy resistance in oropharyngeal squamous cell carcinoma (SCC). We investigated the effect of HIF-1α expression on survival in relation to human papillomavirus (HPV) status in oropharyngeal SCC. METHODS We conducted an immunohistochemical analysis of HIF-1α protein expression and downstream targets carbonic anhydrase-IX (CA-IX) and glucose transporter-1 (GLUT-1) in 274 patients with oropharyngeal SCC. Overall survival (OS) was analyzed in total and stratified for HPV status and treatment. RESULTS In HPV-positive tumors (n = 44), HIF-1α overexpression predicted worse OS (hazard ratio [HR] = 6.23; p = .012), whereas TNM classification or treatment modality did not. In HPV-negative tumors (n = 218), advanced T and N classification and HIF-1α overexpression all independently predicted worse OS. However, the effect of HIF-1α overexpression on OS was lower in HPV-negative (HR = 1.50; p = .024) than in HPV-positive tumors. CONCLUSION HIF-1α overexpression is associated with worse OS and characterized a subgroup of patients with HPV-positive oropharyngeal SCC with poor prognosis. Possibly, patients with HIF-1α overexpressing HPV-positive tumors should not be eligible for treatment dose deescalation. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1338-1346, 2016.
Collapse
Affiliation(s)
- Justin Egidius Swartz
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ajit Joe Pothen
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Stegeman
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fleurieke Karlijn Formsma
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen Maria Van Cann
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Martin Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
56
|
Rodriguez J, Pilkington R, Garcia Munoz A, Nguyen LK, Rauch N, Kennedy S, Monsefi N, Herrero A, Taylor CT, von Kriegsheim A. Substrate-Trapped Interactors of PHD3 and FIH Cluster in Distinct Signaling Pathways. Cell Rep 2016; 14:2745-60. [PMID: 26972000 PMCID: PMC4805855 DOI: 10.1016/j.celrep.2016.02.043] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 12/20/2022] Open
Abstract
Amino acid hydroxylation is a post-translational modification that regulates intra- and inter-molecular protein-protein interactions. The modifications are regulated by a family of 2-oxoglutarate- (2OG) dependent enzymes and, although the biochemistry is well understood, until now only a few substrates have been described for these enzymes. Using quantitative interaction proteomics, we screened for substrates of the proline hydroxylase PHD3 and the asparagine hydroxylase FIH, which regulate the HIF-mediated hypoxic response. We were able to identify hundreds of potential substrates. Enrichment analysis revealed that the potential substrates of both hydroxylases cluster in the same pathways but frequently modify different nodes of signaling networks. We confirm that two proteins identified in our screen, MAPK6 (Erk3) and RIPK4, are indeed hydroxylated in a FIH- or PHD3-dependent mechanism. We further determined that FIH-dependent hydroxylation regulates RIPK4-dependent Wnt signaling, and that PHD3-dependent hydroxylation of MAPK6 protects the protein from proteasomal degradation.
Collapse
Affiliation(s)
- Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Ruth Pilkington
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Susan Kennedy
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Naser Monsefi
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
57
|
|
58
|
da Costa NMM, Fialho ADV, Proietti CC, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology 2016; 69:99-106. [PMID: 26707922 DOI: 10.1111/his.12922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022]
Abstract
AIMS Ameloblastoma AME is a benign tumour characterized by local invasiveness, high recurrence rates, and diverse histological patterns. The oxygen concentration is reduced in specific areas of the tumour microenvironment, which leads to intratumoral hypoxia. Crosstalk between NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1α (HIF-1α) and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis development. The aim of this study was to analyse the expression of these proteins, in order to further elucidate the mechanisms underlying AME invasiveness. METHODS AND RESULTS Twenty cases of AME, eight calcifying cystic odontogenic tumours CCOTs and 10 samples of dental follicle were used to investigate the expression of these proteins by immunohistochemistry with the primary antibodies anti-NOTCH1, anti-ADAM-12, anti-HIF-1α, and anti-HB-EGF. Immunostaining results were expressed as the percentage of stained area in images acquired in an AxioScope microscope equipped with an AxioCamHRc camera and a × 40 objective. The results showed that immunoexpression of all proteins was higher in the AME samples than in the CCOT and dental follicle samples (P < 0.05). CONCLUSIONS AME showed an increased presence of proteins associated with tumour invasiveness, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
| | | | | | | | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
59
|
Fábián Z, Taylor CT, Nguyen LK. Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling. J Mol Med (Berl) 2016; 94:377-90. [PMID: 26821588 DOI: 10.1007/s00109-016-1383-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/26/2022]
Abstract
Hypoxia is a common micro-environmental stress which is experienced by cells during a range of physiologic and pathophysiologic processes. The identification of the hypoxia-inducible factor (HIF) as the master regulator of the transcriptional response to hypoxia transformed our understanding of the mechanism underpinning the hypoxic response at the molecular level and identified HIF as a potentially important new therapeutic target. It has recently become clear that multiple levels of regulatory control exert influence on the HIF pathway giving the response a complex and dynamic activity profile. These include positive and negative feedback loops within the HIF pathway as well as multiple levels of crosstalk with other signaling pathways. The emerging model reflects a multi-level regulatory network that affects multiple aspects of the physiologic response to hypoxia including proliferation, apoptosis, and differentiation. Understanding the interplay between the molecular mechanisms involved in the dynamic regulation of the HIF pathway at a systems level is critically important in defining new appropriate therapeutic targets for human diseases including ischemia, cancer, and chronic inflammation. Here, we review our current knowledge of the regulatory circuits which exert influence over the HIF response and give examples of in silico model-based predictions of the dynamic behaviour of this system.
Collapse
Affiliation(s)
- Zsolt Fábián
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.,Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. .,Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and Biomedical Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
60
|
Heidary Z, Ghaisari J, Moein S, Naderi M, Gheisari Y. Stochastic Petri Net Modeling of Hypoxia Pathway Predicts a Novel Incoherent Feed-Forward Loop Controlling SDF-1 Expression in Acute Kidney Injury. IEEE Trans Nanobioscience 2015; 15:19-26. [PMID: 26701884 DOI: 10.1109/tnb.2015.2509475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Homing of stem cells to the sites of injury is crucial for tissue regeneration. Stromal derived factor 1 (SDF-1) is among the most important chemokines recruiting these cells. Unexpectedly, our previous experimental data on mouse models of acute kidney injury showed that SDF-1 has a declining trend following ischemic kidney insult. To describe this unforeseen observation, a stochastic Petri net model of SDF-1 regulation in the hypoxia pathway was constructed based on main related components extracted from literature. Using this strategy, predictions regarding the underlying mechanisms of SDF-1 kinetics are generated and a novel incoherent feed forward loop regulating SDF-1 expression is proposed. The computational approach suggested here can be exploited to propose novel therapies for debilitating disorders such as kidney injury.
Collapse
|
61
|
REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci Rep 2015; 5:17851. [PMID: 26647819 PMCID: PMC4673454 DOI: 10.1038/srep17851] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023] Open
Abstract
The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response.
Collapse
|
62
|
Aguado BA, Wu JJ, Azarin SM, Nanavati D, Rao SS, Bushnell GG, Medicherla CB, Shea LD. Secretome identification of immune cell factors mediating metastatic cell homing. Sci Rep 2015; 5:17566. [PMID: 26634905 PMCID: PMC4669442 DOI: 10.1038/srep17566] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
Metastatic cell homing is a complex process mediated in part by diffusible factors secreted from immune cells found at a pre-metastatic niche. We report on connecting secretomics and TRanscriptional Activity CEll aRray (TRACER) data to identify functional paracrine interactions between immune cells and metastatic cells as novel mediators of homing. Metastatic breast cancer mouse models were used to generate a diseased splenocyte conditioned media (D-SCM) containing immune cell secreted factors. MDA-MB-231 metastatic cell activity including cell invasion, migration, transendothelial migration, and proliferation were increased in D-SCM relative to control media. Our D-SCM secretome analysis yielded 144 secreted factor candidates that contribute to increased metastatic cell activity. The functional mediators of homing were identified using MetaCore software to determine interactions between the immune cell secretome and the TRACER-identified active transcription factors within metastatic cells. Among the 5 candidate homing factors identified, haptoglobin was selected and validated in vitro and in vivo as a key mediator of homing. Our studies demonstrate a novel systems biology approach to identify functional signaling factors associated with a cellular phenotype, which provides an enabling tool that complements large-scale protein identification provided by proteomics.
Collapse
Affiliation(s)
- Brian A Aguado
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Jia J Wu
- Interdepartmental Biological Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dhaval Nanavati
- Proteomics Core Facility, Northwestern University, Chicago, IL 60611, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | | | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
63
|
Zhao C, Popel AS. Computational Model of MicroRNA Control of HIF-VEGF Pathway: Insights into the Pathophysiology of Ischemic Vascular Disease and Cancer. PLoS Comput Biol 2015; 11:e1004612. [PMID: 26588727 PMCID: PMC4654485 DOI: 10.1371/journal.pcbi.1004612] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
HRMs (hypoxia-responsive miRNAs) are a specific group of microRNAs that are regulated by hypoxia. Recent studies revealed that several HRMs including let-7 family miRNAs were highly induced in response to HIF (hypoxia-inducible factor) stabilization in hypoxia, and they potently participated in angiogenesis by targeting AGO1 (argonaute 1) and upregulating VEGF (vascular endothelial growth factor). Here we constructed a novel computational model of microRNA control of HIF-VEGF pathway in endothelial cells to quantitatively investigate the role of HRMs in modulating the cellular adaptation to hypoxia. The model parameters were optimized and the simulations based on these parameters were validated against several published in vitro experimental data. To advance the mechanistic understanding of oxygen sensing in hypoxia, we demonstrated that the rate of HIF-1α nuclear import substantially influences its stabilization and the formation of HIF-1 transcription factor complex. We described the biological feedback loops involving let-7 and AGO1 in which the impact of external perturbations were minimized; as a pair of master regulators when low oxygen tension was sensed, they coordinated the critical process of VEGF desuppression in a controlled manner. Prompted by the model-motivated discoveries, we proposed and assessed novel pathway-specific therapeutics that modulate angiogenesis by adjusting VEGF synthesis in tumor and ischemic cardiovascular disease. Through simulations that capture the complex interactions between miRNAs and miRNA-processing molecules, this model explores an innovative perspective about the distinctive yet integrated roles of different miRNAs in angiogenesis, and it will help future research to elucidate the dysregulated miRNA profiles found in cancer and various cardiovascular diseases. Cells living in a hypoxic environment secrete signals to stimulate new blood vessel growth, a process termed angiogenesis, to acquire more oxygen and nutrients. Hypoxia-inducible factor 1 (HIF-1) accumulates in hypoxia and expedites the release of pro-angiogenic cytokines such as vascular endothelial growth factor (VEGF), a prime inducer of angiogenesis. The intermediate signaling events connecting HIF-1 and VEGF are tightly controlled by microRNAs (miRs), which are endogenous, non-coding RNA molecules and powerful regulators in cancer and cardiovascular disease. Given the importance of angiogenesis in tumor development and post-ischemia reperfusion, it holds great basic research and therapeutic value to investigate how miRs modulate intracellular VEGF synthesis to control angiogenesis in hypoxia. We present a computational model that details the interactions between miRs and other key molecules which make up different hierarchies in HIF-miR-VEGF pathway. Based on simulation analysis, new potential therapies are introduced and tested in silico, from which the strategies that most effectively reduce VEGF synthesis in cancer, or enhance VEGF release in ischemic vascular disease are identified. We conclude that in hypoxia different miRs work consonantly to fine-tune the cellular adaptations; when a master miR alters its expression, dynamics of other miRs vary accordingly which together contribute to aberrant RNA/protein profiles observed in the pathophysiology of multiple diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
64
|
Plecitá-Hlavatá L, Ježek J, Ježek P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J Bioenerg Biomembr 2015; 47:467-76. [DOI: 10.1007/s10863-015-9628-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022]
|
65
|
Zhdanov AV, Golubeva AV, Okkelman IA, Cryan JF, Papkovsky DB. Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study. Am J Physiol Cell Physiol 2015; 309:C501-9. [DOI: 10.1152/ajpcell.00121.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
Abstract
O2 plays a pivotal role in aerobic metabolism and regulation of cell and tissue function. Local differences and fluctuations in tissue O2 levels are well documented; however, the physiological significance of O2 microgradients, particularly at the subcellular level, remains poorly understood. Using the cell-penetrating phosphorescent O2 probe Pt-Glc and confocal fluorescence microscopy, we visualized O2 distribution in individual giant (>100-μm) umbrella cells located superficially in the urinary bladder epithelium. We optimized conditions for in vivo phosphorescent staining of the inner surface of the mouse bladder and subsequent ex vivo analysis of excised live tissue. Imaging experiments revealed significant (≤85 μM) and heterogeneous deoxygenation within respiring umbrella cells, with radial O2 gradients of up to 40 μM across the cell, or ∼0.6 μM/μm. Deeply deoxygenated (5–15 μM O2) regions were seen to correspond to the areas enriched with polarized mitochondria. Pharmacological activation of mitochondrial respiration decreased oxygenation and O2 gradients in umbrella cells, while inhibition with antimycin A dissipated the gradients and caused gradual reoxygenation of the tissue to ambient levels. Detailed three-dimensional maps of O2 distribution potentially can be used for the modeling of intracellular O2-dependent enzymatic reactions and downstream processes, such as hypoxia-inducible factor signaling. Further ex vivo and in vivo studies on intracellular and tissue O2 gradients using confocal imaging can shed light on the molecular mechanisms regulating O2-dependent (patho)physiological processes in the bladder and other tissues.
Collapse
Affiliation(s)
- A. V. Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - A. V. Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; and
| | - I. A. Okkelman
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - J. F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; and
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - D. B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
66
|
Abstract
Hypoxia inducible factors (HIFs) play vital roles in cellular maintenance of oxygen homeostasis. These transcription factors are responsible for the expression of genes involved in angiogenesis, metabolism, and cell proliferation. Here, we generate a detailed mathematical model for the enzyme kinetics of α-ketoglutarate-dependent HIF prolyl 4-hydroxylase domain (PHD) dioxygenases to simulate our in vitro data showing synergistic PHD inhibition by succinate and hypoxia in experimental models of succinate dehydrogenase loss, which phenocopy familial paraganglioma. Our mathematical model confirms the inhibitory synergy of succinate and hypoxia under physiologically-relevant conditions. In agreement with our experimental data, the model predicts that HIF1α is not stabilized under atmospheric oxygen concentrations, as observed. Further, the model confirms that addition of α-ketoglutarate can reverse PHD inhibition by succinate and hypoxia in SDH-deficient cells.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - Yeng F Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
67
|
Zhou CH, Zhang XP, Liu F, Wang W. Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep 2015; 5:13834. [PMID: 26346319 PMCID: PMC4561886 DOI: 10.1038/srep13834] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Both the hypoxia-inducible factor-1 (HIF-1) and tumor suppressor p53 are involved in the cellular response to hypoxia. How the two transcription factors interact to determine cell fates is less well understood. Here, we developed a network model to characterize crosstalk between the HIF-1 and p53 pathways, taking into account that HIF-1α and p53 are targeted for proteasomal degradation by Mdm2 and compete for binding to limiting co-activator p300. We reported the network dynamics under various hypoxic conditions and revealed how the stabilization and transcriptional activities of p53 and HIF-1α are modulated to determine the cell fate. We showed that both the transrepression and transactivation activities of p53 promote apoptosis induction. This work provides new insight into the mechanism for the cellular response to hypoxia.
Collapse
Affiliation(s)
- Chun-Hong Zhou
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210093, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
68
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
69
|
Swartz JE, Pothen AJ, Stegeman I, Willems SM, Grolman W. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: a systematic review. Cancer Med 2015; 4:1101-16. [PMID: 25919147 PMCID: PMC4529348 DOI: 10.1002/cam4.460] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Awareness increases that the tumor biology influences treatment outcome and prognosis in cancer. Tumor hypoxia is thought to decrease sensitivity to radiotherapy and some forms of chemotherapy. Presence of hypoxia may be assessed by investigating expression of endogenous markers of hypoxia (EMH) using immunohistochemistry (IHC). In this systematic review we investigated the effect of EMH expression on local control and survival according to treatment modality in head and neck cancer (head and neck squamous cell carcinoma [HNSCC]). A search was performed in MEDLINE and EMBASE. Studies were eligible for inclusion that described EMH expression in relation to outcome in HNSCC patients. Quality was assessed using the Quality in Prognosis Studies (QUIPS) tool. Hazard ratios for locoregional control and survival were extracted. Forty studies of adequate quality were included. HIF-1a, HIF-2a, CA-IX, GLUT-1, and OPN were identified as the best described EMHs. With exception of HIF-2a, all EMHs were significantly related to adverse outcome in multiple studies, especially in studies where patients underwent single-modality treatment. Positive expression was often correlated with adverse clinical characteristics, including disease stage and differentiation grade. In summary, EMH expression was common in HNSCC patients and negatively influenced their prognosis. Future studies should investigate the effect of hypoxia-modified treatment schedules in patients with high In summary, EMH expression. These may include ARCON, treatment with nimorazole, or novel targeted therapies directed at hypoxic tissue. Also, the feasibility of surgical removal of the hypoxic tumor volume prior to radiotherapy should be investigated.
Collapse
Affiliation(s)
- Justin E Swartz
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ajit J Pothen
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
70
|
Dobrzyński M, Nguyen LK, Birtwistle MR, von Kriegsheim A, Blanco Fernández A, Cheong A, Kolch W, Kholodenko BN. Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses. J R Soc Interface 2015; 11:20140383. [PMID: 24966234 DOI: 10.1098/rsif.2014.0383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We show theoretically and experimentally a mechanism behind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input-output characteristics (the dose-response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose-response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose-response obtained experimentally.
Collapse
Affiliation(s)
- Maciej Dobrzyński
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marc R Birtwistle
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | | | - Alfonso Blanco Fernández
- Flow Cytometry Core Technologies, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
71
|
Leedale J, Herrmann A, Bagnall J, Fercher A, Papkovsky D, Sée V, Bearon RN. Modeling the dynamics of hypoxia inducible factor-1α (HIF-1α) within single cells and 3D cell culture systems. Math Biosci 2014; 258:33-43. [DOI: 10.1016/j.mbs.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/28/2014] [Accepted: 09/13/2014] [Indexed: 11/27/2022]
|
72
|
Role of compartmentalization on HiF-1α degradation dynamics during changing oxygen conditions: a computational approach. PLoS One 2014; 9:e110495. [PMID: 25338163 PMCID: PMC4206521 DOI: 10.1371/journal.pone.0110495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/21/2014] [Indexed: 12/25/2022] Open
Abstract
HiF-1α is the central protein driving the cellular response to hypoxia. Its accumulation in cancer cells is linked to the appearance of chemoresistant and aggressive tumor phenotypes. As a consequence, understanding the regulation of HiF-1α dynamics is a major issue to design new anti-cancer therapies. In this paper, we propose a model of the hypoxia pathway, involving HiF-1α and its inhibitor pVHL. Based on data from the literature, we made the hypothesis that the regulation of HiF-1α involves two compartments (nucleus and cytoplasm) and a constitutive shuttle of the pVHL protein between them. We first show that this model captures correctly the main features of HiF-1α dynamics, including the bi-exponential degradation profile in normoxia, the kinetics of induction in hypoxia, and the switch-like accumulation. Second, we simulated the effects of a hypoxia/reoxygenation event, and show that it generates a strong instability of HiF-1α. The protein concentration rapidly increases 3 hours after the reoxygenation, and exhibits an oscillating pattern. This effect vanishes if we do not consider compartmentalization of HiF-1α. This result can explain various counter-intuitive observations about the specific molecular and cellular response to the reoxygenation process. Third, we simulated the HiF-1α dynamics in the tumor case. We considered different types of mutations associated with tumorigenesis, and we compared their consequences on HiF-1α dynamics. Then, we tested different therapeutics strategies. We show that a therapeutic decrease of HiF-1α nuclear level is not always correlated with an attenuation of reoxygenation-induced instabilities. Thus, it appears that the design of anti-HiF-1α therapies have to take into account these two aspects to maximize their efficiency.
Collapse
|
73
|
Zhdanov AV, Waters AHC, Golubeva AV, Papkovsky DB. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling. Exp Cell Res 2014; 330:13-28. [PMID: 25447307 DOI: 10.1016/j.yexcr.2014.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/25/2022]
Abstract
Changes in availability and utilisation of O2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O2. Upon 2-4h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Alicia H C Waters
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Anna V Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
74
|
Manresa MC, Godson C, Taylor CT. Hypoxia-sensitive pathways in inflammation-driven fibrosis. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1369-80. [PMID: 25298511 DOI: 10.1152/ajpregu.00349.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue injury can occur for a variety of reasons, including physical damage, infection, and ischemia. The ability of tissues to effectively recover from injury is a cornerstone of human health. The healing response in tissues is conserved across organs and typically involves distinct but overlapping inflammatory, proliferative, and maturation/resolution phases. If the inflammatory phase is not successfully controlled and appropriately resolved, an excessive healing response characterized by scar formation can lead to tissue fibrosis, a major clinical complication in disorders such as Crohn's disease (CD). As a result of enhanced metabolic and inflammatory processes during chronic inflammation, profound changes in tissue oxygen levels occur leading to localized tissue hypoxia. Therefore, inflammation, fibrosis, and hypoxia are coincidental events during inflammation-driven fibrosis. Our current understanding of the mechanism(s) underpinning fibrosis is limited as are the therapeutic options available. In this review, we discuss what is known about the cellular and molecular mechanisms underpinning inflammation-driven fibrosis and how hypoxia may play a role in shaping this process.
Collapse
Affiliation(s)
- Mario C Manresa
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Catherine Godson
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
75
|
Finley SD, Chu LH, Popel AS. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov Today 2014; 20:187-97. [PMID: 25286370 DOI: 10.1016/j.drudis.2014.09.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023]
Abstract
Angiogenesis is an exquisitely regulated process that is required for physiological processes and is also important in numerous diseases. Tumors utilize angiogenesis to generate the vascular network needed to supply the cancer cells with nutrients and oxygen, and many cancer drugs aim to inhibit tumor angiogenesis. Anti-angiogenic therapy involves inhibiting multiple cell types, molecular targets, and intracellular signaling pathways. Computational tools are useful in guiding treatment strategies, predicting the response to treatment, and identifying new targets of interest. Here, we describe progress that has been made in applying mathematical modeling and bioinformatics approaches to study anti-angiogenic therapeutics in cancer.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liang-Hui Chu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
76
|
Kiuchi T, Ortiz-Zapater E, Monypenny J, Matthews DR, Nguyen LK, Barbeau J, Coban O, Lawler K, Burford B, Rolfe DJ, de Rinaldis E, Dafou D, Simpson MA, Woodman N, Pinder S, Gillett CE, Devauges V, Poland SP, Fruhwirth G, Marra P, Boersma YL, Plückthun A, Gullick WJ, Yarden Y, Santis G, Winn M, Kholodenko BN, Martin-Fernandez ML, Parker P, Tutt A, Ameer-Beg SM, Ng T. The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility. Sci Signal 2014; 7:ra78. [PMID: 25140053 DOI: 10.1126/scisignal.2005157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
Collapse
Affiliation(s)
- Tai Kiuchi
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Elena Ortiz-Zapater
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - James Monypenny
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel R Matthews
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jody Barbeau
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Oana Coban
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Katherine Lawler
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Brian Burford
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel J Rolfe
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Emanuele de Rinaldis
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Dimitra Dafou
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael A Simpson
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Natalie Woodman
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sarah Pinder
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Cheryl E Gillett
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Viviane Devauges
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Simon P Poland
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Pierfrancesco Marra
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ykelien L Boersma
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - William J Gullick
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - George Santis
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Martyn Winn
- Computational Science and Engineering Department, Daresbury Laboratory, Science and Technology Facilities Council, Research Complex at Warrington, Warrington WA4 4AD, UK
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Peter Parker
- Division of Cancer Studies, King's College London, London SE1 1UL, UK. Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Simon M Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK. UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| |
Collapse
|
77
|
Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014; 15:243-56. [PMID: 24651542 DOI: 10.1038/nrm3772] [Citation(s) in RCA: 779] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A distinctive feature of stem cells is their capacity to self-renew to maintain pluripotency. Studies of genetically-engineered mouse models and recent advances in metabolomic analysis, particularly in haematopoietic stem cells, have deepened our understanding of the contribution made by metabolic cues to the regulation of stem cell self-renewal. Many types of stem cells heavily rely on anaerobic glycolysis, and stem cell function is also regulated by bioenergetic signalling, the AKT-mTOR pathway, Gln metabolism and fatty acid metabolism. As maintenance of a stem cell pool requires a finely-tuned balance between self-renewal and differentiation, investigations into the molecular mechanisms and metabolic pathways underlying these decisions hold great therapeutic promise.
Collapse
|
78
|
Bagnall J, Leedale J, Taylor SE, Spiller DG, White MRH, Sharkey KJ, Bearon RN, Sée V. Tight control of hypoxia-inducible factor-α transient dynamics is essential for cell survival in hypoxia. J Biol Chem 2014; 289:5549-64. [PMID: 24394419 PMCID: PMC3937633 DOI: 10.1074/jbc.m113.500405] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intracellular signaling involving hypoxia-inducible factor (HIF) controls the adaptive responses to hypoxia. There is a growing body of evidence demonstrating that intracellular signals encode temporal information. Thus, the dynamics of protein levels, as well as protein quantity and/or localization, impacts on cell fate. We hypothesized that such temporal encoding has a role in HIF signaling and cell fate decisions triggered by hypoxic conditions. Using live cell imaging in a controlled oxygen environment, we observed transient 3-h pulses of HIF-1α and -2α expression under continuous hypoxia. We postulated that the well described prolyl hydroxylase (PHD) oxygen sensors and HIF negative feedback regulators could be the origin of the pulsatile HIF dynamics. We used iterative mathematical modeling and experimental analysis to scrutinize which parameter of the PHD feedback could control HIF timing and we probed for the functional redundancy between the three main PHD proteins. We identified PHD2 as the main PHD responsible for HIF peak duration. We then demonstrated that this has important consequences, because the transient nature of the HIF pulse prevents cell death by avoiding transcription of p53-dependent pro-apoptotic genes. We have further shown the importance of considering HIF dynamics for coupling mathematical models by using a described HIF-p53 mathematical model. Our results indicate that the tight control of HIF transient dynamics has important functional consequences on the cross-talk with key signaling pathways controlling cell survival, which is likely to impact on HIF targeting strategies for hypoxia-associated diseases such as tumor progression and ischemia.
Collapse
Affiliation(s)
- James Bagnall
- From the Centre for Cell Imaging, Institute of Integrative Biology, and
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Genetic experiments over the last few decades have identified many regulatory proteins critical for DNA transcription. The dynamics of their transcriptional activities shape the differential expression of the genes they control. Here we describe a simple method, based on the secreted luciferase, to measure the activities of two transcription factors NFκB and HIF. This technique can effectively monitor dynamics of transcriptional events in a population of cells and be up-scaled for high-throughput screening and promoter analysis, making it ideal for data-demanding applications such as mathematical modelling.
Collapse
|
80
|
FoxO3a modulates hypoxia stress induced oxidative stress and apoptosis in cardiac microvascular endothelial cells. PLoS One 2013; 8:e80342. [PMID: 24278276 PMCID: PMC3835407 DOI: 10.1371/journal.pone.0080342] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022] Open
Abstract
Cardiac microvascular endothelial cells (CMECs) dysfunction induced by hypoxia is an important pathophysiological event in myocardium ischemic injury, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors regulate target genes involved in apoptosis and cellular reactive oxygen species (ROS) production. Therefore, the present study was designed to elucidate the potential role of FoxOs on the hypoxia-induced ROS formation and apoptosis in CMECs. Exposure to low oxygen tension stimulated ROS accumulation and increased apoptosis in CMECs within 6–24 h. Hypoxia also significantly increased the expressions of HIF-1α and FoxO3a. However, hypoxia decreased the phosphorylation of Akt and FoxO3a, correlated with increased nuclear accumulation. Conversely, the expression of FoxO1 was not significantly altered by hypoxia. After inhibition of HIF-1α by siRNA, we observed that hypoxia-induced ROS accumulation and apoptosis of CMECs were decreased. Meanwhile, knockdown of HIF-1α also inhibited hypoxia induced FoxO3a expression in CMECs, but did not affect FoxO1 expression. Furthermore, hypoxia-induced ROS formation and apoptosis in CMECs were correlated with the disturbance of Bcl-2 family proteins, which were abolished by FoxO3a silencing with siRNA. In conclusion, our data provide evidence that FoxO3a leads to ROS accumulation in CMECs, and in parallel, induces the disturbance of Bcl-2 family proteins which results in apoptosis.
Collapse
|
81
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
82
|
Regulation of IL-1β-induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways. Proc Natl Acad Sci U S A 2013; 110:18490-5. [PMID: 24145445 DOI: 10.1073/pnas.1309718110] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor κB (NF-κB), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1β, a major proinflammatory cytokine that regulates NF-κB, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1β-induced NF-κB at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1β-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1β signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1β-dependent inflammatory signaling.
Collapse
|
83
|
Cavadas MA, Nguyen LK, Cheong A. Hypoxia-inducible factor (HIF) network: insights from mathematical models. Cell Commun Signal 2013; 11:42. [PMID: 23758895 PMCID: PMC3686674 DOI: 10.1186/1478-811x-11-42] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022] Open
Abstract
Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1).To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NFκB and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings.
Collapse
Affiliation(s)
- Miguel As Cavadas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| | | | | |
Collapse
|