51
|
Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017; 72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
A fundamental process during both embryo development and stem cell differentiation is the control of cell lineage determination. In developing skeletal muscle, many of the diffusible signaling molecules, transcription factors and more recently non-coding RNAs that contribute to this process have been identified. This has facilitated advances in our understanding of the molecular mechanisms underlying the control of cell fate choice. Here we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic muscle development and differentiation, and in satellite cells of adult muscle, which are essential for muscle growth and regeneration. Some of these short post-transcriptional regulators of gene expression are restricted to skeletal muscle, but their expression can also be more widespread. In addition, we discuss a few examples of long non-coding RNAs, which are numerous but much less well understood.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
52
|
El Haddad M, Notarnicola C, Evano B, El Khatib N, Blaquière M, Bonnieu A, Tajbakhsh S, Hugon G, Vernus B, Mercier J, Carnac G. Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. Cell Mol Life Sci 2017; 74:1923-1936. [PMID: 28025671 PMCID: PMC11107588 DOI: 10.1007/s00018-016-2445-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 01/18/2023]
Abstract
Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.
Collapse
Affiliation(s)
- Marina El Haddad
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Cécile Notarnicola
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Brendan Evano
- Stem Cells and Development, CNRS URA 2578, Department of Developmental and Stem Cell Biology, Pasteur Institute, 25 rue du Dr Roux, 75015, Paris, France
| | - Nour El Khatib
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Marine Blaquière
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Anne Bonnieu
- INRA, UMR866, Dynamique Musculaire et Métabolisme, Université Montpellier, 34060, Montpellier, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental and Stem Cell Biology, Pasteur Institute, 25 rue du Dr Roux, 75015, Paris, France
| | - Gérald Hugon
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Barbara Vernus
- INRA, UMR866, Dynamique Musculaire et Métabolisme, Université Montpellier, 34060, Montpellier, France
| | - Jacques Mercier
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
- Département de Physiologie Clinique, CHRU de Montpellier, 34295, Montpellier Cedex 5, France
| | - Gilles Carnac
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
53
|
Szymkowicz DB, Sims KC, Castro NM, Bridges WC, Bain LJ. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:1-10. [PMID: 28237603 PMCID: PMC5395342 DOI: 10.1016/j.aquatox.2017.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/06/2023]
Abstract
Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb AsIII from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended.
Collapse
MESH Headings
- Animals
- Arsenic/toxicity
- Behavior, Animal/drug effects
- Embryonic Development/drug effects
- Environmental Exposure/analysis
- Female
- Fundulidae/embryology
- Fundulidae/genetics
- Fundulidae/growth & development
- Gene Expression Regulation, Developmental/drug effects
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Dana B Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Kaleigh C Sims
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Noemi M Castro
- Department of Biochemistry and Molecular Biology, University of California-Davis, Davis, CA, United States
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, United States
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
54
|
Yang X, Yang S, Wang C, Kuang S. The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. J Biol Chem 2017; 292:5981-5991. [PMID: 28232488 DOI: 10.1074/jbc.m116.756312] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
Muscle satellite cells are myogenic stem cells whose quiescence, activation, self-renewal, and differentiation are influenced by oxygen supply, an environmental regulator of stem cell activity. Accordingly, stem cell-specific oxygen signaling pathways precisely control the balance between muscle growth and regeneration in response to oxygen fluctuations, and hypoxia-inducible factors (HIFs) are central mediators of these cellular responses. However, the in vivo roles of HIFs in quiescent satellite cells and activated satellite cells (myoblasts) are poorly understood. Using transgenic mouse models for cell-specific HIF expression, we show here that HIF1α and HIF2α are preferentially expressed in pre- and post-differentiation myoblasts, respectively. Interestingly, double knockouts of HIF1α and HIF2α (HIF1α/2α dKO) generated with the MyoDCre system in embryonic myoblasts resulted in apparently normal muscle development and growth. However, HIF1α/2α dKO produced with the tamoxifen-inducible, satellite cell-specific Pax7CreER system in postnatal satellite cells delayed injury-induced muscle repair due to a reduced number of myoblasts during regeneration. Analysis of satellite cell dynamics on myofibers confirmed that HIF1α/2α dKO myoblasts exhibit reduced self-renewal but more pronounced differentiation under hypoxic conditions. Mechanistically, the HIF1α/2α dKO blunted hypoxia-induced activation of Notch signaling, a key determinant of satellite cell self-renewal. We conclude that HIF1α and HIF2α are dispensable for muscle stem cell function under normoxia but are required for maintaining satellite cell self-renewal in hypoxic environments. Our insights into a critical mechanism in satellite cell homeostasis during muscle regeneration could help inform research efforts to treat muscle diseases or improve muscle function.
Collapse
Affiliation(s)
- Xin Yang
- From the Department of Animal Science, Purdue University and
| | - Shiqi Yang
- From the Department of Animal Science, Purdue University and
| | - Chao Wang
- From the Department of Animal Science, Purdue University and
| | - Shihuan Kuang
- From the Department of Animal Science, Purdue University and .,Purdue University Center for Cancer Research, West Lafayette, Indiana 47907
| |
Collapse
|
55
|
Deshpande RS, Spector AA. Modeling Stem Cell Myogenic Differentiation. Sci Rep 2017; 7:40639. [PMID: 28106095 PMCID: PMC5247743 DOI: 10.1038/srep40639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023] Open
Abstract
The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies.
Collapse
Affiliation(s)
- Rajiv S Deshpande
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexander A Spector
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
56
|
Consalvi S, Brancaccio A, Dall'Agnese A, Puri PL, Palacios D. Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38α activation. Nat Commun 2017; 8:13956. [PMID: 28067271 PMCID: PMC5423270 DOI: 10.1038/ncomms13956] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/16/2016] [Indexed: 12/18/2022] Open
Abstract
Polycomb proteins are critical chromatin modifiers that regulate stem cell differentiation via transcriptional repression. In skeletal muscle progenitors Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), contributes to maintain the chromatin of muscle genes in a repressive conformation, whereas its down-regulation allows the progression through the myogenic programme. Here, we show that p38α kinase promotes EZH2 degradation in differentiating muscle cells through phosphorylation of threonine 372. Biochemical and genetic evidence demonstrates that the MYOD-induced E3 ubiquitin ligase Praja1 (PJA1) is involved in regulating EZH2 levels upon p38α activation. EZH2 premature degradation in proliferating myoblasts is prevented by low levels of PJA1, its cytoplasmic localization and the lower activity towards unphosphorylated EZH2. Our results indicate that signal-dependent degradation of EZH2 is a prerequisite for satellite cells differentiation and identify PJA1 as a new player in the epigenetic control of muscle gene expression. In skeletal muscle progenitors, EZH2 maintains myogenic genes in a repressed state, but during differentiation its levels are reduced via unknown mechanisms. Here the authors show that during myogenesis, p38α kinase phosphorylates EZH2 and targets it for degradation by the ubiquitin ligase PRAJA1.
Collapse
Affiliation(s)
- Silvia Consalvi
- Laboratory of Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Arianna Brancaccio
- Laboratory of Epigenetics and Signal Transduction, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy.,Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Via Scarpa 14, Sapienza University, 00161 Rome, Italy
| | - Alessandra Dall'Agnese
- Sanford-Burnham-Prebys Medical Discovery Institute, Development Aging and Regeneration Program, La Jolla 92037, California, USA
| | - Pier Lorenzo Puri
- Laboratory of Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy.,Sanford-Burnham-Prebys Medical Discovery Institute, Development Aging and Regeneration Program, La Jolla 92037, California, USA
| | - Daniela Palacios
- Laboratory of Epigenetics and Signal Transduction, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
57
|
Rybalko VY, Pham CB, Hsieh PL, Hammers DW, Merscham-Banda M, Suggs LJ, Farrar RP. Controlled delivery of SDF-1α and IGF-1: CXCR4(+) cell recruitment and functional skeletal muscle recovery. Biomater Sci 2017; 3:1475-86. [PMID: 26247892 DOI: 10.1039/c5bm00233h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient.
Collapse
Affiliation(s)
- Viktoriya Y Rybalko
- Department of Kinesiology, The University of Texas at Austin, 1 University Station D3700, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
MacGhee ME, Bradley JS, McCoski SR, Reeg AM, Ealy AD, Johnson SE. Plane of nutrition affects growth rate, organ size and skeletal muscle satellite cell activity in newborn calves. J Anim Physiol Anim Nutr (Berl) 2016; 101:475-483. [PMID: 27859677 DOI: 10.1111/jpn.12568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/13/2016] [Indexed: 01/22/2023]
Abstract
Plane of nutrition effects on body, tissue and cellular growth in the neonatal calf are poorly understood. The hypothesis that a low plane of nutrition (LPN) would limit skeletal muscle size by reducing fibre growth and muscle progenitor cell activity was tested. At birth, calves were randomly assigned to either a LPN (20% CP, 20% fat; GE=1.9 Mcal/days) or a high plane of nutrition (HPN; 27% CP, 10% fat, GE = 3.8 Mcal/days) in a 2 × 3 factorial design to test the impact of diet on neonatal calf growth, organ weight and skeletal muscle morphometry with time. Groups of calves (n = 4 or 5) were euthanised at 2, 4 and 8 week of age and organ and empty carcass weights were recorded. Body composition was measured by DXA. Longissimus muscle (LM) fibre cross-sectional area (CSA), fibre/mm2 and Pax7 were measured by immunohistology. Satellite cells were isolated at each time point and proliferation rates were measured by EdU incorporation. Calves fed a HPN had greater (p < 0.05) BW, ADG and hip height than those fed a LPN for 2, 4 or 8 weeks. HPN calves contained a greater (p < 0.05) percentage of fat tissue than LPN calves. Liver, spleen and thymus weights were less (p < 0.05) in LPN calves than HPN animals. Calves fed HPN had larger (p < 0.05) LM CSA at 8 weeks than LPN fed animals with no differences between the groups in numbers of satellite cells per fibre. Proliferation rates of satellite cells isolated from HPN fed calves were greater (p < 0.05) at 2 weeks than LPN fed animals, which exhibited greater (p < 0.05) proliferation rates at 4 weeks than HPN fed calves. We conclude a LPN diet reduces body growth and organ size and metabolically reprograms satellite cell activity.
Collapse
Affiliation(s)
- M E MacGhee
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J S Bradley
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - S R McCoski
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - A M Reeg
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - A D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - S E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
59
|
Brown LD, Hay WW. Impact of placental insufficiency on fetal skeletal muscle growth. Mol Cell Endocrinol 2016; 435:69-77. [PMID: 26994511 PMCID: PMC5014698 DOI: 10.1016/j.mce.2016.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.
Collapse
Affiliation(s)
- Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.
| |
Collapse
|
60
|
Kurosaka M, Ogura Y, Funabashi T, Akema T. Early Growth Response 3 (Egr3) Contributes a Maintenance of C2C12 Myoblast Proliferation. J Cell Physiol 2016; 232:1114-1122. [PMID: 27576048 DOI: 10.1002/jcp.25574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
Satellite cell proliferation is a crucially important process for adult myogenesis. However, its regulatory mechanisms remain unknown. Early growth response 3 (Egr3) is a zinc-finger transcription factor that regulates different cellular functions. Reportedly, Egr3 interacts with multiple signaling molecules that are also known to regulate satellite cell proliferation. Therefore, it is possible that Egr3 is involved in satellite cell proliferation. Results of this study have demonstrated that Egr3 transcript levels are upregulated in regenerating mouse skeletal muscle after cardiotoxin injury. Using C2C12 myoblast culture (a model of activated satellite cells), results show that inhibition of Egr3 by shRNA impairs the myoblast proliferation rate. Results also show reduction of NF-кB transcriptional activity in Egr3-inhibited cells. Inhibition of Egr3 is associated with an increase in annexin V+ cell fraction and apoptotic protein activity including caspase-3 and caspase-7, and Poly-ADP ribose polymerase. By contrast, the reduction of cellular proliferation by inhibition of Egr3 was partially recovered by treatment of pan-caspase inhibitor Z-VAD-FMK. Collectively, these results suggest that Egr3 is involved in myoblast proliferation by interaction with survival signaling. J. Cell. Physiol. 232: 1114-1122, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
61
|
Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology (Bethesda) 2016; 30:417-27. [PMID: 26525341 DOI: 10.1152/physiol.00026.2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is highly irrigated by blood vessels. Beyond oxygen and nutrient supply, new vessel functions have been identified. This review presents vessel microanatomy and functions at tissue, cellular, and molecular levels. Mechanisms of vessel plasticity are described during skeletal muscle development and acute regeneration, and in physiological and pathological contexts.
Collapse
Affiliation(s)
- Claire Latroche
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | - Cyril Gitiaux
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | | | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Mounier
- CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| |
Collapse
|
62
|
Elliott JM, Dayanidhi S, Hazle C, Hoggarth MA, McPherson J, Sparks CL, Weber KA. Advancements in Imaging Technology: Do They (or Will They) Equate to Advancements in Our Knowledge of Recovery in Whiplash? J Orthop Sports Phys Ther 2016; 46:862-873. [PMID: 27690836 PMCID: PMC7274526 DOI: 10.2519/jospt.2016.6735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synopsis It is generally accepted that up to 50% of those with a whiplash injury following a motor vehicle collision will fail to fully recover. Twenty-five percent of these patients will demonstrate a markedly complex clinical picture that includes severe pain-related disability, sensory and motor disturbances, and psychological distress. A number of psychosocial factors have shown prognostic value for recovery following whiplash from a motor vehicle collision. To date, no management approach (eg, physical therapies, education, psychological interventions, or interdisciplinary strategies) for acute whiplash has positively influenced recovery rates. For many of the probable pathoanatomical lesions (eg, fracture, ligamentous rupture, disc injury), there remains a lack of available clinical tests for identifying their presence. Fractures, particularly at the craniovertebral and cervicothoracic junctions, may be radiographically occult. While high-resolution computed tomography scans can detect fractures, there remains a lack of prevalence data for fractures in this population. Conventional magnetic resonance imaging has not consistently revealed lesions in patients with acute or chronic whiplash, a "failure" that may be due to limitations in the resolution of available devices and the use of standard sequences. The technological evolution of imaging techniques and sequences eventually might provide greater resolution to reveal currently elusive anatomical lesions (or, perhaps more importantly, temporal changes in physiological responses to assumed lesions) in those patients at risk of poor recovery. Preliminary findings from 2 prospective cohort studies in 2 different countries suggest that this is so, as evidenced by changes to the structure of skeletal muscles in those who do not fully recover. In this clinical commentary, we will briefly introduce the available imaging decision rules and the current knowledge underlying the pathomechanics and pathophysiology of whiplash. We will then acknowledge known prognostic factors underlying functional recovery. Last, we will highlight emerging evidence regarding the pathobiology of muscle degeneration/regeneration, as well as advancements in neuroimaging and musculoskeletal imaging techniques (eg, functional magnetic resonance imaging, magnetization transfer imaging, spectroscopy, diffusion-weighted imaging) that may be used as noninvasive and objective complements to known prognostic factors associated with whiplash recovery, in particular, poor functional recovery. J Orthop Sports Phys Ther 2016;46(10):861-872. doi:10.2519/jospt.2016.6735.
Collapse
|
63
|
Sustained Depolarization of the Resting Membrane Potential Regulates Muscle Progenitor Cell Growth and Maintains Stem Cell Properties In Vitro. Stem Cell Rev Rep 2016; 12:634-644. [DOI: 10.1007/s12015-016-9687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
64
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway. Front Cell Dev Biol 2016; 4:91. [PMID: 27626031 PMCID: PMC5003838 DOI: 10.3389/fcell.2016.00091] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra University Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra University Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra UniversityBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain; Tissue Regeneration Laboratory, Centro Nacional de Investigaciones CardiovascularesMadrid, Spain
| |
Collapse
|
65
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
66
|
Abstract
Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses "stemness" and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Shizuka Ogawa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan.
| |
Collapse
|
67
|
Dhawan J, Laxman S. Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology. J Cell Sci 2015; 128:4467-74. [PMID: 26672015 PMCID: PMC5695657 DOI: 10.1242/jcs.177758] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the past decade, major advances have occurred in the understanding of mammalian stem cell biology, but roadblocks (including gaps in our fundamental understanding) remain in translating this knowledge to regenerative medicine. Interestingly, a close analysis of the Saccharomyces cerevisiae literature leads to an appreciation of how much yeast biology has contributed to the conceptual framework underpinning our understanding of stem cell behavior, to the point where such insights have been internalized into the realm of the known. This Opinion article focuses on one such example, the quiescent adult mammalian stem cell, and examines concepts underlying our understanding of quiescence that can be attributed to studies in yeast. We discuss the metabolic, signaling and gene regulatory events that control entry and exit into quiescence in yeast. These processes and events retain remarkable conservation and conceptual parallels in mammalian systems, and collectively suggest a regulated program beyond the cessation of cell division. We argue that studies in yeast will continue to not only reveal fundamental concepts in quiescence, but also leaven progress in regenerative medicine.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India CSIR Center for Cellular and Molecular Biology, Hyderabad, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
68
|
Gunton JE, Girgis CM, Baldock PA, Lips P. Bone muscle interactions and vitamin D. Bone 2015; 80:89-94. [PMID: 25745883 DOI: 10.1016/j.bone.2015.02.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/17/2022]
Abstract
Beyond the established roles of vitamin D in bone and mineral homeostasis, we are becoming increasingly aware of its diverse effects in skeletal muscle. Subjects with severe vitamin D deficiency or mutations of the vitamin D receptor develop generalized atrophy of muscle and bone, suggesting coordinated effects of vitamin D in musculoskeletal physiology. At a mechanistic level, vitamin D exerts wide-ranging effects in muscle and bone calcium handling, differentiation and development. Vitamin D also modulates muscle and bone-derived hormones, facilitating cross-talk between these tissues. In this review, we discuss emerging evidence that vitamin D regulates bone and muscle in a direct, integrated fashion, positioning the vitamin D pathway as a potential therapeutic target for musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Jenny E Gunton
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, NSW, Australia; Westmead Millennium Institute, Westmead Hospital, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| | - Christian M Girgis
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, NSW, Australia; Westmead Millennium Institute, Westmead Hospital, NSW, Australia
| | - Paul A Baldock
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Paul Lips
- Department of Internal Medicine/Endocrinology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
69
|
Abstract
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.
Collapse
|
70
|
Oláh G, Szczesny B, Brunyánszki A, López-García IA, Gerö D, Radák Z, Szabo C. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS One 2015. [PMID: 26218895 PMCID: PMC4517814 DOI: 10.1371/journal.pone.0134227] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1), the major isoform of the poly (ADP-ribose) polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose) (PAR) groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12) and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor) exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6). Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant-induced injury. Taken together, our data indicate that the reduction of PARP-1 expression during the process of the skeletal muscle differentiation serves as a protective mechanism to maintain the cellular functions of skeletal muscle during oxidative stress.
Collapse
Affiliation(s)
- Gábor Oláh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
- Shriners Hospital for Children, Galveston, TX, United States of America
| | - Attila Brunyánszki
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Isabel A. López-García
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Domokos Gerö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Zsolt Radák
- Faculty of Physical Education and Sport Sciences, Semmelweis University, Alkotás Str. 44, Budapest, Hungary
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
- Shriners Hospital for Children, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
71
|
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 2015; 142:1572-81. [PMID: 25922523 PMCID: PMC4419274 DOI: 10.1242/dev.114223] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles. Summary: This Review discusses how satellite stem cell behaviour is regulated during regeneration and degeneration by a complex balance between extrinsic cues and intrinsic regulatory mechanisms.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
72
|
Kawesa S, Vanstone J, Tsilfidis C. A differential response to newt regeneration extract by C2C12 and primary mammalian muscle cells. Skelet Muscle 2015; 5:19. [PMID: 26090089 PMCID: PMC4471912 DOI: 10.1186/s13395-015-0044-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Background Dedifferentiation, a process whereby differentiated cells lose their specialized characteristics and revert to a less differentiated state, plays a key role in the regeneration process in urodele amphibians such as the red spotted newt, Notophthalmus viridescens. Dedifferentiation of fully mature tissues is generally absent in mammalian cells. Previous studies have shown that mouse C2C12 multinucleated myotubes treated with extract derived from regenerating newt forelimbs can re-enter the cell cycle, fragment into mononucleated cells, and proliferate. However, this response has been difficult to replicate. Methods We isolated extract from early newt forelimb regenerates and assessed its effects on differentiation of proliferating primary and C2C12 myoblasts. We also treated fully differentiated primary and C2C12 myotube cultures with extract and assessed cell cycle re-entry and myotube fragmentation. Results We have confirmed the results obtained in C2C12 cells and expanded these studies to also examine the effects of newt regeneration extracts on primary muscle cells. Newt extract can block differentiation of both C2C12 and primary myoblasts. Once differentiation is induced, treatment with newt extract causes cell cycle re-entry and fragmentation of C2C12 myotubes. Downregulation of p21 and muscle-specific markers is also induced. Primary myotubes also fragment in response to extract treatment, and the fragmented cells remain viable for long periods of time in culture. However, unlike C2C12 cells, primary muscle cells do not re-enter the cell cycle in response to treatment with newt extracts. Conclusions Dedifferentiation of fully mature muscle occurs during regeneration in the newt forelimb to contribute cells to the regeneration process. Our study shows that extracts derived from regenerating newt forelimbs can induce dedifferentiation, cell cycle re-entry, and fragmentation of mouse C2C12 cells but can only induce fragmentation in primary muscle cells. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Kawesa
- Ottawa Hospital Research Institute, Vision Research/Regenerative Medicine Program, 501 Smyth Road, Box 307, Ottawa, Ontario K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| | - Jason Vanstone
- Ottawa Hospital Research Institute, Vision Research/Regenerative Medicine Program, 501 Smyth Road, Box 307, Ottawa, Ontario K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada ; Current address: Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1 Canada
| | - Catherine Tsilfidis
- Ottawa Hospital Research Institute, Vision Research/Regenerative Medicine Program, 501 Smyth Road, Box 307, Ottawa, Ontario K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| |
Collapse
|
73
|
de Rezende Pinto WBV, de Souza PVS, Oliveira ASB. Normal muscle structure, growth, development, and regeneration. Curr Rev Musculoskelet Med 2015; 8:176-81. [PMID: 25860794 PMCID: PMC4596171 DOI: 10.1007/s12178-015-9267-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Knowledge about biochemical, structural and physiological aspects, and properties regarding the skeletal muscle has been widely obtained in the last decades. Muscle disorders, mainly represented in neuromuscular clinical practice by acquired and hereditary myopathies, are well-recognized and frequently diagnosed in practice. Most clinical complaints and biochemical characterizations of each myopathy depends on the appropriate knowledge and interpretation of pathological findings and their comparison with normal muscle findings. Great improvement has been obtained in the last decades mainly involving the mechanisms of normal muscle architecture and physiological function in the healthy individuals. Genetic mechanisms have also been widely studied. We provide an extensive literature review involving current knowledge regarding muscle cell structure and function and embryological and regenerative processes linked to muscle lesion. An updated comprehensive description involving the main nuclear genomic regulatory mechanisms of muscle regeneration and embryogenesis is provided in this review.
Collapse
Affiliation(s)
- Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP 04022-002 Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP 04022-002 Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP 04022-002 Brazil
| |
Collapse
|
74
|
Yablonka-Reuveni Z, Danoviz ME, Phelps M, Stuelsatz P. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Front Aging Neurosci 2015; 7:85. [PMID: 26074812 PMCID: PMC4446549 DOI: 10.3389/fnagi.2015.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle satellite cells (SCs) are Pax7+ myogenic stem cells that reside between the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are typically quiescent, but can be activated in response to muscle injury. Depending on the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage within individual myofibers or produce a larger progeny pool that forms new myofibers in cases of overt muscle injury. SC transition through proliferation, differentiation and renewal is governed by the molecular blueprint of the cells as well as by the extracellular milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF) family in regulating SCs during growth and aging is well recognized. Of the several FGFs shown to affect SCs, FGF1, FGF2, and FGF6 proteins have been documented in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the mouse model, we show here that of the four Fgfr genes, only Fgfr1 and Fgfr4 are expressed at relatively high levels in quiescent SCs and their proliferating progeny. To further investigate the role of FGFR1 in adult myogenesis, we have employed a genetic (Cre/loxP) approach for myogenic-specific (MyoDCre-driven) ablation of Fgfr1. Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory for SC performance in this acute muscle trauma model, where compensatory growth factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice. Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed in SCs.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Maria E Danoviz
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Michael Phelps
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Pascal Stuelsatz
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| |
Collapse
|
75
|
Masuda S, Hisamatsu T, Seko D, Urata Y, Goto S, Li TS, Ono Y. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells. Physiol Rep 2015; 3:3/4/e12377. [PMID: 25869487 PMCID: PMC4425979 DOI: 10.14814/phy2.12377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsubasa Hisamatsu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
76
|
G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun 2015; 6:6745. [PMID: 25865621 DOI: 10.1038/ncomms7745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/24/2015] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a chronic and life-threatening disease that is initially supported by muscle regeneration but eventually shows satellite cell exhaustion and muscular dysfunction. The life-long maintenance of skeletal muscle homoeostasis requires the satellite stem cell pool to be preserved. Asymmetric cell division plays a pivotal role in the maintenance of the satellite cell pool. Here we show that granulocyte colony-stimulating factor receptor (G-CSFR) is asymmetrically expressed in activated satellite cells. G-CSF positively affects the satellite cell population during multiple stages of differentiation in ex vivo cultured fibres. G-CSF could be important in developing an effective therapy for DMD based on its potential to modulate the supply of multiple stages of regenerated myocytes. This study shows that the G-CSF-G-CSFR axis is fundamentally important for long-term muscle regeneration, functional maintenance and lifespan extension in mouse models of DMD with varying severities.
Collapse
|
77
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|