51
|
Abstract
The four-component intramembrane protease γ-secretase is intricately linked to the development of Alzheimer's disease. Despite recent structural advances, the transmembrane segments (TMs) of γ-secretase remain to be specifically assigned. Here we report a 3D structure of human γ-secretase at 4.32-Å resolution, determined by single-particle, electron cryomicroscopy in the presence of digitonin and with a T4 lysozyme fused to the amino terminus of presenilin 1 (PS1). The overall structure of this human γ-secretase is very similar to that of wild-type γ-secretase determined in the presence of amphipols. The 20 TMs are unambiguously assigned to the four components, revealing principles of subunit assembly. Within the transmembrane region, PS1 is centrally located, with its amino-terminal fragment (NTF) packing against Pen-2 and its carboxyl-terminal fragment (CTF) interacting with Aph-1. The only TM of nicastrin associates with Aph-1 at the thick end of the TM horseshoe, and the extracellular domain of nicastrin directly binds Pen-2 at the thin end. TM6 and TM7 in PS1, which harbor the catalytic aspartate residues, are located on the convex side of the TM horseshoe. This structure serves as an important framework for understanding the function and mechanism of γ-secretase.
Collapse
|
52
|
Bohm C, Chen F, Sevalle J, Qamar S, Dodd R, Li Y, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Current and future implications of basic and translational research on amyloid-β peptide production and removal pathways. Mol Cell Neurosci 2015; 66:3-11. [PMID: 25748120 PMCID: PMC4503820 DOI: 10.1016/j.mcn.2015.02.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/12/2023] Open
Abstract
Inherited variants in multiple different genes are associated with increased risk for Alzheimer's disease (AD). In many of these genes, the inherited variants alter some aspect of the production or clearance of the neurotoxic amyloid β-peptide (Aβ). Thus missense, splice site or duplication mutants in the presenilin 1 (PS1), presenilin 2 (PS2) or the amyloid precursor protein (APP) genes, which alter the levels or shift the balance of Aβ produced, are associated with rare, highly penetrant autosomal dominant forms of Familial Alzheimer's Disease (FAD). Similarly, the more prevalent late-onset forms of AD are associated with both coding and non-coding variants in genes such as SORL1, PICALM and ABCA7 that affect the production and clearance of Aβ. This review summarises some of the recent molecular and structural work on the role of these genes and the proteins coded by them in the biology of Aβ. We also briefly outline how the emerging knowledge about the pathways involved in Aβ generation and clearance can be potentially targeted therapeutically. This article is part of Special Issue entitled "Neuronal Protein".
Collapse
Affiliation(s)
- C Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - F Chen
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - J Sevalle
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - S Qamar
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - R Dodd
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Y Li
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - G Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - P E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - P H St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada; Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|