51
|
How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration? BIOLOGY 2020; 9:biology9120439. [PMID: 33276594 PMCID: PMC7761587 DOI: 10.3390/biology9120439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary The migration of immune cells is vital during inflammatory responses. Macrophages, which are a subset of immune cells, are unique in the ways they migrate because they can switch between different mechanism of migration. This crucial feature of macrophage migration has been underappreciated in the literature because technologies used to study macrophage migration were not able to efficiently detect those subtle differences between macrophages and other immune cells. This review article describes popular technologies used to study macrophage migration and critically assesses their advantages and disadvantages in macrophage migration studies. Abstract Macrophage chemotaxis is crucial during both onset and resolution of inflammation and unique among all leukocytes. Macrophages are able to switch between amoeboid and mesenchymal migration to optimise their migration through 3D environments. This subtle migration phenotype has been underappreciated in the literature, with macrophages often being grouped and discussed together with other leukocytes, possibly due to the limitations of current chemotaxis assays. Transwell assays were originally designed in the 1960s but despite their long-known limitations, they are still one of the most popular methods of studying macrophage migration. This review aims to critically evaluate transwell assays, and other popular chemotaxis assays, comparing their advantages and limitations in macrophage migration studies.
Collapse
|
52
|
Barros-Becker F, Squirrell JM, Burke R, Chini J, Rindy J, Karim A, Eliceiri KW, Gibson A, Huttenlocher A. Distinct Tissue Damage and Microbial Cues Drive Neutrophil and Macrophage Recruitment to Thermal Injury. iScience 2020; 23:101699. [PMID: 33196024 PMCID: PMC7644964 DOI: 10.1016/j.isci.2020.101699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Tissue damage triggers a rapid innate immune response that mediates host defense. Previously we reported that thermal damage of the larval zebrafish fin disrupts collagen organization and induces a robust and potentially damaging innate immune response. The mechanisms that drive damaging versus protective neutrophil inflammation in interstitial tissues remain unclear. Here we identify distinct cues in the tissue microenvironment that differentially drive neutrophil and macrophage responses to sterile injury. Using live imaging, we found a motile zone for neutrophils, but not macrophages, in collagen-free regions and identified a specific role for interleukin-6 (IL-6) receptor signaling in neutrophil responses to thermal damage. IL-6 receptor mutants show impaired neutrophil recruitment to sterile thermal injury that was not present in tissues infected with Pseudomonas aeruginosa. These findings identify distinct signaling networks during neutrophil recruitment to sterile and microbial damage cues and provide a framework to limit potentially damaging neutrophil inflammation.
Collapse
Affiliation(s)
- Francisco Barros-Becker
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Biology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Russell Burke
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Chini
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Aos Karim
- Department of Surgery, University of Wisconsin-Madison, Madison WI, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Angela Gibson
- Department of Surgery, University of Wisconsin-Madison, Madison WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
53
|
Kaveh A, Bruton FA, Buckley C, Oremek MEM, Tucker CS, Mullins JJ, Taylor JM, Rossi AG, Denvir MA. Live Imaging of Heart Injury in Larval Zebrafish Reveals a Multi-Stage Model of Neutrophil and Macrophage Migration. Front Cell Dev Biol 2020; 8:579943. [PMID: 33195220 PMCID: PMC7604347 DOI: 10.3389/fcell.2020.579943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/11/2020] [Indexed: 01/11/2023] Open
Abstract
Neutrophils and macrophages are crucial effectors and modulators of repair and regeneration following myocardial infarction, but they cannot be easily observed in vivo in mammalian models. Hence many studies have utilized larval zebrafish injury models to examine neutrophils and macrophages in their tissue of interest. However, to date the migratory patterns and ontogeny of these recruited cells is unknown. In this study, we address this need by comparing our larval zebrafish model of cardiac injury to the archetypal tail fin injury model. Our in vivo imaging allowed comprehensive mapping of neutrophil and macrophage migration from primary hematopoietic sites, to the wound. Early following injury there is an acute phase of neutrophil recruitment that is followed by sustained macrophage recruitment. Both cell types are initially recruited locally and subsequently from distal sites, primarily the caudal hematopoietic tissue (CHT). Once liberated from the CHT, some neutrophils and macrophages enter circulation, but most use abluminal vascular endothelium to crawl through the larva. In both injury models the innate immune response resolves by reverse migration, with very little apoptosis or efferocytosis of neutrophils. Furthermore, our in vivo imaging led to the finding of a novel wound responsive mpeg1+ neutrophil subset, highlighting previously unrecognized heterogeneity in neutrophils. Our study provides a detailed analysis of the modes of immune cell migration in larval zebrafish, paving the way for future studies examining tissue injury and inflammation.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Finnius A. Bruton
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte Buckley
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Magdalena E. M. Oremek
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carl S. Tucker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John J. Mullins
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Adriano G. Rossi
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Denvir
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
54
|
Principles of Leukocyte Migration Strategies. Trends Cell Biol 2020; 30:818-832. [DOI: 10.1016/j.tcb.2020.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
|
55
|
Cell type specific gene expression profiling reveals a role for complement component C3 in neutrophil responses to tissue damage. Sci Rep 2020; 10:15716. [PMID: 32973200 PMCID: PMC7518243 DOI: 10.1038/s41598-020-72750-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Tissue damage induces rapid recruitment of leukocytes and changes in the transcriptional landscape that influence wound healing. However, the cell-type specific transcriptional changes that influence leukocyte function and tissue repair have not been well characterized. Here, we employed translating ribosome affinity purification (TRAP) and RNA sequencing, TRAP-seq, in larval zebrafish to identify genes differentially expressed in neutrophils, macrophages, and epithelial cells in response to wounding. We identified the complement pathway and c3a.1, homologous to the C3 component of human complement, as significantly increased in neutrophils in response to wounds. c3a.1−/− zebrafish larvae have impaired neutrophil directed migration to tail wounds with an initial lag in recruitment early after wounding. Moreover, c3a.1−/− zebrafish larvae have impaired recruitment to localized bacterial infections and reduced survival that is, at least in part, neutrophil mediated. Together, our findings support the power of TRAP-seq to identify cell type specific changes in gene expression that influence neutrophil behavior in response to tissue damage.
Collapse
|
56
|
Stow JL, Condon ND. High-speed squeeze: Light-sheet imaging of zebrafish neutrophils. J Leukoc Biol 2020; 108:447-449. [PMID: 32745328 DOI: 10.1002/jlb.1ce0320-082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 11/07/2022] Open
Abstract
Discussion of lattice light sheet microscopy used for high resolution 3D imaging of neutrophil behaviors in zebrafish larvae.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
57
|
Sofias AM, Toner YC, Meerwaldt AE, van Leent MMT, Soultanidis G, Elschot M, Gonai H, Grendstad K, Flobak Å, Neckmann U, Wolowczyk C, Fisher EL, Reiner T, Davies CDL, Bjørkøy G, Teunissen AJP, Ochando J, Pérez-Medina C, Mulder WJM, Hak S. Tumor Targeting by α vβ 3-Integrin-Specific Lipid Nanoparticles Occurs via Phagocyte Hitchhiking. ACS NANO 2020; 14:7832-7846. [PMID: 32413260 PMCID: PMC7392528 DOI: 10.1021/acsnano.9b08693] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvβ3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, Faculty of Medicine, RWTH Aachen
University, 52074 Aachen, Germany
| | - Yohana C. Toner
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anu E. Meerwaldt
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mandy M. T. van Leent
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medical Biochemistry, Amsterdam University
Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Georgios Soultanidis
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mattijs Elschot
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Haruki Gonai
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kristin Grendstad
- Department
of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Åsmund Flobak
- The
Cancer Clinic, St. Olav’s University
Hospital, 7030 Trondheim, Norway
- Department
of Clinical and Molecular Medicine, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
| | - Ulrike Neckmann
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Camilla Wolowczyk
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Elizabeth L. Fisher
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Thomas Reiner
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Catharina de Lange Davies
- Department
of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Geir Bjørkøy
- Department
of Clinical and Molecular Medicine, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Abraham J. P. Teunissen
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jordi Ochando
- Department
of Oncological Sciences, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
- Transplant
Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Carlos Pérez-Medina
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Willem J. M. Mulder
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medical Biochemistry, Amsterdam University
Medical Centers, 1105 AZ Amsterdam, The Netherlands
- Laboratory
of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands
| | - Sjoerd Hak
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, 7034 Trondheim, Norway
| |
Collapse
|
58
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
59
|
Rapid exposure of macrophages to drugs resolves four classes of effects on the leading edge sensory pseudopod: Non-perturbing, adaptive, disruptive, and activating. PLoS One 2020; 15:e0233012. [PMID: 32469878 PMCID: PMC7259666 DOI: 10.1371/journal.pone.0233012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Leukocyte migration is controlled by a membrane-based chemosensory pathway on the leading edge pseudopod that guides cell movement up attractant gradients during the innate immune and inflammatory responses. This study employed single cell and population imaging to investigate drug-induced perturbations of leading edge pseudopod morphology in cultured, polarized RAW macrophages. The drugs tested included representative therapeutics (acetylsalicylic acid, diclofenac, ibuprofen, acetaminophen) as well as control drugs (PDGF, Gö6976, wortmannin). Notably, slow addition of any of the four therapeutics to cultured macrophages, mimicking the slowly increasing plasma concentration reported for standard oral dosage in patients, yielded no detectable change in pseudopod morphology. This finding is consistent with the well established clinical safety of these drugs. However, rapid drug addition to cultured macrophages revealed four distinct classes of effects on the leading edge pseudopod: (i) non-perturbing drug exposures yielded no detectable change in pseudopod morphology (acetylsalicylic acid, diclofenac); (ii) adaptive exposures yielded temporary collapse of the extended pseudopod and its signature PI(3,4,5)P3 lipid signal followed by slow recovery of extended pseudopod morphology (ibuprofen, acetaminophen); (iii) disruptive exposures yielded long-term pseudopod collapse (Gö6976, wortmannin); and (iv) activating exposures yielded pseudopod expansion (PDGF). The novel observation of adaptive exposures leads us to hypothesize that rapid addition of an adaptive drug overwhelms an intrinsic or extrinsic adaptation system yielding temporary collapse followed by adaptive recovery, while slow addition enables gradual adaptation to counteract the drug perturbation in real time. Overall, the results illustrate an approach that may help identify therapeutic drugs that temporarily inhibit the leading edge pseudopod during extreme inflammation events, and toxic drugs that yield long term inhibition of the pseudopod with negative consequences for innate immunity. Future studies are needed to elucidate the mechanisms of drug-induced pseudopod collapse, as well as the mechanisms of adaptation and recovery following some inhibitory drug exposures.
Collapse
|
60
|
Jerison ER, Quake SR. Heterogeneous T cell motility behaviors emerge from a coupling between speed and turning in vivo. eLife 2020; 9:53933. [PMID: 32427565 PMCID: PMC7237209 DOI: 10.7554/elife.53933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
T cells in vivo migrate primarily via undirected random walks, but it remains unresolved how these random walks generate an efficient search. Here, we use light sheet microscopy of T cells in the larval zebrafish as a model system to study motility across large populations of cells over hours in their native context. We show that cells do not perform Levy flight; rather, there is substantial cell-to-cell variability in speed, which persists over timespans of a few hours. This variability is amplified by a correlation between speed and directional persistence, generating a characteristic cell behavioral manifold that is preserved under a perturbation to cell speeds, and seen in Mouse T cells and Dictyostelium. Together, these effects generate a broad range of length scales over which cells explore in vivo.
Collapse
Affiliation(s)
| | - Stephen R Quake
- Department of Applied Physics, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
61
|
Kuil LE, Oosterhof N, Ferrero G, Mikulášová T, Hason M, Dekker J, Rovira M, van der Linde HC, van Strien PMH, de Pater E, Schaaf G, Bindels EMJ, Wittamer V, van Ham TJ. Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. eLife 2020; 9:e53403. [PMID: 32367800 PMCID: PMC7237208 DOI: 10.7554/elife.53403] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophages derive from multiple sources of hematopoietic progenitors. Most macrophages require colony-stimulating factor 1 receptor (CSF1R), but some macrophages persist in the absence of CSF1R. Here, we analyzed mpeg1:GFP-expressing macrophages in csf1r-deficient zebrafish and report that embryonic macrophages emerge followed by their developmental arrest. In larvae, mpeg1+ cell numbers then increased showing two distinct types in the skin: branched, putative Langerhans cells, and amoeboid cells. In contrast, although numbers also increased in csf1r-mutants, exclusively amoeboid mpeg1+ cells were present, which we showed by genetic lineage tracing to have a non-hematopoietic origin. They expressed macrophage-associated genes, but also showed decreased phagocytic gene expression and increased epithelial-associated gene expression, characteristic of metaphocytes, recently discovered ectoderm-derived cells. We further demonstrated that juvenile csf1r-deficient zebrafish exhibit systemic macrophage depletion. Thus, csf1r deficiency disrupts embryonic to adult macrophage development. Zebrafish deficient for csf1r are viable and permit analyzing the consequences of macrophage loss throughout life.
Collapse
Affiliation(s)
- Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Giuliano Ferrero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Tereza Mikulášová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jordy Dekker
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Mireia Rovira
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | | | - Emma de Pater
- Department of Hematology, Erasmus University Medical CenterRotterdamNetherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Erik MJ Bindels
- Department of Hematology, Erasmus University Medical CenterRotterdamNetherlands
| | - Valerie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB)BrusselsBelgium
- WELBIO, ULBBrusselsBelgium
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| |
Collapse
|
62
|
Manley HR, Potter DL, Heddleston JM, Chew TL, Keightley MC, Lieschke GJ. Frontline Science: Dynamic cellular and subcellular features of migrating leukocytes revealed by in vivo lattice lightsheet microscopy. J Leukoc Biol 2020; 108:455-468. [PMID: 32323898 DOI: 10.1002/jlb.3hi0120-589r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophil and macrophage (Mϕ) migration underpin the inflammatory response. However, the fast velocity, multidirectional instantaneous movement, and plastic, ever-changing shape of phagocytes confound high-resolution intravital imaging. Lattice lightsheet microscopy (LLSM) captures highly dynamic cell morphology at exceptional spatiotemporal resolution. We demonstrate the first extensive application of LLSM to leukocytes in vivo, utilizing optically transparent zebrafish, leukocyte-specific reporter lines that highlighted subcellular structure, and a wounding assay for leukocyte migration. LLSM revealed details of migrating leukocyte morphology, and permitted intricate, volumetric interrogation of highly dynamic activities within their native physiological setting. Very thin, recurrent uropod extensions must now be considered a characteristic feature of migrating neutrophils. LLSM resolved trailing uropod extensions, demonstrating their surprising length, and permitting quantitative assessment of cytoskeletal contributions to their evanescent form. Imaging leukocytes in blood vessel microenvironments at LLSM's spatiotemporal resolution displayed blood-flow-induced neutrophil dynamics and demonstrated unexpected leukocyte-endothelial interactions such as leukocyte-induced endothelial deformation against the intravascular pressure. LLSM of phagocytosis and cell death provided subcellular insights and uncovered novel behaviors. Collectively, we provide high-resolution LLSM examples of leukocyte structures (filopodia lamellipodia, uropod extensions, vesicles), and activities (interstitial and intravascular migration, leukocyte rolling, phagocytosis, cell death, and cytoplasmic ballooning). Application of LLSM to intravital leukocyte imaging sets the stage for transformative studies into the cellular and subcellular complexities of phagocyte biology.
Collapse
Affiliation(s)
- Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - David L Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - John M Heddleston
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, Virginia, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, Virginia, USA
| | - M Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Current address: Department of Pharmacy and Biomedical Sciences, Latrobe Institute of Molecular Sciences, Latrobe University, Bendigo, Victoria, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
63
|
Accarias S, Sanchez T, Labrousse A, Ben-Neji M, Boyance A, Poincloux R, Maridonneau-Parini I, Le Cabec V. Genetic engineering of Hoxb8-immortalized hematopoietic progenitors - a potent tool to study macrophage tissue migration. J Cell Sci 2020; 133:jcs236703. [PMID: 31964707 DOI: 10.1242/jcs.236703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/16/2019] [Indexed: 08/31/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are detrimental in most cancers. Controlling their recruitment is thus potentially therapeutic. We previously found that TAMs perform protease-dependent mesenchymal migration in cancer, while macrophages perform amoeboid migration in other tissues. Inhibition of mesenchymal migration correlates with decreased TAM infiltration and tumor growth, providing rationale for a new cancer immunotherapy specifically targeting TAM motility. To identify new effectors of mesenchymal migration, we produced ER-Hoxb8-immortalized hematopoietic progenitors (cells with estrogen receptor-regulated Hoxb8 expression), which show unlimited proliferative ability in the presence of estrogen. The functionality of macrophages differentiated from ER-Hoxb8 progenitors was compared to bone marrow-derived macrophages (BMDMs). They polarized into M1- and M2-orientated macrophages, generated reactive oxygen species (ROS), ingested particles, formed podosomes, degraded the extracellular matrix, adopted amoeboid and mesenchymal migration in 3D, and infiltrated tumor explants ex vivo using mesenchymal migration. We also used the CRISPR/Cas9 system to disrupt gene expression of a known effector of mesenchymal migration, WASP (also known as WAS), to provide a proof of concept. We observed impaired podosome formation and mesenchymal migration capacity, thus recapitulating the phenotype of BMDM isolated from Wasp-knockout mice. Thus, we validate the use of ER-Hoxb8-immortalized macrophages as a potent tool to investigate macrophage functionalities.
Collapse
Affiliation(s)
- Solene Accarias
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Thibaut Sanchez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Myriam Ben-Neji
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Aurélien Boyance
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse 31290, France
| |
Collapse
|
64
|
Wang Y, Liu W, Yuan B, Yin X, Li Y, Li Z, Cui J, Yuan X, Li Y. The Application of Methylprednisolone Nanoscale Zirconium-Porphyrin Metal-Organic Framework (MPS-NPMOF) in the Treatment of Photoreceptor Degeneration. Int J Nanomedicine 2019; 14:9763-9776. [PMID: 31849467 PMCID: PMC6911332 DOI: 10.2147/ijn.s225992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Background Photoreceptor degeneration is one of the most refractory oculopathy in the world, leading to vision loss in severe cases. Methyprednisolone is one of the most commonly prescribed medications for the treatment of retinal degenerative diseases, either by oral administration or repeated intraocular injections. However, the efficacy was unsatisfactory due to its systemic or local side effects and short retention time within the retina. Methods Nanoscale zirconium-porphyrin metal-organic framework (NPMOF) was synthesized and characterized. The biotoxicity and imaging capability of NPMOF were evaluated using zebrafish embryos and larvae. NPMOF was then used as a skeleton and loaded with methylprednisolone (MPS) to prepare a novel kind of nanoparticle, MPS-NPMOF. Photoreceptor degeneration was induced by high-intensity light exposure in adult zebrafish. MPS-NPMOF was delivered to the injured retina by intraocular injection. The photoreceptor regeneration and its underlying mechanism were explored by immunohistochemistry, quantitative real-time polymerase chain reaction and behavioral test. Results NPMOF not only had low biotoxicity but also emitted bright fluorescence. Following a single MPS-NPMOF intraocular injection, the injured retina exhibited the faster photoreceptor regeneration with better visual function by promoting the cell proliferation. Conclusion NPMOF is an ideal carrier and could be applied in tracking and delivering medications. By intraocular injection, the novel drug delivery system, MPS-NPMOF, accomplishes the sustained release of drug and plays a therapeutic role in photoreceptor degeneration.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China.,Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Hospital, Tianjin 300020, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University College of Chemistry, Tianjin 300071, People's Republic of China.,Tianjin University School of Science, Tianjin 300072, People's Republic of China
| | - Bo Yuan
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China.,Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Hospital, Tianjin 300020, People's Republic of China
| | - Xuebo Yin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University College of Chemistry, Tianjin 300071, People's Republic of China
| | - Yiming Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China
| | - Zongjin Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China
| | - Jianlin Cui
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Hospital, Tianjin 300020, People's Republic of China
| | - Yuhao Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, People's Republic of China
| |
Collapse
|
65
|
Taylor JM, Nelson CJ, Bruton FA, Kaveh A, Buckley C, Tucker CS, Rossi AG, Mullins JJ, Denvir MA. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart. Nat Commun 2019; 10:5173. [PMID: 31729395 PMCID: PMC6858381 DOI: 10.1038/s41467-019-13112-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional fluorescence time-lapse imaging of the beating heart is extremely challenging, due to the heart's constant motion and a need to avoid pharmacological or phototoxic damage. Although real-time triggered imaging can computationally "freeze" the heart for 3D imaging, no previous algorithm has been able to maintain phase-lock across developmental timescales. We report a new algorithm capable of maintaining day-long phase-lock, permitting routine acquisition of synchronised 3D + time video time-lapse datasets of the beating zebrafish heart. This approach has enabled us for the first time to directly observe detailed developmental and cellular processes in the beating heart, revealing the dynamics of the immune response to injury and witnessing intriguing proliferative events that challenge the established literature on cardiac trabeculation. Our approach opens up exciting new opportunities for direct time-lapse imaging studies over a 24-hour time course, to understand the cellular mechanisms underlying cardiac development, repair and regeneration.
Collapse
Affiliation(s)
- Jonathan M Taylor
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK.
| | - Carl J Nelson
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Finnius A Bruton
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aryan Kaveh
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Charlotte Buckley
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Carl S Tucker
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
| | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Martin A Denvir
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
66
|
Ratanayotha A, Kawai T, Okamura Y. Real-time functional analysis of Hv1 channel in neutrophils: a new approach from zebrafish model. Am J Physiol Regul Integr Comp Physiol 2019; 316:R819-R831. [PMID: 30943046 DOI: 10.1152/ajpregu.00326.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-gated proton channel (Hv1) has been studied in various immune cells, including neutrophils. However, most studies have taken an in vitro approach using isolated cells or primary cultured cells of mammals; therefore, limited evidence is available on the function of Hv1 in a physiological context. In this study, we have developed the in vivo system that enables real-time functional analysis of Hv1 using zebrafish embryos (Danio rerio). Hvcn1-deficiency (hvcn1-/-) in zebrafish completely abolished voltage-gated proton current, which is typically observed in wild-type neutrophils. Importantly, hvcn1-deficiency significantly reduced reactive oxygen species production and calcium response of zebrafish neutrophils, comparable to the results observed in mammalian models. These findings verify zebrafish Hv1 (DrHv1) as the primary contributor for native Hv1-derived proton current in neutrophils and suggest the conserved function of Hv1 in the immune cells across vertebrate animals. Taking advantage of Hv1 zebrafish model, we compared real-time behaviors of neutrophils between wild-type and hvcn1-/- zebrafish in response to tissue injury and acute bacterial infection. Notably, we observed a significant increase in the number of phagosomes in hvcn1-/- neutrophils, raising a possible link between Hv1 and phagosomal maturation. Furthermore, survival analysis of zebrafish larvae potentially supports a protective role of Hv1 in the innate immune response against systemic bacterial infection. This study represents the influence of Hv1 on neutrophil behaviors and highlights the benefits of in vivo approach toward the understanding of Hv1 in a physiological context.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| |
Collapse
|
67
|
Wu Z, Koh B, Lawrence LM, Kanamala M, Pool B, Svirskis D, Dalbeth N, Astin JW, Crosier KE, Crosier PS, Hall CJ. Liposome-Mediated Drug Delivery in Larval Zebrafish to Manipulate Macrophage Function. Zebrafish 2019; 16:171-181. [PMID: 30724716 DOI: 10.1089/zeb.2018.1681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chemical interventions are regularly used to examine and manipulate macrophage function in larval zebrafish. Given chemicals are typically administered by simple immersion or injection, it is not possible to resolve whether their impact on macrophage function is direct or indirect. Liposomes provide an attractive strategy to target drugs to specific cellular compartments, including macrophages. As an example, injecting liposomal clodronate into animal models, including zebrafish, is routinely used to deliver toxic levels of clodronate specifically to macrophages for targeted cell ablation. Here we show that liposomes can also target the delivery of drugs to zebrafish macrophages to selectively manipulate their function. We utilized the drugs etomoxir (a fatty acid oxidation inhibitor) and MitoTEMPO (a scavenger of mitochondrial reactive oxygen species [mROS]), that we have previously shown, through free drug delivery, suppress monosodium urate (MSU) crystal-driven macrophage activation. We generated poloxamer 188 modified liposomes that were readily phagocytosed by macrophages, but not by neutrophils. Loading these liposomes with etomoxir or MitoTEMPO and injecting into larvae suppressed macrophage activation in response to MSU crystals, as evidenced by proinflammatory cytokine expression and macrophage-driven neutrophil recruitment. This work reveals the utility of packaging drugs into liposomes as a strategy to selectively manipulate macrophage function.
Collapse
Affiliation(s)
- Zimei Wu
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Koh
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa M Lawrence
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manju Kanamala
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bregina Pool
- 3 Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- 3 Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan W Astin
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn E Crosier
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
68
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
69
|
Fischer RS, Lam PY, Huttenlocher A, Waterman CM. Filopodia and focal adhesions: An integrated system driving branching morphogenesis in neuronal pathfinding and angiogenesis. Dev Biol 2018; 451:86-95. [PMID: 30193787 DOI: 10.1016/j.ydbio.2018.08.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Single cell branching during development in vertebrates is typified by neuronal branching to form neurites and vascular branches formed by sprouting angiogenesis. Neurons and endothelial tip cells possess subcellular protrusions that share many common features from the morphological to the molecular level. Both systems utilize filopodia as their cellular protrusion organelles and depend on specific integrin-mediated adhesions to the local extracellular matrix for guidance in their pathfinding. We discuss the similar molecular machineries involved in these two types of cell branch formation and use their analogy to propose a new mechanism for angiogenic filopodia function, namely as adhesion assembly sites. In support of this model we provide primary data of angiogenesis in zebrafish in vivo showing that the actin assembly factor VASP participates in both filopodia formation and adhesion assembly at the base of the filopodia, enabling forward progress of the tip cell. The use of filopodia and their associated adhesions provide a common mechanism for neuronal and endothelial pathfinding during development in response to extracellular matrix cues.
Collapse
Affiliation(s)
- Robert S Fischer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, United States
| | - Pui-Ying Lam
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, United States
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, United States.
| |
Collapse
|
70
|
Irimia D, Wang X. Inflammation-on-a-Chip: Probing the Immune System Ex Vivo. Trends Biotechnol 2018; 36:923-937. [PMID: 29728272 PMCID: PMC6098972 DOI: 10.1016/j.tibtech.2018.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Inflammation is the typical result of activating the host immune system against pathogens, and it helps to clear microbes from tissues. However, inflammation can occur in the absence of pathogens, contributing to tissue damage and leading to disease. Understanding how immune cells coordinate their activities to initiate, modulate, and terminate inflammation is key to developing effective interventions to preserve health and combat diseases. Towards this goal, inflammation-on-a-chip tools provide unique features that greatly benefit the study of inflammation. They reconstitute tissue environments in microfabricated devices and enable real-time, high-resolution observations and quantification of cellular activities relevant to inflammation. We review here recent advances in inflammation-on-a-chip technologies and highlight the biological insights and clinical applications enabled by these emerging tools.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA
| | - Xiao Wang
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA
| |
Collapse
|
71
|
Chen B, Yang Z, Yang C, Qin W, Gu J, Hu C, Chen A, Ning J, Yi B, Lu K. A self-organized actomyosin drives multiple intercellular junction disruption and directly promotes neutrophil recruitment in lipopolysaccharide-induced acute lung injury. FASEB J 2018; 32:fj201701506RR. [PMID: 29879372 DOI: 10.1096/fj.201701506rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute lung injury (ALI), with the hallmarks of vascular integrity disruption and neutrophil recruitment, is associated with high morbidity and mortality. Enhanced actomyosin assembly contributes to endothelial cell contact dysfunction. However, the roles and mechanisms of actomyosin assembly in ALI are not totally clear. We investigated the dynamic alterations and roles of actomyosin in ALI in vivo and in vitro models induced by LPS. Pulmonary levels of E-cadherin, vascular endothelial-cadherin, occludin, myosin phosphatase target subunit 1, and thymosin β4 were decreased, and the number and activity of neutrophils and the levels of actomyosin, p-ρ-associated protein kinase, p-myosin light-chain kinase, and profilin1 were increased within 3 d after LPS administration, and then, those alterations were recovered within the next 4 d, which was consistent with the alterations of lung histology, vascular permeability, edema, and serum levels of IL-6 and TNF-α. Direct or indirect inhibition of increased F-actin or myosin assembly ameliorated the reduction of intercellular junction molecules, the activation and migration of neutrophils, and the degree of lung injury. Moreover, neutrophil activation further promoted actomyosin assembly and aggravated lung injury. Conclusively, the enhancement of self-organized actomyosin contributes to alveolar-capillary barrier disruption and neutrophil recruitment in inflammatory response, which is a potential therapeutic target for ALI.-Chen, B., Yang, Z., Yang, C., Qin, W., Gu, J., Hu, C., Chen, A., Ning, J., Yi, B., Lu, K. A self-organized actomyosin drives multiple intercellular junction disruption and directly promotes neutrophil recruitment in lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- Bing Chen
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Congwen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenhan Qin
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianteng Gu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuanmin Hu
- Department of Clinical Biochemistry, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - An Chen
- Department of Clinical Biochemistry, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|