51
|
Miller PB, Obrik-Uloho OT, Phan MH, Medrano CL, Renier JS, Thayer JL, Wiessner G, Bloch Qazi MC. The song of the old mother: reproductive senescence in female drosophila. Fly (Austin) 2015; 8:127-39. [PMID: 25523082 DOI: 10.4161/19336934.2014.969144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Among animals with multiple reproductive episodes, changes in adult condition over time can have profound effects on lifetime reproductive fitness and offspring performance. The changes in condition associated with senescence can be particularly acute for females who support reproductive processes from oogenesis through fertilization. The pomace fly Drosophila melanogaster is a well-established model system for exploring the physiology of reproduction and senescence. In this review, we describe how increasing maternal age in Drosophila affects reproductive fitness and offspring performance as well as the genetic foundation of these effects. Describing the processes underlying female reproductive senescence helps us understand diverse phenomena including population demographics, condition-dependent selection, sexual conflict, and transgenerational effects of maternal condition on offspring fitness. Understanding the genetic basis of reproductive senescence clarifies the nature of life-history trade-offs as well as potential ways to augment and/or limit female fertility in a variety of organisms.
Collapse
Affiliation(s)
- Paige B Miller
- a Department of Biology ; Gustavus Adolphus College ; St Peter , MN USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Age and aggregation trigger mating behaviour in the small hive beetle, Aethina tumida (Nitidulidae). Naturwissenschaften 2015; 102:49. [PMID: 26286322 DOI: 10.1007/s00114-015-1300-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee (Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated (p < 0.001); mating was infrequent when beetles were paired. Males in aggregation also tried to copulate with males and only copulated more frequently with females at 18 days after emergence from soil (p < 0.001) in contrast to newly emerged, 7-day-old and 60-day-old beetles. Males and females spent more time in social contact with the opposite sex (p < 0.01) when they were 18 days old in contrast to 7-day-old beetles. Filter papers which had been in contact with 21-day-old beetles were highly attractive to similar-aged beetles of the opposite sex (p < 0.01). This suggests that chemical substances produced by the beetles themselves play a role in mating. Mating behaviour was characterised by a short pre-copulation courtship and female aggression towards other females and copulating couples. Both behaviours may be indicative of cryptic female choice. Delayed onset of reproductive behaviour is typical of many polygamous species, whilst the indispensability of aggregation for onset of sexual behaviour seems to be a feature unique to A. tumida. Both strategies support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues..
Collapse
|
53
|
Ratliff EP, Mauntz RE, Kotzebue RW, Gonzalez A, Achal M, Barekat A, Finley KA, Sparhawk JM, Robinson JE, Herr DR, Harris GL, Joiner WJ, Finley KD. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors. PLoS One 2015; 10:e0132768. [PMID: 26182057 PMCID: PMC4504520 DOI: 10.1371/journal.pone.0132768] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.
Collapse
Affiliation(s)
- Eric P. Ratliff
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ruth E. Mauntz
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
| | - Roxanne W. Kotzebue
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Arysa Gonzalez
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Madhulika Achal
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ayeh Barekat
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Kaelyn A. Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
| | - Jonathan M. Sparhawk
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - James E. Robinson
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Deron R. Herr
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Greg L. Harris
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - William J. Joiner
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Kim D. Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, United States of America
- Expression Drug Designs, LLC, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
54
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
55
|
Lubanga UK, Guédot C, Percy DM, Steinbauer MJ. Semiochemical and Vibrational Cues and Signals Mediating Mate Finding and Courtship in Psylloidea (Hemiptera): A Synthesis. INSECTS 2014; 5:577-95. [PMID: 26462826 PMCID: PMC4592587 DOI: 10.3390/insects5030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 11/16/2022]
Abstract
Mate finding and courtship involve complex interactions that require close coordination between individuals of the opposite gender. Well-organized signalling systems, sometimes involving a combination of signal modalities, are required to convey species-specific and individual information to members of the opposite gender. Previous studies of psyllids have focused on single-signal modalities and have largely ignored the potentially interdependent nature of different types of signals. Several studies have shown that semiochemicals play a role in psyllid mate finding. However, long-range semiochemical sex attractants, such as the highly volatile sex pheromones used by many Lepidoptera (molecular weights <300), are yet to be identified. The compounds identified thus far, namely 13-methylheptacosane (from Cacopsylla pyricola) and dodecanoic acid (from Diaphorina citri), seem to have short range activity or no activity under field conditions. The possible role played by cuticular hydrocarbons in psyllid courtship remains largely ignored. Conversely, many psyllid species rely on vibrational signals for mate finding and mate assessment during courtship. This apparent disproportional reliance on vibrational rather than semiochemical signals suggests that vibrational signals have been more influential in sexual selection in psyllids. However, male fitness, female choice and benefits accrued from selecting fitter males remain poorly understood.
Collapse
Affiliation(s)
- Umar K Lubanga
- Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA.
| | | | - Martin J Steinbauer
- Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
56
|
Etges WJ, de Oliveira CC. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants. Ecol Evol 2014; 4:2033-45. [PMID: 25360246 PMCID: PMC4201419 DOI: 10.1002/ece3.1088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/28/2014] [Accepted: 04/03/2014] [Indexed: 12/03/2022] Open
Abstract
Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14–18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed.
Collapse
Affiliation(s)
- William J Etges
- Department of Biological Sciences, Program in Ecology and Evolutionary Biology 1 University of Arkansas, Fayetteville, Arkansas, 72701
| | - Cassia C de Oliveira
- Department of Biological Sciences, Program in Ecology and Evolutionary Biology 1 University of Arkansas, Fayetteville, Arkansas, 72701
| |
Collapse
|
57
|
Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y. Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 2014; 69:253-9. [PMID: 23723429 PMCID: PMC3976136 DOI: 10.1093/gerona/glt078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
The cytoplasmic chaperone gene Hsp70 and the mitochondrial chaperone gene Hsp22 are upregulated during normal aging in Drosophila in tissue-general patterns. In addition, Hsp22 reporters are dramatically upregulated during aging in a subset of the oenocytes (liver-like cells). Hsp22 reporter expression varied dramatically between individual oenocytes and between groups of oenocytes located in adjacent body segments, and was negatively correlated with accumulation of age pigment, indicating cell-specific and cell-lineage-specific patterns of oenocyte aging. Conditional transgenic systems were used to express 88 transgenes to search for trans-regulators of the Hsp70 and Hsp22 reporters during aging. The wingless gene increased tissue-general upregulation of both Hsp70 and Hsp22 reporters. In contrast, the mitochondrial genes MnSOD and Hsp22 increased expression of Hsp22 reporters in the oenocytes and decreased accumulation of age pigment in these cells. The data suggest that cell-specific and cell lineage-specific patterns of mitochondrial malfunction contribute to oenocyte aging.
Collapse
Affiliation(s)
- John Tower
- University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910.
| | | | | | | | | | | |
Collapse
|
58
|
Lu B, Zelle KM, Seltzer R, Hefetz A, Ben-Shahar Y. Feminization of pheromone-sensing neurons affects mating decisions in Drosophila males. Biol Open 2014; 3:152-60. [PMID: 24463366 PMCID: PMC3925318 DOI: 10.1242/bio.20147369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response of individual animals to mating signals depends on the sexual identity of the individual and the genetics of the mating targets, which represent the mating social context (social environment). However, how social signals are sensed and integrated during mating decisions remains a mystery. One of the models for understanding mating behaviors in molecular and cellular terms is the male courtship ritual in the fruit fly (Drosophila melanogaster). We have recently shown that a subset of gustatory receptor neurons (GRNs) that are enriched in the male appendages and express the ion channel ppk23 play a major role in the initiation and maintenance of male courtship via the perception of cuticular contact pheromones, and are likely to represent the main chemosensory pathway that influences mating decisions by males. Here we show that genetic feminization of ppk23-expressing GRNs in male flies resulted in a significant increase in male-male sexual attraction without an apparent impact on sexual attraction to females. Furthermore, we show that this increase in male-male sexual attraction is sensory specific, which can be modulated by variable social contexts. Finally, we show that feminization of ppk23-expressing sensory neurons lead to major transcriptional shifts, which may explain the altered interpretation of the social environment by feminized males. Together, these data indicate that the sexual cellular identity of pheromone sensing GRNs plays a major role in how individual flies interpret their social environment in the context of mating decisions.
Collapse
Affiliation(s)
- Beika Lu
- Department of Biology, Washington University in St Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
59
|
Pischedda A, Shahandeh MP, Cochrane WG, Cochrane VA, Turner TL. Natural variation in the strength and direction of male mating preferences for female pheromones in Drosophila melanogaster. PLoS One 2014; 9:e87509. [PMID: 24489930 PMCID: PMC3905024 DOI: 10.1371/journal.pone.0087509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/28/2013] [Indexed: 11/18/2022] Open
Abstract
Many animal species communicate using chemical signals. In Drosophila, cuticular hydrocarbons (CHCs) are involved in species and sexual identification, and have long been thought to act as stimulatory pheromones as well. However, a previous study reported that D. melanogaster males were more attracted to females that were lacking CHCs. This surprising result is consistent with several evolutionary hypotheses but is at odds with other work demonstrating that female CHCs are attractive to males. Here, we investigated natural variation in male preferences for female pheromones using transgenic flies that cannot produce CHCs. By perfuming females with CHCs and performing mate choice tests, we found that some male genotypes prefer females with pheromones, some have no apparent preference, and at least one male genotype prefers females without pheromones. This variation provides an excellent opportunity to further investigate the mechanistic causes and evolutionary implications of divergent pheromone preferences in D. melanogaster males.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Michael P. Shahandeh
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Wesley G. Cochrane
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Veronica A. Cochrane
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Thomas L. Turner
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
60
|
Aw WC, Ballard JWO. The effects of temperature and diet on age grading and population age structure determination in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:994-1000. [PMID: 23892055 DOI: 10.1016/j.jinsphys.2013.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
The age structure of natural population is of interest in physiological, life history and ecological studies but it is often difficult to determine. One methodological problem is that samples may need to be invasively sampled preventing subsequent taxonomic curation. A second problem is that it can be very expensive to accurately determine the age structure of given population because large sample sizes are often necessary. In this study, we test the effects of temperature (17 °C, 23 °C and 26 °C) and diet (standard cornmeal and low calorie diet) on the accuracy of the non-invasive, inexpensive and high throughput near-infrared spectroscopy (NIRS) technique to determine the age of Drosophila flies. Composite and simplified calibration models were developed for each sex. Independent sets for each temperature and diet treatments with flies not involved in calibration model were then used to validate the accuracy of the calibration models. The composite NIRS calibration model was generated by including flies reared under all temperatures and diets. This approach permits rapid age measurement and age structure determination in large population of flies as less than or equal to 9 days, or more than 9 days old with 85-97% and 64-99% accuracy, respectively. The simplified calibration models were generated by including flies reared at 23 °C on standard diet. Low accuracy rates were observed when simplified calibration models were used to identify (a) Drosophila reared at 17 °C and 26 °C and (b) 23 °C with low calorie diet. These results strongly suggest that appropriate calibration models need to be developed in the laboratory before this technique can be reliably used in field. These calibration models should include the major environmental variables that change across space and time in the particular natural population to be studied.
Collapse
Affiliation(s)
- Wen C Aw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | |
Collapse
|
61
|
Gomez-Diaz C, Benton R. The joy of sex pheromones. EMBO Rep 2013; 14:874-83. [PMID: 24030282 DOI: 10.1038/embor.2013.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/19/2013] [Indexed: 01/13/2023] Open
Abstract
Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Center for Integrative Genomics, Faculty of Biology & Medicine, Bâtiment Le Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
62
|
Fricke C, Green D, Mills WE, Chapman T. Age-dependent female responses to a male ejaculate signal alter demographic opportunities for selection. Proc Biol Sci 2013; 280:20130428. [PMID: 23843383 PMCID: PMC3730580 DOI: 10.1098/rspb.2013.0428] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/17/2013] [Indexed: 11/12/2022] Open
Abstract
A central tenet of evolutionary explanations for ageing is that the strength of selection wanes with age. However, data on age-specific expression and benefits of sexually selected traits are lacking-particularly for traits subject to sexual conflict. We addressed this by using as a model the responses of Drosophila melanogaster females of different ages to receipt of sex peptide (SP), a seminal fluid protein transferred with sperm during mating. SP can mediate sexual conflict, benefitting males while causing fitness costs in females. Virgin and mated females of all ages showed significantly reduced receptivity in response to SP. However, only young virgin females also showed increased egg laying; hence, there was a narrow demographic window of maximal responses to SP. Males gained significant 'per mating' fitness benefits only when mating with young females. The pattern completely reversed in matings with older females, where SP transfer was costly. The overall benefits of SP transfer (hence opportunity for selection) therefore reversed with female age. The data reveal a new example of demographic variation in the strength of selection, with convergence and conflicts of interest between males and ageing females occurring over different facets of responses to a sexually antagonistic trait.
Collapse
Affiliation(s)
- Claudia Fricke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Institute for Evolution and Biodiversity, Westfaelische Wilhelms-University, Huefferstrasse 1, Muenster 48 149, Germany
| | - Darrell Green
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Walter E. Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
63
|
Klepsatel P, Gáliková M, De Maio N, Ricci S, Schlötterer C, Flatt T. Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster
under laboratory conditions. J Evol Biol 2013; 26:1508-20. [DOI: 10.1111/jeb.12155] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- P. Klepsatel
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - M. Gáliková
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - N. De Maio
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - S. Ricci
- Dipartimento di Matematica; Università di Pisa; Pisa Italy
| | - C. Schlötterer
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - T. Flatt
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
- Wissenschaftskolleg zu Berlin; Berlin Germany
| |
Collapse
|
64
|
Hurtado J, Hasson E. Inter and intraspecific variation in female remating propensity in the cactophilic sibling species Drosophila buzzatii and D. koepferae. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:569-576. [PMID: 23542152 DOI: 10.1016/j.jinsphys.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Post-mating sexual selection by means of sperm competition or cryptic female choice occurs in species in which females remate before exhausting sperm supplied by previous mates. Thus, sperm competition is expected to be stronger when inseminated females remate more frequently or take longer to deplete sperm load. Previous studies comparing oviposition behavior in the pair of closely related species Drosophila buzzatii and Drosophila koepferae suggest that inseminated females of the latter deplete sperm load more rapidly. Here, we investigate female remating in D. buzzatii and D. koepferae by studying how female remating propensity changes after mating. Our study reveals that, after mating, female D. buzzatii recovers receptivity 14 times faster and remate more frequently than D. koepferae. Thus, we argue that D. buzzatii exhibits greater chances that sperm from different mates meet inside the same female suggesting more complex post-mating interactions than in its sibling. In addition, our results show that there is intraspecific genetic variation for the duration of female refractory period in both species.
Collapse
Affiliation(s)
- Juan Hurtado
- Instituto de Ecología Genética y Evolución de la ciudad de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
65
|
|
66
|
Loyau A, Cornuau JH, Clobert J, Danchin E. Incestuous sisters: mate preference for brothers over unrelated males in Drosophila melanogaster. PLoS One 2012; 7:e51293. [PMID: 23251487 PMCID: PMC3519633 DOI: 10.1371/journal.pone.0051293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/01/2012] [Indexed: 11/20/2022] Open
Abstract
The literature is full of examples of inbreeding avoidance, while recent mathematical models predict that inbreeding tolerance or even inbreeding preference should be expected under several realistic conditions like e.g. polygyny. We investigated male and female mate preferences with respect to relatedness in the fruit fly D. melanogaster. Experiments offered the choice between a first order relative (full-sibling or parent) and an unrelated individual with the same age and mating history. We found that females significantly preferred mating with their brothers, thus supporting inbreeding preference. Moreover, females did not avoid mating with their fathers, and males did not avoid mating with their sisters, thus supporting inbreeding tolerance. Our experiments therefore add empirical evidence for inbreeding preference, which strengthens the prediction that inbreeding tolerance and preference can evolve under specific circumstances through the positive effects on inclusive fitness.
Collapse
Affiliation(s)
- Adeline Loyau
- CNRS, Station d'Ecologie Expérimentale du CNRS à Moulis, USR 2936, Saint Girons, France.
| | | | | | | |
Collapse
|
67
|
Fedina TY, Kuo TH, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD. Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. PLoS One 2012; 7:e49799. [PMID: 23227150 PMCID: PMC3515564 DOI: 10.1371/journal.pone.0049799] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Dietary composition is known to have profound effects on many aspects of animal physiology, including lifespan, general health, and reproductive potential. We have previously shown that aging and insulin signaling significantly influence the composition and sexual attractiveness of Drosophila melanogaster female cuticular hydrocarbons (CHCs), some of which are known to be sex pheromones. Because diet is intimately linked to aging and to the activity of nutrient-sensing pathways, we asked how diet affects female CHCs and attractiveness. Here we report consistent and significant effects of diet composition on female CHC profiles across ages, with dietary yeast and sugar driving CHC changes in opposite directions. Surprisingly, however, we found no evidence that these changes affect female attractiveness. Multivariate comparisons among responses of CHC profiles to diet, aging, and insulin signaling suggest that diet may alter the levels of some CHCs in a way that results in profiles that are more attractive while simultaneously altering other CHCs in a way that makes them less attractive. For example, changes in short-chain CHCs induced by a high-yeast diet phenocopy changes caused by aging and by decreased insulin signaling, both of which result in less attractive females. On the other hand, changes in long-chain CHCs in response to the same diet result in levels that are comparable to those observed in attractive young females and females with increased insulin signaling. The effects of a high-sugar diet tend in the opposite direction, as levels of short-chain CHCs resemble those in attractive females with increased insulin signaling and changes in long-chain CHCs are similar to those caused by decreased insulin signaling. Together, these data suggest that diet-dependent changes in female CHCs may be sending conflicting messages to males.
Collapse
Affiliation(s)
- Tatyana Y. Fedina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tsung-Han Kuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Herman A. Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanne Y. Yew
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
68
|
Billeter JC, Levine JD. Who is he and what is he to you? Recognition in Drosophila melanogaster. Curr Opin Neurobiol 2012; 23:17-23. [PMID: 23010098 DOI: 10.1016/j.conb.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
The inability to discriminate friend from foe or the 'one' among many potential mates can have immediate life-threatening consequences or a long-term evolutionary impact. Successful social interactions depend on the ability to recognize and identify individuals within a social context. Once recognition occurs, a repertoire of behavioral responses becomes available and choices are made as interactions between individuals unfold. The vinegar fly, Drosophila melanogaster, displays a wide range of social activities and patterns of social interaction. If a male fly is unable to recognize other males or distinguish them from females, he may attempt to court both males and females alike, wasting energy and reducing his fitness. We review recent studies on the mechanisms of social recognition in this organism that pertain to both sides of an interaction: the generation of signals by one individual and the receiving and processing of these signals by others.
Collapse
|
69
|
Using near-infrared spectroscopy to resolve the species, gender, age, and the presence of Wolbachia infection in laboratory-reared Drosophila. G3-GENES GENOMES GENETICS 2012; 2:1057-65. [PMID: 22973543 PMCID: PMC3429920 DOI: 10.1534/g3.112.003103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/29/2012] [Indexed: 12/29/2022]
Abstract
The aim of the study was to determine the accuracy of near-infrared spectroscopy (NIRS) in determining species, gender, age, and the presence of the common endosymbiont Wolbachia in laboratory-reared Drosophila. NIRS measures the absorption of light by organic molecules. Initially, a calibration model was developed for each study. An independent set with flies not involved in initial cross-validation was then used to validate the accuracy of each calibration model. Flies from the independent sets were correctly classified into Drosophila melanogaster and Drosophila simulans with 94% and 82% accuracy, respectively, whereas flies were successfully classified by gender with accuracy greater than 90%. In the age grading test, correlation plots of the actual and predicted age for males and females of D. melanogaster and D. simulans were shown to be overlapping between the adjacent age groups. It is, however, possible to predict the age of flies as less than 9 days of age with 62–88% accuracy and flies that are equal to or older than 9 days of age with 91–98% accuracy. Finally, we used NIRS to detect the presence of Wolbachia in flies. Flies from the independent sets were successfully identified as infected or not infected with Wolbachia with approximately 90% accuracy. These results suggest that NIRS has the potential to quantify the species, gender, and presence of Wolbachia in fly populations. However, additional optimization of the protocol may be necessary before the technique can reliably estimate fly age.
Collapse
|
70
|
Kühbandner S, Sperling S, Mori K, Ruther J. Deciphering the signature of cuticular lipids with contact sex pheromone function in a parasitic wasp. J Exp Biol 2012; 215:2471-8. [DOI: 10.1242/jeb.071217] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The surface of insects is covered by a complex mixture of cuticular hydrocarbons (CHCs) to prevent desiccation. In many species these lipids also have communicative functions, but often it is unknown which components are crucial for the behavioural response. Furthermore, it is often ignored that polar lipids also occur on the insects' cuticle and might interact with CHCs. In the parasitic wasp Lariophagus distinguendus, CHCs function as a contact sex pheromone eliciting wing-fanning in males. Interestingly, not only females but also newly emerged males have the pheromone, resulting regularly in homosexual courtship. However, males deactivate the pheromone within the first two days after emergence. This deactivation is accompanied by the disappearance of 3-methylheptacosane (3-MeC27) and some minor components from the CHC profile of males. Here we show that 3-MeC27 is a key component of the contact sex pheromone which, however, triggers courtship behaviour only if an olfactory background of other cuticular lipids is present. Males responded to (S)-3-MeC27 enantioselectively when applied to filter paper but on three-dimensional dummies both enantiomers were behaviourally active, suggesting that physical stimuli also play a role in sexual communication of the wasps. Finally, we report that triacylglycerides (TAGs) are also essential components of the pheromone, and present evidence that TAGs actually occur on the cuticle of L. distinguendus. Our data provide novel insights into the semiochemical function of cuticular lipids by showing that the bioactivity of CHCs may be influenced by the stereochemistry and a synergetic interaction with long time ignored TAGs.
Collapse
Affiliation(s)
- Stephan Kühbandner
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergej Sperling
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Kenji Mori
- Photosensitive Materials Research Center, Toyo Gosei Co., 4-2-1 Wakahagi, Inzai-shi, Chiba 270-1609, Japan
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
71
|
Kuo TH, Fedina TY, Hansen I, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD. Insulin signaling mediates sexual attractiveness in Drosophila. PLoS Genet 2012; 8:e1002684. [PMID: 22570625 PMCID: PMC3343104 DOI: 10.1371/journal.pgen.1002684] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/19/2012] [Indexed: 11/24/2022] Open
Abstract
Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS) is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC), many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS) together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS) we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR) pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential. In nature, a myriad of specialized traits have evolved that are used for intraspecific communication and mate choice. We postulated that certain traits may have evolved to be attractive by virtue of their accurate representation of molecular pathways that are critical for determining evolutionary fitness. Insulin signaling (IIS) is one such pathway. It has been shown to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. We therefore asked whether IIS affected key sexual characteristics and overall attractiveness in the fruit fly Drosophila melanogaster. We found that IIS regulates cuticular hydrocarbons (the key pheromones in flies), that reduced IIS also reduced attractiveness, and that flies with increased IIS were significantly more attractive than wild-type animals. Further experiments revealed that these effects may also be influenced by a second conserved nutrient-sensitive pathway, the TOR pathway. We suggest that natural selection may have favored a plethora of species-specific sexual characteristics because they accurately represent a small number of influential pathways that determine longevity and reproductive output across taxa. In other words, it may be that, whether fly or human, beauty is more than skin-deep.
Collapse
Affiliation(s)
- Tsung-Han Kuo
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tatyana Y. Fedina
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ingrid Hansen
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Herman A. Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanne Y. Yew
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Scott D. Pletcher
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
72
|
Hager Y. OLD FLIES LOSE SEX APPEAL. J Exp Biol 2012. [DOI: 10.1242/jeb.070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|