51
|
Borey M, Panserat S, Surget A, Cluzeaud M, Plagnes-Juan E, Herman A, Lazzarotto V, Corraze G, Médale F, Lauga B, Burel C. Postprandial kinetics of gene expression of proteins involved in the digestive process in rainbow trout (O. mykiss) and impact of diet composition. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1187-1202. [PMID: 26920536 DOI: 10.1007/s10695-016-0208-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
The impact of increased incorporation of plant ingredients on diets for rainbow trout was evaluated in terms of gene expression of gastric (gastric lipase, pepsinogen) and intestinal (prolidase, maltase, phospholipase A2) digestive enzymes and nutrient transporters (peptide and glucose transporters), as well as of postprandial levels of plasma glucose, triglycerides and total free amino acids. For that purpose, trout alevins were fed from the start of exogenous feeding one of three different experimental diets: a diet rich in fish meal and fish oil (FM-FO), a plant-based diet (noFM-noFO) totally free from fish meal and fish oil, but containing plant ingredients and a Mixed diet (Mixed) intermediate between the FM-FO and noFM-noFO diets. After 16 months of rearing, all fish were left unfed for 72 h and then given a single meal to satiation. Blood, stomach and anterior intestine were sampled before the meal and at 2, 6 and 12 h after this meal. The postprandial kinetics of gene expression of gastric and intestinal digestive enzymes and nutrient transporters were then followed in trout fed the FM-FO diet. The postprandial profiles showed that the expression of almost all genes studied was stimulated by the presence of nutrients in the digestive tract of trout, but the timing (appearance of peaks) varied between genes. Based on these data, we have focused on the molecular response to dietary factors in the stomach and the intestine at 6 and 12 h after feeding, respectively. The reduction in FM and FO levels of dietary incorporation induced a significant decrease in the gene expression of gastric lipase, GLUT2 and PEPT1. The plasma glucose and triglycerides levels were also reduced in trout fed the noFM-noFO diet. Consequently, the present study suggests a decrease in digestive capacities in trout fed a diet rich in plant ingredients.
Collapse
Affiliation(s)
- Marion Borey
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
- EEM, UMR 5254 IPREM, Equipe Environnement et Microbiologie, Université de Pau et des Pays de l'Adour, 64013, Pau, France
| | - Stephane Panserat
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Anne Surget
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Marianne Cluzeaud
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Elisabeth Plagnes-Juan
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Alexandre Herman
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Viviana Lazzarotto
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Geneviève Corraze
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Françoise Médale
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France
| | - Beatrice Lauga
- EEM, UMR 5254 IPREM, Equipe Environnement et Microbiologie, Université de Pau et des Pays de l'Adour, 64013, Pau, France
| | - Christine Burel
- UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, F-64310, Saint Pee sur Nivelle, France.
| |
Collapse
|
52
|
Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:189-199. [PMID: 27475301 DOI: 10.1016/j.cbpa.2016.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles.
Collapse
Affiliation(s)
- Filipa Rocha
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Lda, Area Empresarial de Marim, Lote C. 8700-221 Olhão, Portugal
| | - Inge Geurden
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Maria Teresa Dinis
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Stephane Panserat
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sofia Engrola
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
53
|
Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 2016; 17:449. [PMID: 27296167 PMCID: PMC4907080 DOI: 10.1186/s12864-016-2804-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. Results Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. Conclusions This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2804-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Mathilde Dupont-Nivet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jerome Montfort
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Aurelie Le Cam
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Francoise Medale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Sadasivam J Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France.
| |
Collapse
|
54
|
Li JW, Lin X, Tse A, Cheung A, Chan TF, Kong RYC, Lai KP, Wu RSS. Discovery and functional characterization of novel miRNAs in the marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:106-116. [PMID: 27002527 DOI: 10.1016/j.aquatox.2016.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
The marine medaka Oryzias melastigma has often been used as a marine fish model to investigate the biological responses to environmental stresses and pollutants in marine environments. miRNAs are post-transcriptional regulators of many biological processes in a variety of organisms, and have been shown to be affected by environmental stresses, but the novel miRNA profile of marine medaka has not been reported. Using both genome and small RNA sequencings coupled with different bioinformatics analyses, we have discovered 58, 82, 234, and 201 unannotated miRNAs in the brain, liver, ovary and testis tissues of marine medaka, respectively. Furthermore, these novel miRNAs were found to target genes with tissue-specific roles such as neuron development and synaptic transmission in the brain, glucose and fat metabolism in the liver and steroidogenesis in the gonads. We here report, for the first time, novel miRNA profile of marine medaka, which will provide a foundation for future biomarkers and transgenerational studies for the assessment of environmental stresses and pollutions in the marine environments. In a boarder context, our data will provide novel insight into our knowledge of miRNome and miR research.
Collapse
Affiliation(s)
- Jing-Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anna Tse
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong
| | - Angela Cheung
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- State Key Laboratory in Marine Pollution, Hong Kong; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Keng Po Lai
- State Key Laboratory in Marine Pollution, Hong Kong; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- State Key Laboratory in Marine Pollution, Hong Kong; Department of Science and Environmental Studies, Institute of Education, Tai Po, New Territories, Hong Kong.
| |
Collapse
|
55
|
Abstract
To our knowledge, there is no report on microRNA (miRNA) expression and their target analysis in relation to the type of the first feed and its effect on the further growth of fish. Atlantic cod (Gadus morhua) larvae have better growth and development performance when fed natural zooplankton as a start-feed, as compared with those fed typical aquaculture start-feeds. In our experiment, two groups of Atlantic cod larvae were fed reference feed (zooplankton, mostly copepods, filtered from a seawater pond) v. aquaculture feeds: enriched rotifers (Brachionus sp.) and later brine shrimp (Artemia salina). We examined the miRNA expressions of six defined developmental stages as determined and standardised by body length from first feeding for both diet groups. We found eight miRNA (miR-9, miR-19a, miR-130b, miR-146, miR-181a, miR-192, miR-206 and miR-11240) differentially expressed between the two feeding groups in at least one developmental stage. We verified the next-generation sequencing data using real-time RT-PCR. We found 397 putative targets (mRNA) to the differentially expressed miRNA; eighteen of these mRNA showed differential expression in at least one stage. The patterns of differentially expressed miRNA and their putative target mRNA were mostly inverse, but sometimes also concurrent. The predicted miRNA targets were involved in different pathways, including metabolic, phototransduction and signalling pathways. The results of this study provide new nutrigenomic information on the potential role of miRNA in mediating nutritional effects on growth during the start-feeding period in fish larvae.
Collapse
|
56
|
Perera E, Yúfera M. Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish 2016; 13:61-9. [PMID: 26716770 DOI: 10.1089/zeb.2015.1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is now strong evidence that early nutrition plays an important role in shaping later physiology. We assessed here whether soy protein concentrate (SPC) or soybean meal (SBM) in early diet would modify zebrafish responses to these products in later life. We fed zebrafish larvae with SPC-, SBM-, or a control-diet for the first 3 days of feeding and then grew all larvae on the control diet up to juveniles. Finally, we assessed the expression in juveniles of genes involved in inflammation/immunity, the breakdown of extracellular matrix, luminal digestion, and intestinal nutrient absorption/trafficking. First feeding SBM had wider, stronger, and more persistent effects on gene expression with respect to SPC. Juveniles fed with SPC at first feeding were more prone to inflammation after refeeding with SPC than fish that never experienced SPC before. Conversely, zebrafish that faced SBM at first feeding were later less responsive to refeeding with SBM through inflammation and had higher expression of markers of peptide absorption and fatty acid transport. Results indicate that some features of inflammation/remodeling, presumably at the intestine, and nutrient absorption/transport in fish can be programmed by early nutrition. These findings sustain the rationale of using zebrafish for depicting molecular mechanisms involved in nutritional programming.
Collapse
Affiliation(s)
- Erick Perera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| |
Collapse
|
57
|
Marandel L, Véron V, Surget A, Plagnes-Juan É, Panserat S. Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming. ACTA ACUST UNITED AC 2016; 219:734-43. [PMID: 26747908 DOI: 10.1242/jeb.134304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss), a carnivorous fish species, displays a 'glucose-intolerant' phenotype when fed a high-carbohydrate diet. The importance of carbohydrate metabolism during embryogenesis and the timing of establishing this later phenotype are currently unclear. In addition, the mechanisms underlying the poor ability of carnivorous fish to use dietary carbohydrates as a major energy substrate are not well understood. It has recently been shown in trout that duplicated genes involved in glucose metabolism may participate in establishing the glucose-intolerant phenotype. The aim of this study was therefore to provide new understanding of glucose metabolism during ontogenesis and nutritional transition, taking into consideration the complexity of the trout genome. Trout were sampled at several stages of development from fertilization to hatching, and alevins were then fed a non-carbohydrate or a high-carbohydrate diet during first feeding. mRNA levels of all glucose metabolism-related genes increased in embryos during the setting up of the primitive liver. After the first meal, genes rapidly displayed expression patterns equivalent to those observed in the livers of juveniles. g6pcb2.a (a glucose 6-phosphatase-encoding gene) was up-regulated in alevins fed a high-carbohydrate diet, mimicking the expression pattern of gck genes. The g6pcb2.a gene may contribute to the non-inhibition of the last step of gluconeogenesis and thus to establishing the glucose-intolerant phenotype in trout fed a high-carbohydrate diet as early as first feeding. This information is crucial for nutritional programming investigations as it suggests that first feeding would be too late to programme glucose metabolism in the long term.
Collapse
Affiliation(s)
- Lucie Marandel
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Vincent Véron
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Anne Surget
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Élisabeth Plagnes-Juan
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| |
Collapse
|
58
|
Epigenetics—Potential for Programming Fish for Aquaculture? JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3020175] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
59
|
Marandel L, Seiliez I, Véron V, Skiba-Cassy S, Panserat S. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail. Physiol Genomics 2015; 47:253-63. [PMID: 25901068 DOI: 10.1152/physiolgenomics.00026.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 11/22/2022] Open
Abstract
The rainbow trout (Oncorhynchus mykiss) is considered to be a strictly carnivorous fish species that is metabolically adapted for high catabolism of proteins and low utilization of dietary carbohydrates. This species consequently has a "glucose-intolerant" phenotype manifested by persistent hyperglycemia when fed a high-carbohydrate diet. Gluconeogenesis in adult fish is also poorly, if ever, regulated by carbohydrates, suggesting that this metabolic pathway is involved in this specific phenotype. In this study, we hypothesized that the fate of duplicated genes after the salmonid-specific 4th whole genome duplication (Ss4R) may have led to adaptive innovation and that their study might provide new elements to enhance our understanding of gluconeogenesis and poor dietary carbohydrate use in this species. Our evolutionary analysis of gluconeogenic genes revealed that pck1, pck2, fbp1a, and g6pca were retained as singletons after Ss4r, while g6pcb1, g6pcb2, and fbp1b ohnolog pairs were maintained. For all genes, duplication may have led to sub- or neofunctionalization. Expression profiles suggest that the gluconeogenesis pathway remained active in trout fed a no-carbohydrate diet. When trout were fed a high-carbohydrate diet (30%), most of the gluconeogenic genes were non- or downregulated, except for g6pbc2 ohnologs, whose RNA levels were surprisingly increased. This study demonstrates that Ss4R in trout involved adaptive innovation via gene duplication and via the outcome of the resulting ohnologs. Indeed, maintenance of ohnologous g6pcb2 pair may contribute in a significant way to the glucose-intolerant phenotype of trout and may partially explain its poor use of dietary carbohydrates.
Collapse
Affiliation(s)
- Lucie Marandel
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| |
Collapse
|
60
|
Knight K. High carb diet alters trout metabolism in later life. J Exp Biol 2014. [DOI: 10.1242/jeb.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|