51
|
Hornsby WG, Gentles JA, Haff GG, Stone MH, Buckner SL, Dankel SJ, Bell ZW, Abe T, Loenneke JP. What is the Impact of Muscle Hypertrophy on Strength and Sport Performance? Strength Cond J 2018. [DOI: 10.1519/ssc.0000000000000432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
52
|
Hind K, Slater G, Oldroyd B, Lees M, Thurlow S, Barlow M, Shepherd J. Interpretation of Dual-Energy X-Ray Absorptiometry-Derived Body Composition Change in Athletes: A Review and Recommendations for Best Practice. J Clin Densitom 2018; 21:429-443. [PMID: 29754949 DOI: 10.1016/j.jocd.2018.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/11/2018] [Indexed: 01/21/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) is a medical imaging device which has become the method of choice for the measurement of body composition in athletes. The objectives of this review were to evaluate published longitudinal DXA body composition studies in athletic populations for interpretation of "meaningful" change, and to propose a best practice measurement protocol. An online search of PubMed and CINAHL via EBSCO Host and Web of Science enabled the identification of studies published until November 2016. Those that met the inclusion criteria were reviewed independently by 2 authors according to their methodological quality and interpretation of body composition change. Twenty-five studies published between 1996 and November 2016 were reviewed (male athletes: 13, female athletes: 3, mixed: 9) and sample sizes ranged from n = 1 to 212. The same number of eligible studies was published between 2013 and 2016, as over the 16 yr prior (between 1996 and 2012). Seven did not include precision error, and fewer than half provided athlete-specific precision error. There were shortfalls in the sample sizes on which precision estimates were based and inconsistencies in the level of pre-scan standardization, with some reporting full standardization protocols and others reporting only single (e.g., overnight fast) or no control measures. There is a need for standardized practice and reporting in athletic populations for the longitudinal measurement of body composition using DXA. Based on this review and those of others, plus the official position of the International Society for Clinical Densitometry, our recommendations and protocol are proposed as a guide to support best practice.
Collapse
Affiliation(s)
- Karen Hind
- Bone and Body Composition Research Group. Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, United Kingdom.
| | - Gary Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Brian Oldroyd
- Bone and Body Composition Research Group. Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, United Kingdom
| | - Matthew Lees
- Bone and Body Composition Research Group. Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, United Kingdom
| | - Shane Thurlow
- Bone and Body Composition Research Group. Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, United Kingdom
| | - Matthew Barlow
- Bone and Body Composition Research Group. Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, United Kingdom
| | - John Shepherd
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, CA, USA
| |
Collapse
|
53
|
Influence of subject presentation on interpretation of body composition change after 6 months of self-selected training and diet in athletic males. Eur J Appl Physiol 2018; 118:1273-1286. [PMID: 29633017 DOI: 10.1007/s00421-018-3861-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE High precision body composition assessment methods accurately monitor physique traits in athletes. The acute impact of subject presentation (ad libitum food and fluid intake plus physical activity) on body composition estimation using field and laboratory methods has been quantified, but the impact on interpretation of longitudinal change is unknown. This study evaluated the impact of athlete presentation (standardised versus non-standardised) on interpretation of change in physique traits over time. Thirty athletic males (31.2 ± 7.5 years; 182.2 ± 6.5 cm; 91.7 ± 10.3 kg; 27.6 ± 2.6 kg/m2) underwent two testing sessions on 1 day including surface anthropometry, dual-energy X-ray absorptiometry (DXA), bioelectrical impedance spectroscopy (BIS) and air displacement plethysmography (via the BOD POD), with combinations of these used to establish three-compartment (3C) and four-compartment (4C) models. METHODS Tests were conducted after an overnight fast (BASEam) and ~ 7 h later after ad libitum food/fluid and physical activity (BASEpm). This procedure was repeated 6 months later (POSTam and POSTpm). Magnitude of changes in the mean was assessed by standardisation. RESULTS After 6 months of self-selected training and diet, standardised presentation testing (BASEam to POSTam) identified trivial changes from the smallest worthwhile effect (SWE) in fat-free mass (FFM) and fat mass (FM) for all methods except for BIS (FM) where there was a large change (7.2%) from the SWE. Non-standardised follow-up testing (BASEam to POSTpm) showed trivial changes from the SWE except for small changes in FFM (BOD POD) of 1.1%, and in FM (3C and 4C models) of 6.4 and 3.5%. Large changes from the SWE were found in FFM (BIS, 3C and 4C models) of 2.2, 1.8 and 1.8% and in FM (BIS) of 6.4%. Non-standardised presentation testing (BASEpm to POSTpm) identified trivial changes from the SWE in FFM except for BIS which was small (1.1%). A moderate change from the SWE was found for BOD POD (3.3%) and large for BIS (9.4%) in FM estimations. CONCLUSIONS Changes in body composition utilising non-standardised presentation were more substantial and often in the opposite direction to those identified using standardised presentation, causing misinterpretation of change in physique traits. Standardised presentation prior to body composition assessment for athletic populations should be advocated to enhance interpretation of true change.
Collapse
|
54
|
Shiose K, Yamada Y, Motonaga K, Takahashi H. Muscle glycogen depletion does not alter segmental extracellular and intracellular water distribution measured using bioimpedance spectroscopy. J Appl Physiol (1985) 2018; 124:1420-1425. [PMID: 29420149 DOI: 10.1152/japplphysiol.00666.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although each gram of glycogen is well known to bind 2.7-4.0 g of water, no studies have been conducted on the effect of muscle glycogen depletion on body water distribution. We investigated changes in extracellular and intracellular water (ECW and ICW) distribution in each body segment in muscle glycogen-depletion and glycogen-recovery condition using segmental bioimpedance spectroscopy technique (BIS). Twelve male subjects consumed 7.0 g/kg body mass of indigestible (glycogen-depleted group) or digestible (glycogen-recovered group) carbohydrate for 24 h after a glycogen-depletion cycling exercise. Muscle glycogen content using 13C-magnetic resonance spectroscopy, blood hydration status, body composition, and ECW and ICW content of the arm, trunk, and leg using BIS were measured. Muscle glycogen content at the thigh muscles decreased immediately after exercise (glycogen-depleted group, 71.6 ± 12.1 to 25.5 ± 10.1 mmol/kg wet wt; glycogen-recovered group, 76.2 ± 16.4 to 28.1 ± 16.8 mmol/kg wet wt) and recovered in the glycogen-recovered group (72.7 ± 21.2 mmol/kg wet wt) but not in the glycogen-depleted group (33.2 ± 12.6 mmol/kg wet wt) 24 h postexercise. Fat-free mass decreased in the glycogen-depleted group ( P < 0.05) but not in the glycogen-recovered group 24 h postexercise. However, no changes were observed in ECW and ICW content at the leg in both groups. Our results suggested that glycogen depletion per se does not alter body water distribution as estimated via BIS. This information is valuable in assessing body composition using BIS in athletes who show variable glycogen status during training and recovery. NEW & NOTEWORTHY Segmental bioimpedance spectroscopy analysis reveals the effect of muscle glycogen depletion on body segmental water distribution in controlled conditions. Despite the significant difference in the muscle glycogen levels at the leg, no difference was observed in body resistance and the corresponding water content of the extracellular and intracellular compartments.
Collapse
Affiliation(s)
- Keisuke Shiose
- Faculty of Sports and Health Science, Fukuoka University , Fukuoka , Japan.,Fukuoka University Institute for Physical Activity , Fukuoka , Japan.,Japan Institute of Sports Sciences , Tokyo , Japan
| | - Yosuke Yamada
- Fukuoka University Institute for Physical Activity , Fukuoka , Japan.,National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo , Japan
| | | | | |
Collapse
|
55
|
Tinsley GM, Forsse JS, Morales E, Grandjean PW. Dual-energy X-ray absorptiometry visceral adipose tissue estimates: reproducibility and impact of pre-assessment diet. Eur J Clin Nutr 2017; 72:609-612. [PMID: 29288247 DOI: 10.1038/s41430-017-0038-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022]
Abstract
We examined the reproducibility of dual-energy x-ray absorptiometry (DXA) visceral adipose tissue (VAT) estimates as well as the impact of pre-assessment diet. In a counterbalanced design, 41 adults received 6 DXA scans, while consuming standardized high- and low-carbohydrate (LC) diets. The impact of pre-assessment diet was examined via repeated-measures analysis of variance and reproducibility of VAT estimates was evaluated by technical error of measurement (TEM) and s.e. of a single determination (SESD). VAT area, mass and volume were acutely decreased by ~ 6.5% after the LC diet (P ≤ 0.001), but not the high-carbohydrate diet (P > 0.3). Differences persisted after an overnight fast. TEMs for VAT area, mass and volume were < 5 cm2, ≤ 0.2 kg and < 25 cm3. SESDs for all VAT variables were ≤ 5.5%. In conclusion, DXA VAT estimates exhibit good reproducibility in controlled conditions, but may be impacted by pre-assessment diet.
Collapse
Affiliation(s)
- Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| | - Jeffrey S Forsse
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Elisa Morales
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Peter W Grandjean
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW The current article reviews the most innovative and precise, available methods for quantification of in-vivo human body composition. RECENT FINDINGS Body composition measurement methods are continuously being perfected. Ongoing efforts involve multisegmental and multifrequency bioelectrical impedance analysis, quantitative magnetic resonance for total body water, fat, and lean tissue measurements, imaging to further define ectopic fat depots. Available techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. SUMMARY There is an ongoing need for methods that yield information on metabolic and biological functions. Based on the wide range of measurable properties, analytical methods and known body composition models, clinicians, and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning prior to conception, a gap exists in appropriate in-vivo measurement methods with application beginning during gestation, that is, fetal development.
Collapse
Affiliation(s)
- Thaisa Lemos
- Department of Medicine, New York Obesity Nutrition Research Center, Columbia University Medical Center
| | - Dympna Gallagher
- Department of Medicine, New York Obesity Nutrition Research Center, Columbia University, New York, New York, USA
| |
Collapse
|
57
|
Steihaug OM, Gjesdal CG, Bogen B, Kristoffersen MH, Lien G, Ranhoff AH. Sarcopenia in patients with hip fracture: A multicenter cross-sectional study. PLoS One 2017; 12:e0184780. [PMID: 28902873 PMCID: PMC5597226 DOI: 10.1371/journal.pone.0184780] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sarcopenia is prevalent in older persons and is a risk factor for falls, fractures, and mortality. The aim of this study was to determine a) the feasibility of determining sarcopenia in patients with acute hip fracture, b) the prevalence of sarcopenia and c) associations of sarcopenia with nutritional status and comorbidities. METHODS A multicenter cross-sectional study on sarcopenia in male and female patients with acute hip fracture. Participants were previously ambulatory and living in the community. Sarcopenia was assessed postoperatively with muscle mass estimated by anthropometry using triceps skinfold, arm circumference, height, weight and sex. Grip strength was measured by Jamar dynamometer and pre-fracture mobility was by self-report using the New Mobility Score. RESULTS Out of 282 patients, 202 were assessed for sarcopenia of whom 74 (37%) were diagnosed as sarcopenic. Sarcopenia was associated with age, odds ratio (OR) 1.4 per 5 years, 95% confidence interval (CI) [1.1, 1.8], ASA Physical Status Classification System score, OR 2.3 per point, 95% CI [1.3, 4.3] and number of medications at discharge, OR 1.2 per medication, 95% CI [1.0, 1.3] and inversely associated with BMI, OR 0.8, 95% CI [0.7, 0.9] and serum albumin, OR 0.9, 95% CI [0.8,1.0]. CONCLUSIONS Thirty-seven percent of assessed subjects were diagnosed with sarcopenia. Our data demonstrates that the prevalence of sarcopenia is associated with older age, malnutrition and comorbidities. Determining sarcopenia at the bedside was feasible in postoperative hip fracture patients by using grip strength, estimation of muscle mass by anthropometry and self-reported mobility.
Collapse
Affiliation(s)
- Ole Martin Steihaug
- Kavli Research Centre for Geriatrics and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Clara Gram Gjesdal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Bård Bogen
- Kavli Research Centre for Geriatrics and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway
- Bergen University College, Bergen, Norway
| | | | - Gunhild Lien
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - Anette Hylen Ranhoff
- Kavli Research Centre for Geriatrics and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
58
|
Tinsley GM. Reliability and agreement between DXA-derived body volumes and their usage in 4-compartment body composition models produced from DXA and BIA values. J Sports Sci 2017; 36:1235-1240. [DOI: 10.1080/02640414.2017.1369556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Grant M. Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
59
|
Aragon AA, Schoenfeld BJ, Wildman R, Kleiner S, VanDusseldorp T, Taylor L, Earnest CP, Arciero PJ, Wilborn C, Kalman DS, Stout JR, Willoughby DS, Campbell B, Arent SM, Bannock L, Smith-Ryan AE, Antonio J. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr 2017. [PMID: 28630601 PMCID: PMC5470183 DOI: 10.1186/s12970-017-0174-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limitations. 3) Diets primarily focused on fat loss are driven by a sustained caloric deficit. The higher the baseline body fat level, the more aggressively the caloric deficit may be imposed. Slower rates of weight loss can better preserve lean mass (LM) in leaner subjects. 4) Diets focused primarily on accruing LM are driven by a sustained caloric surplus to facilitate anabolic processes and support increasing resistance-training demands. The composition and magnitude of the surplus, as well as training status of the subjects can influence the nature of the gains. 5) A wide range of dietary approaches (low-fat to low-carbohydrate/ketogenic, and all points between) can be similarly effective for improving body composition. 6) Increasing dietary protein to levels significantly beyond current recommendations for athletic populations may result in improved body composition. Higher protein intakes (2.3–3.1 g/kg FFM) may be required to maximize muscle retention in lean, resistance-trained subjects under hypocaloric conditions. Emerging research on very high protein intakes (>3 g/kg) has demonstrated that the known thermic, satiating, and LM-preserving effects of dietary protein might be amplified in resistance-training subjects. 7) The collective body of intermittent caloric restriction research demonstrates no significant advantage over daily caloric restriction for improving body composition. 8) The long-term success of a diet depends upon compliance and suppression or circumvention of mitigating factors such as adaptive thermogenesis. 9) There is a paucity of research on women and older populations, as well as a wide range of untapped permutations of feeding frequency and macronutrient distribution at various energetic balances combined with training. Behavioral and lifestyle modification strategies are still poorly researched areas of weight management.
Collapse
Affiliation(s)
- Alan A Aragon
- Department of Family and Consumer Sciences, California State University, Northridge, CA USA
| | | | | | | | - Trisha VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA USA
| | - Lem Taylor
- Department of Exercise and Sports Science, University of Mary Hardin-Baylor, Belton, TX USA
| | - Conrad P Earnest
- Exercise and Sports Nutrition Laboratory, Texas A&M University, College Station, TX USA
| | - Paul J Arciero
- Health and Exercise Science, Skidmore College, Saratoga Springs, NY USA
| | - Colin Wilborn
- Department of Exercise and Sports Science, University of Mary Hardin-Baylor, Belton, TX USA
| | | | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | - Darryn S Willoughby
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX USA
| | - Bill Campbell
- Performance & Physique Enhancement Laboratory, Exercise Science Program, University of South Florida, Tampa, FL USA
| | - Shawn M Arent
- Department of Kinesiology & Health, IFNH Center for Health & Human Performance, Rutgers University, New Brunswick, NJ USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
60
|
Berryman CE, Sepowitz JJ, McClung HL, Lieberman HR, Farina EK, McClung JP, Ferrando AA, Pasiakos SM. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance. J Appl Physiol (1985) 2017; 122:1485-1493. [PMID: 28385919 DOI: 10.1152/japplphysiol.01039.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/20/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022] Open
Abstract
Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy X-ray absorptiometry) and whole body protein turnover (single-pool [15N]alanine method) were determined before (PRE) and after 7 days (POST) of severe negative energy balance during military training in 63 male US Marines (means ± SD, 25 ± 3 yr, 84 ± 9 kg). After POST measures were collected, volunteers were randomized to receive higher protein (HIGH: 1,103 kcal/day, 133 g protein/day), moderate protein (MOD: 974 kcal/day, 84 g protein/day), or carbohydrate-based low protein control (CON: 1,042 kcal/day, 7 g protein/day) supplements, in addition to a self-selected, ad libitum diet, for the 27-day intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM; -5.8 ± 1.0 kg, -7.0%), FFM (-3.1 ± 1.6 kg, -4.7%), and net protein balance (-1.7 ± 1.1 g protein·kg-1·day-1) were lower and proteolysis (1.1 ± 1.9 g protein·kg-1·day-1) was higher compared with PRE (P < 0.05). Self-selected, ad libitum dietary intake during REFED was similar between groups (3,507 ± 730 kcal/day, 2.0 ± 0.5 g protein·kg-1·day-1). However, diets differed by protein intake due to supplementation (CON: 2.0 ± 0.4, MOD: 3.2 ± 0.7, and HIGH: 3.5 ± 0.7 g·kg-1·day-1; P < 0.05) but not total energy (4,498 ± 725 kcal/day). All volunteers, independent of group assignment, achieved positive net protein balance (0.4 ± 1.0 g protein·kg-1·day-1) and gained TBM (5.9 ± 1.7 kg, 7.8%) and FFM (3.6 ± 1.8 kg, 5.7%) POST-REFED compared with POST (P < 0.05). Supplementing ad libitum, energy-adequate, higher protein diets with additional protein may not be necessary to restore FFM after short-term severe negative energy balance.NEW & NOTEWORTHY This article demonstrates 1) the majority of physiological decrements incurred during military training (e.g., total and fat-free mass loss), with the exception of net protein balance, resolve and return to pretraining values after 27 days and 2) protein supplementation, in addition to an ad libitum, higher protein (~2.0 g·kg-1·day-1), energy adequate diet, is not necessary to restore fat-free mass following short-term severe negative energy balance.
Collapse
Affiliation(s)
- C E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute for Science and Education, Belcamp, Maryland; and
| | - J J Sepowitz
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - H L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - H R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - E K Farina
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute for Science and Education, Belcamp, Maryland; and
| | - J P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - A A Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - S M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| |
Collapse
|